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Discrete Beta Ensembles based on Gauss Type

Quadratures

D. S. Lubinsky

Abstract. Let µ be a measure with support on the real line and n ≥ 1,
β > 0. In the theory of random matrices, one considers a probability
distribution on the eigenvalues t1, t2, . . . , tn of random matrices, of the
form

P
(n)
β (µ; t1, t2, . . . , tn) = C |V (t1, t2, . . . , tn)|β dµ (t1) . . . dµ (tn) ,

where C is a normalization constant, and

V (t1, t2, . . . , tn) =
Y

1≤i<j≤n

(tj − ti) .

This is the so-called β ensemble with temperature 1/β. We explicitly
evaluate the m−point correlation functions when µ is a Gauss quad-
rature type measure, and use this to investigate universality limits for
sequences of such measures.

1. Introduction

Let µ be a finite positive Borel measure on the real line with infinitely
many points in the support, and all finite moments. Let β > 0 and n ≥
2. The β-ensemble, with temperature 1/β, associated with the measure µ
places a probability distribution on the eigenvalues t1, t2, . . . , tn of an n by
n Hermitian matrix, of the form

P(n)
β (µ; t1, t2, . . . , tn)

=
1

Zn
|V (t1, t2, . . . , tn)|β dµ (t1) · · · dµ (tn) ,(1.1)

1991 Mathematics Subject Classification. Primary 41A10, 41A17, 42C99; Secondary
33C45.

Key words and phrases. Random Matrices.
Research supported by NSF grant DMS1001182 and US-Israel BSF grant 2008399.

c©0000 (copyright holder)

1



2 D. S. LUBINSKY

where

(1.2) V (t1, t2, . . . , tn) =
∏

1≤i<j≤n

(tj − ti) = det
[

tj−1
i

]

1≤i,j≤n

and

(1.3) Zn =

∫

· · ·
∫

|V (t1, t2, . . . , tn)|β dµ (t1) · · · dµ (tn) .

These ensembles arise in scattering theory in mathematical physics. Their
analysis has generated interest amongst mathematicians and physicists for
decades [2], [3], [4].

One of the important statistics is the m-point correlation function

Rm,β
n (µ; y1, y2, . . . , ym)

=
n!

(n−m)!

∫

· · ·
∫

P(n)
β (µ; y1, y2, . . . , ym, tm+1, . . . , tn) dµ (tm+1) · · · dµ (tn)

=
n!

(n−m)!

∫

· · ·
∫

|V (y1, y2, . . . , ym, tm+1, . . . , tn)|β dµ (tm+1) · · · dµ (tn)
∫

· · ·
∫

|V (t1, t2, . . . , tn)|β dµ (t1) · · · dµ (tn)
.

(1.4)

It can be used to study local spacing properties of eigenvalues, and local
density of eigenvalues. For example, if m = 2, and B ⊂ R is measurable,
then

∫

B

∫

B
Rn,β

2 (µ; t1, t2) dµ (t1) dµ (t2)

is the expected number of pairs (t1, t2) of eigenvalues, with both t1, t2 ∈ B.
The best understood case is β = 2 [2], where there are close connections

to the the theory of orthogonal polynomials associated with the measure
µ. The cases β = 1 and β = 4 are also well understood [3], [4], although
the analysis is far more complicated. For Jacobi weights, one can use the
Selberg integral to partly analyze general β. For the case where β is the
square of an integer, some analysis has been undertaken by Chris Sinclair
[17]. A recent breakthrough by Borgade, Erdős, and Yau [1] gives a new
approach to handling β-ensembles for varying weights of the form e−nV with
V convex and real analytic.

In this paper, we show that when we take µ to be a Gauss type quadra-
ture measure, then we can explicitly evaluate the correlation function, and
hence analyze universality limits for sequences of such measures, at least for
the case β > 1.

Define orthonormal polynomials

pn (x) = γnx
n + · · · , γn > 0,

n = 0, 1, 2, · · · , satisfying the orthonormality conditions
∫

pjpkdµ = δjk.
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Throughout we use µ′ to denote the Radon-Nikodym derivative of µ. The
nth reproducing kernel for µ is

Kn (µ, x, y) =

n−1
∑

k=0

pk (x) pk (y) .

Its normalized cousin is

K̃n (µ, x, y) = µ′ (x)1/2 µ′ (y)1/2Kn (µ, x, y) .

