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Abstract. Let 0 < p < 1 and 0 � � < � � 2�: We prove that for trigono-
metric polynomials sn of degree � n, we haveZ �

�

��s0n (�)��p
"����sin� � � �2

����� ����sin� � � �2
�����+ �� � �n

�2#p=2
d�

� cnp
Z �

�
jsn (�)jp d�;

where c is independent of �; �; n; sn. The essential feature is the uniformity in
� and � of the estimate. The result may be viewed as an Lp form of Videnskii�s
inequalities.

1. Introduction and Results

The classical Markov inequality for trigonometric polynomials

sn (�) :=
nX
j=0

(cj cos j� + dj sin j�)

of degree � n is
ks0n kL1[0;2�]� nksn kL1[0;2�] :

The same factor n occurs in the Lp analogue . See [1] or [3]. In the 1950�s V.S.
Videnskii generalized the L1 inequality to the case where the interval over which
the norm is taken is shorter than the period. An accessible reference discussing
this is the book of Borwein and Erdelyi [1, pp.242-5]. We formulate this in the
symmetric case: let 0 < ! < �. Then there is the sharp inequality

js0n (�)j
�
1� cos

2 !=2

cos2 �=2

�1=2
� nksn kL1[�!;!]; � 2 [�!; !] :

This implies that

sup
�2[��;�]

js0n (�)j
�����sin�� � !2

����� ����sin�� + !2
������1=2 � nksn kL1[�!;!]

and for n � n0 (!), this gives rise to the sharp Markov inequality

ks0n kL1[�!;!]� 2n2 cot
!

2
ksn kL1[�!;!] :

What are the Lp analogues? This question arose originally in connection with large
sieve inequalities [7], on subarcs of the circle. Here we prove:
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2 D.S. LUBINSKY

Theorem 1.1
Let 0 < p < 1 and 0 � � < � � 2�. Then for trigonometric polynomials sn of
degree � n,
(1)Z �

�

js0n (�)j
p

"����sin�� � �2
����� ����sin�� � �2

�����+ �� � �n
�2#p=2

d� � Cnp
Z �

�

jsn (�)jp d�:

Here C is independent of �; �; n; sn.

This inequality con�rms a conjecture of Erdelyi [4]. We deduce Theorem 1.1 from
an analogous inequality for algebraic polynomials:

Theorem 1.2
Let 0 < p <1 and 0 � � < � � 2�. Let

(2) "n (z) :=
1

n

"��z � ei��� ��z � ei���+ �� � �
n

�2#1=2
:

Then for algebraic polynomials P of degree � n,

(3)
Z �

�

��(P 0"n) �ei����p d� � C Z �

�

��P �ei����p d�:
Here C is independent of �; �; n; sn.

Our method of proof uses Carleson measures much as in [8], [9], but also uses
ideas from [7] where large sieve inequalities were proved for subarcs of the circle.
We could also replace pth powers by more general expressions involving convex
increasing functions composed with pth powers, provided a result of Carleson on
Carleson measures admits a generalisation from Lp spaces to certain Orlicz spaces.
We believe that such an extension must be possible, but have not been able to �nd
it in the literature. So we restrict ourselves to Lp estimates.
We shall prove Theorem 1.2 in Section 2, deferring some technical estimates.

In Section 3, we present estimates involving the function " and also estimate the
norms of certain Carleson measures. In Section 4, we prove Theorem 1.1.
Acknowledgement
The author thanks Paul Nevai and Tamas Erdelyi for posing the problem and for
conjectures thereon, and Leonid Golinskii for a correction in the proof of Lemma
3.2.

2. The Proof of Theorem 1.2

Throughout, C;C0; C1; C2; ::: denote constants that are independent of �; �; n
and polynomials P of degree � n or trigonometric polynomials sn of degree � n.
They may however depend on p. The same symbol does not necessarily denote the
same constant in di¤erent occurrences. We shall prove Theorem 1.2 in several steps:

(I) Reduction to the case 0 < � < �;� := 2� � �
After a rotation of the circle, we may assume that our arc

�
ei� : � 2 [�; �]

	
has the

form
� =

�
ei� : � 2 [�0; 2� � �0]

	
;
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where 0 � �0 < �. Then � is symmetric about the real line, and this simpli�es use
of a conformal map below. Moreover, then