The nth Christoffel function is

λn (µ, x) = 1/Kn (µ, x, x) = 1/
n−1
∑

j=0

p2
j (x) .

When it is clear that the measure is µ, we’ll omit the µ, just writing λn (x)
and Kn (x, y). Recall that given any real ξ with

(1.5) pn−1 (ξ) 6= 0,

there is a Gauss quadrature including ξ as one of the nodes:

(1.6)

∫

P dµ =

n
∑

j=1

λn (µ, xjn)P (xjn)

for P of degree ≤ 2n − 2. We shall usually order {xjn}n
j=1 = {xjn (ξ)}n

j=1

in increasing order; in Section 3, we shall adopt a different notation, setting
x0n = ξ. The {xjn} are zeros of

ψn (t, ξ) = pn (ξ) pn−1 (t) − pn−1 (ξ) pn (t) .

In the special case that pn (ξ) = 0, these are the zeros of pn, and the precision
of the quadrature is actually 2n − 1. Note that when pn−1 (ξ) = 0, there is
still a quadrature like (1.6), but involving n− 1 points, namely the zeros of
pn−1, and exact for polynomials of degree ≤ 2n− 3.

We define the discrete measure µn by

(1.7)

∫

f dµn =

n
∑

j=1

λn (µ, xjn) f (xjn) .

Equivalently,

(1.8) µn =

n
∑

j=1

λn (µ, xjn) δxjn ,

where δxjn denotes a Dirac delta at xjn. Note that µn depends on ξ, but we
shall not explicitly display this dependence.

Our basic identity is:
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Theorem 1.1. Let µ be a measure on the real line with infinitely many
points in its support, and all finite power moments. Let β > 0, n ≥ 1; let
ξ ∈ R satisfy (1.5), and µn be the discrete measure defined by (1.8). For any
real y1, y2, . . . , ym,

Rm,β
n (µn; y1, y2, . . . , ym)

=
1

m!

∑

1≤j1,j2,...,jm≤n

(

m
∏

k=1

λn (µ, xjkn)

)β−1

×

∣

∣

∣

∣

∣

∣

∣

det







Kn (µ, xj1n, y1) . . . Kn (µ, xj1n, ym)
...

. . .
...

Kn (µ, xjmn, y1) . . . Kn (µ, xjmn, ym)







∣

∣

∣

∣

∣

∣

∣

β

.(1.9)

Remark. (a) Suppose that yk = xjkn, 1 ≤ k ≤ m, for some distinct
1 ≤ j1, j2, . . . , jm ≤ n. Then the above reduces to

Rm,β
n (µn;xj1n, xj2n, . . . , xjmn) =

m
∏

k=1

λn (µ, xjkn)−1 .

(b) If m = 1, we see that

R1,β
n (µ; y) =

n
∑

j=1

λn (µ, xjn)β−1 |Kn (µ, x, xjn)|β .

=
n
∑

j=1

λn (µ, xjn)−1 |ℓjn (x)|β ,

where {ℓjn} are the fundamental polynomials of Lagrange interpolation for
{xjn}.

(c) When β = 2, this reduces to a familiar identity in random matrix theory:

Corollary 1.2.

Rm,2
n (µn; y1, y2, . . . , ym) = Rm,2

n (µ; y1, y2, . . . , ym)

= det [Kn (µ, yi, yj)]1≤i,j≤m .(1.10)

The representation in Theorem 1.1 lends itself to asymptotics: let

(1.11) S (t) =
sinπt

πt

denote the sinc kernel. Recall that a compactly supported measure µ is said
to be regular in the sense of Stahl, Totik, and Ullman, or just regular, if the
leading coefficients {γn} of its orthonormal polynomials satisfy

lim
n→∞

γn
1/n =

1

cap (supp [µ])
.
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Here cap(supp [µ]) is the logarithmic capacity of the support of µ. We recall
only a very simple criterion for regularity, namely a version of the Erdős-
Turán criterion: if the support of µ consists of finitely many intervals, and
µ′ > 0 a.e. with respect to Lebesgue measure in that support, then µ is
regular [18, p. 102]. There are many deeper criteria in [18].

We also need the density ωJ of the equilibrium measure for a compact
set J . Thus ωJ (x) dx is the unique probability measure that minimizes the
energy integral

∫ ∫

log
1

|s− t|dν (s) dν (t)

amongst all probability measures ν with support in J [13], [14]. In the
special case J = [−1, 1], ωJ (x) = 1

π
√

1−x2
.

Theorem 1.3. Let µ be a regular measure with compact support J . Let
I be a compact subinterval of J such that µ is absolutely continuous in an
open interval I1 containing I. Assume that µ′ is positive and continuous in
I1, and moreover, that either

(1.12) sup
n≥1

‖pn‖L∞(I1)
<∞,

or

(1.13) sup
n≥1

n ‖λn‖L∞(J) <∞.

Fix ξ ∈ I, and for n ≥ 1, assume (1.5) holds. Let µn include the point ξ as
one of the quadrature points. Then for β ≥ 2 and real a1, a2, . . . , am,,

lim
n→∞

(

µ′ (x)
nωJ (x)

)m

Rm,β
n

(

µn; ξ +
a1

nωJ (x)
, . . . , ξ +

am

nωJ (x)

)

=
1

m!

∞
∑

j1,j2···jm=−∞

∣

∣

∣
det [S (ai − jk)]1≤i,k≤m

∣

∣

∣

β
.(1.14)

For 1 < β < 2, the same result holds if we assume (1.12) and the additonal
restriction

(1.15)

n
∑

k=1

λn (µ, xkn)−1 = O
(

n
1

1−β/2

)

.

Remarks. (a) We can also write the limit as

lim
n→∞

1

Kn (µ, ξ, ξ)mR
m,β
n

(

µn; ξ +
a1

K̃n (µ, ξ, ξ)
, . . . , ξ +

am

K̃n (µ, ξ, ξ)

)

=
1

m!

∞
∑

j1,j2···jm=−∞

∣

∣

∣
det [S (ai − jk)]1≤i,k≤m

∣

∣

∣

β
,(1.16)

because, uniformly in compact subsets of I1,

lim
n→∞

1

n
K̃n (x, x) =

ωJ (x)

µ′ (x)
.
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(b) If the support of µ is the interval [−1, 1] and µ satisfies the Szego con-
dition

∫ 1

−1

log µ′ (x)√
1 − x2

dx > −∞,

while in some open subinterval I2 of (−1, 1), µ is absolutely continuous,
µ′ is bounded above and below by positive constants, and µ′ satisfies the
condition

∫
∣

∣

∣

∣

µ′ (t) − µ′ (θ)
t− θ

∣

∣

∣

∣

2

dt <∞

uniformly in I1, then (1.12) holds (cf. [5, p. 223, Thm. V.4.4]). In particular,
this holds for Jacobi and generalized Jacobi weights. The bound (1.12) is
also known for exponential weights that violate Szegő’s condition [7].
(c) The global condition (1.13) is satisfied if for example the support is

[−1, 1] and µ′ (x) ≤ C/
√

1 − x2 for a.e. x ∈ (−1, 1). In fact, as we show in
Section 3, one can replace (1.12) and (1.13) by the more implicit condition
(which they both imply)

(1.17) sup
t∈J,x∈I2

λn (t) |Kn (x, t)| ≤ C, n ≥ 1.

Here I2 is a compact subinterval of I1 that contains I in its interior.
(d) (1.15) places severe restrictions on the measure µ, especially near the
endpoints of the support. But some such restriction may well be necessary.
It seems that universality is most universal for the “natural” case β = 2.
(e) When β = 2, the last right-hand side reduces to a familiar universality
limit:

Corollary 1.4.

lim
n→∞

(

µ′ (x)
nωJ (x)

)m

Rm,2
n

(

µn; ξ +
a1

nωJ (x)
, . . . , ξ +

am

nωJ (x)

)

= det [S (ai − aj)]1≤1,j≤m .

Of course, this last limit has been established under much more general
conditions elsewhere, using special techniques available for β = 2 [9], [10],
[16], [21]. For β = 4, the form of the universality limit differs from the
standard one for β = 4 as the determinant of a 2 by 2 matrix involving S
and its derivatives and integrals [3, p. 142]. It remains to be seen if (1.14)
coincides with that form.

We prove Theorem 1.1 and Corollary 1.2 in Section 2, and Theorem 1.3
and Corollary 1.4 in Section 3. Throughout C,C1, C2, . . . denote positive
constants independent of n, x, t, that are different in different occurrences.