� � � = 2 (� � �0) :
Thus, dropping the prime, it su¢ ces to consider 0 < � < �, and � � � replaced
everywhere by 2 (� � �). Thus in the sequel, we assume that
(4) � =

�
ei� : � 2 [�; 2� � �]

	
;

(5) R (z) =
�
z � ei�

� �
z � e�i�

�
= z2 � 2z cos�+ 1;

and (dropping the subscript n from "n as well as an inconsequential factor of 2 in
"n in (2)),

(6) " (z) =
1

n

"
jR (z)j+

�
� � �
n

�2#1=2
:

We can now begin the main part of the proof:

(II) Pointwise estimates for P 0 (z) when p � 1
By Cauchy�s integral formula for derivatives,

jP 0 (z)j =
����� 12�i

Z
jt�zj="(z)=100

P (t)

(t� z)2
dt

�����
� 1

2�

Z �

��

����P �z + " (z)100
ei�
����� d�=�" (z)100

�
:

Then Hölder�s inequality gives

jP 0 (z)j " (z) � 100
�
1

2�

Z �

��

����P �z + " (z)100
ei�
�����p d��1=p

) (jP 0 (z)j " (z))p � 100p 1
2�

Z �

��

����P �z + " (z)100
ei�
�����p d�:

(III) Pointwise estimates for P 0 (z) when p < 1
We follow ideas in [9]. Suppose �rst that P has no zeros inside or on the circle

 :=
n
t : jt� zj = "(z)

100

o
. Then we can choose a single valued branch of P p there,

with the properties
d

dt
P (t)

p
jt=z = pP (z)

p P
0 (z)

P (z)

and
jP p (t)j = jP (t)jp :

Then by Cauchy�s integral formula for derivatives,

p jP 0 (z)j jP (z)jp�1 =
����� 12�i

Z
jt�zj= "(z)

100

P p (t)

(t� z)2 dt

�����
� 1

2�

Z �

��

����P �z + " (z)100
ei�
�����p d�=�" (z)100

�
:
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Since also (by Cauchy or by subharmonicity)

jP (z)jp � 1

2�

Z �

��

����P �z + " (z)100
ei�
�����p d�

and since 1� p > 0, we deduce that

p jP 0 (z)j " (z) � 100
�
1

2�

Z �

��

����P �z + " (z)100
ei�
�����p d��1=p

) (jP 0 (z)j " (z))p �
�
100

p

�p
1

2�

Z �

��

����P �z + " (z)100
ei�
�����p d�:

Now suppose that P has zeros inside . We may assume that it does not have zeros
on  (if necessary change " (z) a little and then use continuity). Let B (z) be the
Blaschke product formed from the zeros of P inside . This is the usual Blaschke
product for the unit circle, but scaled to  so that jBj = 1 on . Then the above
argument applied to (P=B) gives���(P=B)0 (z)�� " (z)�p � �100

p

�p
1

2�

Z �

��

����P �z + " (z)100
ei�
�����p d�:

Moreover, as above

jP=B (z)jp � 1

2�

Z �

��

����P �z + " (z)100
ei�
�����p d�;

while Cauchy�s estimates give

jB0 (z)j � 100

" (z)
:

Then these last three estimates give

jP 0 (z)jp " (z)p �
���(P=B)0 (z)B (z)��+ jP=B (z)j jB0 (z)j�p " (z)p

�
��

200

p

�p
+ 200p

��
1

2�

Z �

��

����P �z + " (z)100
ei�
�����p d�� :

In summary, the last two steps give for all p > 0;

(7) jP 0"jp (z) � C0
1

2�

Z �

��

����P �z + " (z)100
ei�
�����p d�;

where
C0 := 200

p
�
1 + p�p

�
:

(IV) Integrate the Pointwise estimates
We obtain by integration of (7) that

(8)
Z 2���

�

��(P 0") �ei����p d� � C0 Z jP (z)jp d�;

where the measure � is de�ned by

(9)
Z
f d� :=

Z 2���

�

"
1

2�

Z �

��
f

 
eis +

"
�
eis
�

100
ei�

!
d�

#
ds:

We now wish to pass from the right-hand side of (9) to an estimate over the whole
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unit circle. This passage would be permitted by a famous result of Carleson, pro-
vided P is analytic o¤ the unit circle, and provided it has suitable behaviour at 1.
To take care of the fact that it does not have the correct behaviour at 1, we need
a conformal map:

(V) The conformal map 	 of Cn� onto fw : jwj > 1g.
This is given by

	(z) =
1

2 cos�=2

h
z + 1 +

p
R (z)

i
;

where the branch of
p
R (z) is chosen so that it is analytic o¤ � and behaves

like z (1 + 0 (1)) as z ! 1. Note that
p
R (z) and hence 	(z) have well de�ned

boundary values (both non-tangential and tangential) as z approaches� from inside
or outside the unit circle, except at z = e�i�. We denote the boundary values from
inside by

p
R (z)

+
and 	(z)+ and from outside by

p
R (z)� and 	(z)�. We also

set (unless otherwise speci�ed)

	(z) := 	 (z)+ ; z 2 �n
�
ei�; e�i�

	
:

See [6] for a detailed discussion and derivation of this conformal map. Let

(10) ` := least positive integer >
1

p
:

In [7, Lemma 3.2] it was shown that there is a constant C1 (independent of �; �; n)
such that

a 2 � and jz � aj � " (a)

100
) j	(z)jn+` � C1:

(There ` was replaced by 2, but the proof is the same; the constant C1 depends on
` and so on p).Then we deduce from (8) that

(11)
Z 2���

�

��(P 0") �ei����p d� � Cp1C0 Z ���� P

	n+`

����p d�:
Since the form of Carleson�s inequality that we use involves functions analytic
de�ned on the unit ball, we now split � into its parts with support inside and
outside the unit circle: for measurable S, let

�+ (S) : = � (S \ fz : jzj < 1g) ;(12)

�� (S) : = � (S \ fz : jzj > 1g) :
Moreover, we need to �re�ect �� through the unit circle�: let

(13) �# (S) := ��
�
1

S

�
:= ��

��
1

t
: t 2 S

��
:

Then since the unit circle � has � (�) = 0, (11) becomes
(14)Z 2���

�

��(P 0") �ei����p d� � Cp1C0�Z ���� P

	n+`

����p (t) d�+ (t) + Z ���� P

	n+`

����p�1t
�
d�# (t)

�
:

We next focus on handling the �rst integral in the last right-hand side:

(VI) Estimate the integral involving �+

We are now ready to apply Carleson�s result. Recall that a positive Borel measure
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� with support inside the unit ball is called a Carleson measure if there exists A > 0
such that for every 0 < h < 1 and every sector

S :=
�
rei� : r 2 [1� h; 1] ; j� � �0j � h

	
we have

� (S) � Ah:
The smallest such A is called the Carleson norm of � and denoted N (�). See [5]
for an introduction. One feature of such a measure is the inequality

(15)
Z
jf jp d� � C2N (�)

Z 2�

0

��f �ei����p d�
valid for every function f in the Hardy p space on the unit ball. Here C2 depends
only on p. See [5, pp. 238] and also [5,p.31;p.63].

Applying this to P=	n+` gives

(16)
Z ���� P

	n+`

����p d�+ � C2N ��+� Z 2�

0

���� P

	n+`
�
ei�
�����p d�:

(VII) Estimate the integral involving �#

Suppose that P has degree � � n. As 	(z) =z has a �nite non-zero limit as
z ! 1, P (z) =	(z)� has a �nite non-zero limit as z ! 1. Then h (t) :=�
P
�
1
t

�
=	
�
1
t

�n+`�
has zeros in jtj < 1 corresponding only to zeros of P (z) in

jzj > 1 and a zero of multiplicity n + ` � � at t = 0, corresponding to the zero of
P (z) =	(z)

n+` at z =1. Then we may apply Carleson�s inequality (15) to h. The
consequence is thatZ ���� P

	n+`

����p�1t
�
d�# (t) � C2N

�
�#
� Z 2�

0

���� P

	n+`
�
e�i�

�����p d�:
Combined with (14) and (16), this gives
(17)Z 2���

�

��(P 0") �ei����p d� � C0Cp1C2 �N ��+�+N ��#�� Z 2�

0

���� P

	n+`
�
ei�
�����p d�:

(VIII) Pass from the Whole Unit Circle to � when p > 1
Let � denote the whole unit circle, and let jdtj denote arclength on �. Suppose that
we have an estimate of the form

(18)
Z
�n�

jg (t)jp jdtj � C3
�Z

�

jg+ (t)jp jdtj+
��g_ (t)��p jdtj� ;

valid for all functions g analytic in Cn�, with limit 0 at1, and interior and exterior
boundary values g+ and g� for which the right-hand side of (18) is �nite. Here,
C3 depends only on p. (We shall establish such an inequality in the next step).
We apply this to g := P=	n+`. Then as 	� have absolute value 1 on �, so that
jg�j = jP j on �, we deduce thatZ

�n�

���P (t) =	(t)n+`���p jdtj � C3 Z
�

jP (t)jp jdtj
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)
Z 2�

0

���� P

	n+`
�
ei�
�����p d� � �Z 2���

�

��P �ei����p d�� (1 + C3) :
Now (17) becomes
(19)Z 2���

�

��(P 0") �ei����p d� � C0Cp1C2(1+C3) �N ��+�+N ��#�� Z 2���

�

��P �ei����p d�:
(IX)We establish (18) for p > 1.
We note that inequalities like (18) are an essential ingredient of the procedure used
in [8], [9] for proving weighted Markov-Bernstein inequalities, though there the unit
ball was replaced by a half-plane. In the case p = 2, they were also used in [7]. We
can follow the same procedure. Firstly we may use Cauchy�s integral formula to
deduce that

g (z) =
1

2�i

Z
�

g� (t)� g+ (t)
t� z dt; z =2 �:

Let � denote the characteristic function of � and for functions f 2 L1 (�), de�ne
the Hilbert transform on the unit circle,

H [f ] (z) :=
1

i�
PV

Z
�

f (t)

t� z dt; a.e. z 2 �:

Here PV denotes Cauchy principal value. Then we see that for z 2 �n�;

g (z) =
1

2
[H [�g�] (z)�H [�g+] (z)] :

Now the Hilbert transform is a bounded operator on Lp (�), that isZ
�

jH [f ] (t)jp jdtj � C4
Z
�

jf (t)jp jdtj ;

where C4 depends only on p [5]. We deduce thatZ
�n�

jg (t)jp jdtj � C4
�Z

�

jg+ (t)jp jdtj+
��g_ (t)��p jdtj� ;

so we have (18).

(X) Pass from the Whole Unit Circle to � when p � 1
We have to modify the previous procedure as the Hilbert transform is not a bounded
operator on Lp (�) when p � 1. It is only here that we really need the choice (10)
of `. Let

q := `p (> 1) :

Then we would like to apply (18) with p replaced by q and with

(20) g := (P=	n)
p=q
	�1 = (P=	n+`)p=q:

The problem is that g does not in general possess the required properties. To cir-
cumvent this, we proceed as follows: �rstly, we may assume that P has full degree
n. For, if (3) holds when P has degree n, (and for every n) it also holds when P
has degree � n, since "n is decreasing in n.

So assume that P has degree n. Then P=	n is analytic in Cn� and has a �-
nite non-zero limit at 1, so is analytic at 1. Now if all zeros of P lie on �,
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then we may de�ne a single valued branch of g of (20) in Cn�. Then (18) with q
replacing p gives as beforeZ

�n�
jg (t)jq jdtj � C3

�Z
�

jg+ (t)jq jdtj+
��g_ (t)��q jdtj�

)
Z
�n�

��P=	n+`��p jdtj � 2C3 Z
�

jP (t)jp jdtj

and then we obtain an estimate similar to (19). When P has zeros in Cn�, we
adopt a standard procedure to �re�ect�these out of Cn�. Write

P (z) = d
nY
j=1

(z � zj) :

For each factor z � zj in P with zj =2 �, we de�ne

bj (z) :=

8<: (z � zj) =
�
	(z)�	(zj)
1�	(zj)	(z)

�
; z 6= zj�

1� j	(zj)j2
�
=	0 (zj) ; z = zj

:

This is analytic in Cn�, does not have any zeros there, and moreover, since as
z ! �; j	(z)j ! 1; we see that

jbj (z)j = jz � zj j ; z 2 �; jbj (z)j � jz � zj j ; z 2 Cn�:
(Recall that we extended 	 to � as an exterior boundary value). We may now
choose a branch of

g (z) :=

24d
0@ Y
zj =2�

bj (z)

1A0@ Y
zj2�

(z � zj)

1A =	(z)n
35p=q =	(z)

that is single valued and analytic in Cn�, and has limit 0 at 1. Then as 	� have
absolute value 1 on �, so that jg�jq = jP jp on �, we deduce from (18) thatZ

�n�

���P (t) =	(t)n+`���p jdtj � Z
�n�

jg (t)jq jdtj

� C3
Z
�

�
jg+ (t)jq +

��g_ (t)��q� jdtj = 2C3 Z
�

jP (t)jp jdtj

and again we obtain an estimate similar to (19).

(XI) Completion of the proof
We shall show in Lemma 3.2 that

(21) N
�
�+
�
+N

�
�#
�
� C4:

Then (19) becomesZ 2���

�

��(P 0"n) �ei����p d� � C5 Z 2���

�

��P �ei����p d�:
So we have (3) with a constant C5 that depends only on the numerical constants
Cj ; 1 � j � 4 that arise from
(a) the bound on the conformal map 	;
(b) Carleson�s inequality (15);
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(c) the norm of the Hilbert transform as an operator on Lp (�) and the choice of `;
(d) the upper bound on the Carleson norms of �+ and �#.�

3. Technical Estimates

Throughout we assume (4) to (6). We begin with some estimates on the function
" :

Lemma 3.1
(a) For z; a 2 �,
(22) j" (z)� " (a)j � 2 jz � aj :

(b) Let 0 < K < 1
2 . Then for a; z 2 � such that jz � aj � K" (a), we have

(23) 1� 2K � " (z)

" (a)
� 1 + 2K:

(c) Let � 2 [0; 2�] be given and let s 2 [0; 2�] satisfy��eis � ei��� � r < 2:
Then s belongs to a set of linear Lebesgue measure at most 2�r:
Proof
(a) Write z = ei�; a = eis. Now from (6),

j" (z)� " (a)j = 1

n

�������
h
jR (z)j+

�
���
n

�2i� hjR (a)j+ ����n �2ih
jR (z)j+

�
���
n

�2i1=2
+
h
jR (a)j+

�
���
n

�2i1=2
�������

(24) � jR (z)�R (a)j
2 (� � �) :

Here

R (a) = �4a sin
�
s� �
2

�
sin

�
s+ �

2

�
= �4a

�
cos2

�

2
� cos2 s

2

�
;

so as
1

�
(� � �) � cos �

2
= sin

� � �
2

� 1

2
(� � �) ;

jR (a)j � 4 cos2 �
2
� (� � �)2 :

Note that then also

(25) " (a) �
p
2

n
(� � �) � 5

n
cos

�

2
:

Next,

R (z)�R (a) = �4 (z � a)
�
cos2

�

2
� cos2 �

2

�
+ 4a

�
cos2

�

2
� cos2 s

2

�
;

so as � 2 [�; 2� � �] ;

jR (z)�R (a)j � 4 jz � aj cos2 �
2
+ 4

����sin�s� �2
�
sin

�
s+ �

2

����� :



10 D.S. LUBINSKY

Here ����sin�s� �2
�
sin

�
s+ �

2

����� � ����sin�s� �2
����� �����sin s2 cos �2

����+ ����cos s2 sin �2
�����

�
����sin�s� �2

����� h2 cos �2 i
= jz � aj cos �

2
:

We have used the fact that that both s; � 2 [�; 2� � �]. So

jR (z)�R (a)j � 8 jz � aj cos �
2
:

Then (24) gives (22).
(b) This follows directly from (a).
(c) Our restrictions on s; � give ����s� �2

���� 2 [0; �] :
Then

0 � sin

����s� �2
���� = 1

2

��eis � ei��� � r

2

)
����s� �2

���� 2 h0; arcsin r2i [ h� � arcsin r2 ; �i :
It follows that s can lie in a set of linear Lebesgue measure at most 8 arcsin r

2 . The
inequality

arcsinu � �

2
u; u 2 [0; 1]

then gives the result.�
We next estimate the norms of the Carleson measures �+; �# de�ned by (9) and