2. Proof of Theorem 1.1 and Corollary 1.2

We shall often use

(2.1) Kn (µ, xjn, xkn) = 0, j 6= k.
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We also use the notation

r
¯n = (r1, r2, . . . , rn) and s

¯n = (s1, s2, . . . , sn)

and

D ((r1, r2, . . . , rn) , (s1, s2, . . . , sn))

= D (r
¯n, s¯n) = det [Kn (ri, sj)]1≤i,j≤n

= det











Kn (r1, s1) Kn (r1, s2) . . . Kn (r1, sn)
Kn (r2, s1) Kn (r2, s2) . . . Kn (r2, sn)

...
...

. . .
...

Kn (rn, s1) Kn (rn, s2) . . . Kn (rn, sn)











.(2.2)

Lemma 2.1.
∫

· · ·
∫

|V (t1, t2, . . . , tn)|β dµn (t1) · · · dµn (tn)

= (γ0 · · · γn−1)
−β n!

(

n
∏

k=1

λn (µ, xkn)

)1−β/2

.(2.3)

Proof. We see by taking linear combinations of columns that

γ0γ1 · · · γn−1V (t1, . . . , tn) = det [pk−1 (tj)]1≤j,k≤n .

Then as the determinant of a matrix equals that of its transpose,

(γ0γ1 · · · γn−1)
2 V (t1, . . . , tn)2 = det [pk−1 (tj)]1≤j,k≤n det [pk−1 (tℓ)]1≤k,ℓ≤n

= det

[

n
∑

k=1

pk−1 (tj) pk−1 (tℓ)

]

1≤j,ℓ≤n

= det [Kn (tj , tℓ)]1≤j,ℓ≤n .(2.4)

Let (j1, . . . , jn) be a permutation of (1, 2, . . . , n). Then

[γ0γ1 · · · γn−1V (xj1n, . . . , xjnn)]2 = det [Kn (xjin, xjℓn)]1≤j,ℓ≤n

=
∏n

j=1
Kn (xjn, xjn) ,

by (2.1). Note that this is independent of the permutation (j1, . . . , jn). Then
by definition of µn, and as V (t1, . . . , tn) vanishes unless all its entries are
distinct,

[γ0γ1 · · · γn−1]
β
∫

· · ·
∫

|V (t1, t2, . . . , tn)|β dµn (t1) · · · dµn (tn)

=
n
∑

j1=1

n
∑

j2=1

· · ·
n
∑

jn=1

j1,j2,...,jn distinct

(

n
∏

k=1

λn (xjkn)

)

[

(γ0γ1 · · · γn−1)
2 (V (xj1n, . . . , xjnn))2

]β/2
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=
n
∑

j1=1

n
∑

j2=1

· · ·
n
∑

jn=1

j1,j2,...,jn distinct

(

n
∏

k=1

λn (xkn)

)

[

∏n

k=1
Kn (xkn, xkn)

]β/2

= n!

(

n
∏

k=1

λn (xkn)

)1−β/2

.

�

Recall that we use the abbreviations λn (x) for λn (µ, x), and Kn (x, y)
for Kn (µ, x, y). We shall do this fairly consistently in the proof of Lemma
2.2 and Theorem 1.1.

Lemma 2.2. Let m ≥ 2 and y1, y2, . . . , ym ∈ R. Let jm+1, jm+2, . . . , jn be
distinct indices in {1, 2, . . . , n}. Let {j1, j2, . . . , jm} = {1, 2, . . . , n} \ {jm+1, . . . , jn}.
Then

D
((

y1 · · · ym, xjm+1n, xjm+2n, . . . , xjnn

)

,
(

y1 · · · ym, xjm+1n, xjm+2n, . . . , xjnn

))

=

(

m
∏

k=1

λn (xjkn)

)(

n
∏

k=m+1

Kn (xjkn, xjkn)

)

×






det







Kn (xj1n, y1) . . . Kn (xj1n, ym)
...

. . .
...

Kn (xjmn, y1) . . . Kn (xjmn, ym)













2

.

(2.5)

Proof. We use the reproducing kernel and Gauss quadrature in the
form

(2.6) Kn (yk, u) =

n
∑

i=1

λn (xjin)Kn (yk, xjin)Kn (xjin, u) .

Substituting (2.6) with u ∈
{

y1, y2, . . . , ym, xjm+1n, . . . , xjnn

}

in the first m
rows of

D = D
((

y1 · · · ym, xjm+1n, xjm+2n, . . . , xjnn

)

,
(

y1 · · · ym, xjm+1n, xjm+2n, . . . , xjnn

))

and then extracting each of the m sums, gives

D =
n
∑

i1=1

n
∑

i2=1

· · ·
n
∑

im=1

(

m
∏

k=1

λn

(

xjik
n

)

Kn

(

yk, xjik
n

)

)
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× det























Kn

(

xji1
n, y1

)

. . . Kn

(

xji1
n, ym

)

Kn

(

xji1
n, xjm+1n

)

. . . Kn

(

xji1
n, xjnn

)

...
. . .

...
...

. . .
...

Kn

(

xjimn, y1

)

. . . Kn

(

xjimn, ym

)

Kn

(

xjimn, xjm+1n

)

. . . Kn

(

xjimn, xjnn

)

Kn

(

xjm+1n, y1

)

. . . Kn

(

xjm+1n, ym

)

Kn

(

xjm+1n, xjm+1n

)

. . . Kn

(

xjm+1n, xjnn

)

...
. . .

...
...

. . .
...

Kn (xjnn, y1) . . . Kn (xjnn, ym) Kn

(

xjnn, xjm+1n

)

. . . Kn (xjnn, xjnn)























.

We see that this determinant vanishes unless {i1, i2, . . . , im} = {1, 2, . . . ,m}
(for if not, two rows of the determinant are identical). When {i1, i2, . . . , im} =
{1, 2, . . . ,m}, the determinant in the last equation becomes

det























Kn

(

xji1
n, y1

)

. . . Kn

(

xji1
n, ym

)

0 . . . 0

...
. . .

...
...

. . .
...

Kn

(

xjimn, y1

)

. . . Kn

(

xjimn, ym

)

0 . . . 0
Kn

(

xjm+1n, y1

)

. . . Kn

(

xjm+1n, ym

)

Kn

(

xjm+1n, xjm+1n

)

. . . 0
...

. . .
...

...
. . .

...
Kn (xjnn, y1) . . . Kn (xjnn, ym) 0 . . . Kn (xjnn, xjnn)























= det









Kn

(

xji1
n, y1

)

. . . Kn

(

xji1
n, ym

)

...
. . .

...
Kn

(

xjimn, y1

)

. . . Kn

(

xjimn, ym

)









n
∏

k=m+1

Kn (xjkn, xjkn)

= εσ det







Kn (xj1n, y1) . . . Kn (xj1n, ym)
...

. . .
...

Kn (xjmn, y1) . . . Kn (xjmn, ym)







n
∏

k=m+1

Kn (xjkn, xjkn) ,

where εσ denotes the sign of the permutation σ = {i1, i2, . . . , im} of {1, 2, . . . ,m},
that is ij = σ (j) for each j, 1 ≤ j ≤ m. Then

D =

(

m
∏

k=1

λn (xjkn)

)(

n
∏

k=m+1

Kn (xjkn, xjkn)

)

det







Kn (xj1n, y1) . . . Kn (xj1n, ym)
...

. . .
...

Kn (xjmn, y1) . . . Kn (xjmn, ym)







×
∑

σ

εσ

m
∏

k=1

Kn

(

yk, xjσ(k)n

)

=

(

m
∏

k=1

λn (xjkn)

)(

n
∏

k=m+1

Kn (xjkn, xjkn)

)
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×






det







Kn (xj1n, y1) . . . Kn (xj1n, ym)
...

. . .
...

Kn (xjmn, y1) . . . Kn (xjmn, ym)













2

.