(12-13). Recall that the Carleson norm N (�) of a measure � with support in the
unit ball is the least A such that

(26) � (S) � Ah;
for every 0 < h < 1 and for every sector

(27) S :=
�
rei� : r 2 [1� h; 1] ; j� � �0j � h

	
:

Lemma 3.2
(a)

(28) N
�
�+
�
� c1:

(b)

(29) N
�
�#
�
� c2:

Proof
(a) We proceed much as in [7] or [8] or [9]. Let S be the sector (27) and let  be a
circle centre a, radius "(a)

100 > 0. A necessary condition for  to intersect S is that��a� ei�0�� � " (a)

100
+ h:
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(Note that each point of S that is on the unit circle is at most h in distance from
ei�0 .) Using Lemma 3.1(a), we continue this as��a� ei�0�� � "

�
ei�0

�
100

+
2

100

��a� ei�0��+ h
(30) )

��a� ei�0�� � "
�
ei�0

�
98

+ 2h =: �

Next  \ S consists of at most three arcs (draw a picture!) and as each such arc is
convex, it has length at most 4h. Therefore the total angular measure of  \ S is
at most 12h= (" (a) =100). It also obviously does not exceed 2�. Thus if �S denote
the characteristic function of S,Z �

��
�S
�
a+ " (a) ei�

�
d� � min

�
2�;

1200h

" (a)

�
:

Then from (9) and (12), we see that

�+ (S) � � (S) �
Z
[�;2���]\fs:jeis�ei�0 j��g

"
1

2�

Z �

��
�S

 
eis +

"
�
eis
�

100
ei�

!
d�

#
ds

(31) � C1
Z
[�;2���]\fs:jeis�ei�0 j��g

min

�
1;

h

" (eis)

�
ds:

Here C1 is a numerical constant. We now consider two subcases:
(I) h � "

�
ei�0

�
=100

In this case,

� <
"
�
ei�0

�
25

< 1;

recall (25) and (30). Then Lemma 3.1(c) shows that s in the integral in (31) lies in
a set of linear Lebesgue measure at most

2� �
"
�
ei�0

�
25

:

Also Lemma 3.1 (b) gives

"
�
eis
�
� 23

25
"
�
ei�0

�
:

So (31) becomes

�+ (S) � � (S) � C1

 
2� �

"
�
ei�0

�
25

!�
25

23

h

" (ei�0)

�
= C2h:

(II) h > "
�
ei�0

�
=100

In this case � < 4h. If h < 1
2 , we obtain from Lemma 3.1(c) that s in the integral

in (31) lies in a set of linear Lebesgue measure at most 2� � 4h. Then (31) becomes
�+ (S) � � (S) � C1 (2� � 4h) = C2h:

If h > 1
2 , it is easier to use

�+ (S) � � (S) � � (C) � 2� � 4�h:
In summary, we have proved that

N
�
�+
�
= sup

S;h

�+ (S)

h
� C3;
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where C3 is independent of n; �; �. (It is also independent of p.)
(b) Recall that if S is the sector (27), then

�# (S) = ��(1=S) � � (1=S) ;
where

1=S =

�
rei� : r 2

�
1;

1

1� h

�
; j� + �0j � h

�
:

For small h, say for h 2 [0; 1=2], so that
1

1� h � 1 + 2h;

we see that exact same argument as in (a) gives

�# (S) � � (1=S) � C4h:
When h � 1=2, it is easier to use

�# (S) =h � 2�# (C) � 2� (C) � 4�:
�

4. The Proof of Theorem 1.1

We deduce Theorem 1.1 from Theorem 1.2 as follows: if sn is a trigonometric
polynomial of degree � n, we may write

sn (�) = e
�in�P

�
ei�
�
;

where P is an algebraic polynomial of degree � 2n. Then
js0n (�)j "2n

�
"i�
�
� n

��P �ei���� "2n �ei��+ ��P 0 �ei���� "2n �"i�� :
Moreover, ��ei� � ei��� ��ei� � ei��� = 4 ����sin�� � �2

����� ����sin�� � �2
����� :

These last two relations, the fact that n"2n
�
ei�
�
is bounded independently of

n; �; �; � and Theorem 1.2 easily imply (1).�
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