�

Proof of Theorem 1.1. We first deal with the numerator in Rm,β
n

defined by (1.4). Using the definition (1.8) of µn, the identity (2.4), and
then Lemma 2.2,

I = (γ0γ1 · · · γn−1)
β
∫

· · ·
∫

|V (y1, y2, . . . , ym, tm+1, . . . , tn)|β dµn (tm+1) · · · dµn (tn)

=
n
∑

jm+1=1

· · ·
n
∑

jn=1

(

n
∏

k=m+1

λn (xjkn)

)

×
∣

∣

∣
D
(

(

y1, . . . , ym, xjm+1n, xjm+2n, . . . , xjnn

)

,

(

y1, . . . , ym, xjm+1n, xjm+2n, . . . , xjnn

)

)∣

∣

∣

β/2

=
n
∑

jm+1=1

· · ·
n
∑

jn=1

jm+1···jn distinct

(

n
∏

k=m+1

λn (xjkn)

)

×
{(

m
∏

k=1

λn (xjkn)

)(

n
∏

k=m+1

Kn (xjkn, xjkn)

)

×






det







Kn (xj1n, y1) . . . Kn (xj1n, ym)
...

. . .
...

Kn (xjmn, y1) . . . Kn (xjmn, ym)













2
}β/2

(2.7)

Here {j1, j2, . . . , jm} = {1, 2, . . . , n} \ {jm+1, . . . , jn}. Because of the sym-
metry in this last expression, it is the same as it would be if j1 < j2 < · · · <
jm. Moreover, once we have chosen j1, . . . , jm, there are (n−m)! choices
for {jm+1, . . . , jn} (not necessarily in increasing size). Also

n
∏

k=m+1

Kn (xjkn, xjkn) =

n
∏

k=m+1

λ−1
n (xjkn)

=

(

n
∏

k=1

λ−1
n (xkn)

)

m
∏

k=1

λn (xjkn) .

So

I = (n−m)!

{

n
∏

k=1

λn (xkn)

}1−β/2
∑

1≤j1<j2<···jm≤n

(

m
∏

k=1

λn (xjkn)

)β−1
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×

∣

∣

∣

∣

∣

∣

∣

det







Kn (xj1n, y1) . . . Kn (xj1n, ym)
...

. . .
...

Kn (xjmn, y1) . . . Kn (xjmn, ym)







∣

∣

∣

∣

∣

∣

∣

β

=
(n−m)!

m!

{

n
∏

k=1

λn (xkn)

}1−β/2
∑

1≤j1,j2···jm≤n

(

m
∏

k=1

λn (xjkn)

)β−1

×

∣

∣

∣

∣

∣

∣

∣

det







Kn (xj1n, y1) . . . Kn (xj1n, ym)
...

. . .
...

Kn (xjmn, y1) . . . Kn (xjmn, ym)







∣

∣

∣

∣

∣

∣

∣

β

.

Then (1.4), Lemma 2.1, and our definition (2.7) of I give

Rm,β
n (µn; y1, y2, . . . , ym)

=
n!

(n−m)!

∫

· · ·
∫

|V (y1, y2, . . . , ym, tm+1, . . . , tn)|β dµn (tm+1) · · · dµn (tn)
∫

· · ·
∫

|V (t1, t2, . . . , tn)|β dµn (t1) · · · dµn (tn)

=
n!

(n−m)!

I

(γ0 · · · γn−1)
β ∫ · · ·

∫

|V (t1, t2, . . . , tn)|β dµn (t1) · · · dµn (tn)

=
1

m!

∑

1≤j1,j2···jm≤n

(

m
∏

k=1

λn (xjkn)

)β−1

×

∣

∣

∣

∣

∣

∣

∣

det







Kn (xj1n, y1) . . . Kn (xj1n, ym)
...

. . .
...

Kn (xjmn, y1) . . . Kn (xjmn, ym)







∣

∣

∣

∣

∣

∣

∣

β

.

�

Proof of Corollary 1.2. For β = 2, |V (y1, y2, . . . , ym, tm+1, . . . , tn)|2
is a polynomial of degree ≤ 2n − 2 in tm+1, tm+2, . . . , tn. Similarly for
|V (t1, . . . , tn)|2. Then the Gauss quadrature formula gives the first equality
in (1.10). Next for β = 2, the right-hand side of (1.9) becomes

1

m!

∑

1≤j1,j2···jm≤n

m
∏

k=1

λn (µ, xjkn)

×

∣

∣

∣

∣

∣

∣

∣

det







Kn (µ, xj1n, y1) . . . Kn (µ, xj1n, ym)
...

. . .
...

Kn (µ, xjmn, y1) . . . Kn (µ, xjmn, ym)







∣

∣

∣

∣

∣

∣

∣

2

=
1

m!

∫

· · ·
∫

det [Kn (µ, ti,yj)]
2 dµ (t1) dµ (t2) · · · dµ (tm) .

By the equality part of Theorem 1.1 in [11], this last expression equals
det [Kn (yi, yj)]1≤i,j≤m. �
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3. Proof of Theorem 1.3 and Corollary 1.4

We begin with

Lemma 3.1. Assume that µ satisfies the hypotheses of Theorem 1.3. Let
I2 be a compact subinterval of I1. Then
(a) Uniformly for ξ ∈ I2, and uniformly for a, b in compact subsets of the
real line,

(3.1) lim
n→∞

Kn

(

µ, ξ + a
K̃n(ξ,ξ)

, ξ + b
K̃n(ξ,ξ)

)

Kn (µ, ξ, ξ)
= S (a− b) ,

(b) Uniformly for x ∈ I2,

(3.2) lim
n→∞

nλn (µ, x) = πµ′ (x) /ωJ (x) .

Moreover, there exist C1, C2 > 0 such that for n ≥ 1 and all x ∈ I2,

(3.3) C1 ≤ nλn (µ, x) ≤ C2.

(c) There exists C3, C4 > 0 such that for all n, j with xjn, xj−1,n ∈ I2,
(3.4) C4/n ≥ xjn − xj−1,n ≥ C3/n.

(d) Fix ξ ∈ I1 and {xjn} = {xjn (ξ)}. Order them in the following way:

(3.5) · · · < x−1,n < x0n = ξ < x1n < x2n < · · ·
Then for each integer j,

(3.6) lim
n→∞

(xjn − ξ) K̃n (ξ, ξ) = j.

Proof. (a) This follows from results of Totik [21, Theorem 2.2].
(b) The first part (3.2) also follows from the result of Totik [21, Theorem 2.2].
The second part follows from the extremal property of Christoffel functions,
and comparison with, e.g. the Christoffel function for the Legendre weight -
see [12, p. 116].
(c) We need the fundamental polynomial ℓkn of Lagrange interpolation that
satisfies

ℓkn (xjn) = δjk.

One well known representation of ℓkn, which follows from the Christoffel-
Darboux formula, is

(3.7) ℓkn (x) = Kn (xkn, x) /Kn (xkn, xkn) .

Let I3 be a compact subinterval of I1 that contains I2 in its interior. Then

1 = ℓjn (xjn) − ℓjn (xj−1,n)

= ℓ′jn (ξ) (xjn − xj−1,n)

≤ Cn sup
t∈I3

|ℓjn (t)| (xjn − xj−1,n) ,(3.8)
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by Bernstein’s inequality. Here for t ∈ I3, our bounds on the Christoffel
function, and Cauchy-Schwarz give

|ℓjn (t)| = λn (µ, xkn) |Kn (x, xjn)|

≤ λn (µ, xkn) (Kn (x, x))1/2 (Kn (xj , xjn))1/2 ≤ C

n
n = C,

by (3.3). Then the right-hand inequality in (3.4) follows from (3.8). The
left-hand inequality follows easily from the Markov-Stieltjes inequalities [5,
p. 33]

xjn − xj−1,n ≤ λn (xj−1,n) + λn (xjn) .

(d) The method is due to Eli Levin [8], in a far more general situation than
that considered here. We do this first for j = 1. By (c), and (3.3),

x1n = ξ +
an

K̃n (ξ, ξ)
,

where an ≥ 0 and an = O (1). We shall show that

(3.9) lim
n→∞

an = 1.

Let us choose a subsequence {an}n∈S with

lim
n→∞,n∈S

an = a.

Because of the uniform convergence in (a),

0 = lim
n→∞,n∈S

Kn (x1n, ξ)

Kn (ξ, ξ)

= lim
n→∞,n∈S

Kn

(

ξ + an

K̃n(ξ,ξ)
, ξ
)

Kn (ξ, ξ)
= S (a) =

sinπa

πa
.

It follows that a is a positive integer. If a ≥ 2, then as S (t) changes sign at
1, the intermediate value theorem shows that there will be a point

yn = ξ +
bn

K̃n (ξ, ξ)
,

with yn ∈ (ξ, x1n), with bn → 1, and Kn (yn, ξ) = 0. This contradicts that
x1n is the first zero to the right of ξ. Thus necessarily a = 1. As this
is independent of the subsequence, we have (3.9), and hence the result for
j = 1. The general case of positive can be completed by induction on j.
Negative j is similar. �

We now analyze the main part of the sum in (1.9): in the sequel, the
sets I1, I2, I3 are as above.

Lemma 3.2. Assume that for 1 ≤ k ≤ m,

(3.10) yk = yk (n) = ξ +
an,k

K̃n (ξ, ξ)
,
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where for 1 ≤ k ≤ m,

lim
n→∞

an,k = ak,

and a1, a2, . . . , am are fixed. Then for each fixed positive integer L,

lim
n→∞

∑

|j1|,|j2|,...,|jm|≤L

(

m
∏

k=1

λn (xjkn)

)β−1

Kn (ξ, ξ)m

×

∣

∣

∣

∣

∣

∣

∣

det







Kn (xj1n, y1) . . . Kn (xj1n, ym)
...

. . .
...

Kn (xjmn, y1) . . . Kn (xjmn, ym)







∣

∣

∣

∣

∣

∣

∣

β

=
∑

|j1|,|j2|,...,|jm|≤L

|det (S (ji − ak))|β .(3.11)

Proof. Note that for each fixed j, Lemma 3.1(b), (d), and the conti-
nuity of µ′ give

(3.12)
Kn (xjn, xjn)

Kn (ξ, ξ)
= 1 + o (1) .

Moreover,

(3.13)
Kn (xjn, yk)

Kn (ξ, ξ)
=
Kn

(

ξ + j+o(1)

K̃n(ξ,ξ)
, ξ +

an,k

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
= S (j − ak) + o (1) ,

because of the uniform convergence in Lemma 3.1(a). Hence, for each
m−tuple of integers j1, j2, . . . , jm,

1

Kn (ξ, ξ)m
det







Kn (xj1n, y1) . . . Kn (xj1n, ym)
...

. . .
...

Kn (xjmn, y1) . . . Kn (xjmn, ym)







= det [S (ji − ak)]1≤i,k≤m + o (1) .(3.14)

Then using (3.12),

∑

|j1|,|j2|,...,|jm|≤L

(

m
∏

k=1

λn (xjkn)

)β−1

Kn (ξ, ξ)m

∣

∣

∣

∣

∣

∣

∣

det







Kn (xj1n, y1) . . . Kn (xj1n, ym)
...

. . .
...

Kn (xjmn, y1) . . . Kn (xjmn, ym)







∣

∣

∣

∣

∣

∣

∣

β

= (1 + o (1))
∑

|j1|,|j2|,...,|jm|≤L

Kn (ξ, ξ)−mβ

∣

∣

∣

∣

∣

∣

∣

det







Kn (xj1n, y1) . . . Kn (xj1n, ym)
...

. . .
...

Kn (xjmn, y1) . . . Kn (xjmn, ym)







∣

∣

∣

∣

∣

∣

∣

β

,

and the lemma follows from (3.14). �

Now we estimate the tail. We assume (3.10) throughout. First we deal
with the (known) case β = 2 :
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Lemma 3.3. As L→ ∞,

(3.15) TL,2 =
∑

(j1,j2,...,jm):
maxi|ji|>L

m
∏

k=1

λn (xjkn)

Kn (ξ, ξ)m

∣

∣

∣det [Kn (xjin, yk)]1≤i,k≤m

∣

∣

∣

2
→ 0.

Proof. Recall that from Theorem 1.1 and Corollary 1.2,

1

m!

∞
∑

j1···jm=−∞

m
∏

k=1

λn (xjkn)

Kn (ξ, ξ)m

∣

∣

∣det [Kn (xjin, yk)]1≤i,k≤m

∣

∣

∣

2

= det

[

Kn (yi, yj)

Kn (ξ, ξ)

]

1≤i,j≤m

,

and that from Corollary 1.4 below,

1

m!

∞
∑

j1···jm=−∞

∣

∣

∣
det [S (ai − ajk

)]1≤i,k≤m

∣

∣

∣

2

= det [S (ai − aj)]1≤i,j≤m .

(Formally, we have not yet proven this, but of course it is independent of the
hypotheses here.) Now we split up the sum in the first of these identities,
take limits as n → ∞, and use Lemma 3.2 for β = 2, as well as the limit
(3.1), which ensures that

lim
n→∞

det

[

Kn (yi, yj)

Kn (ξ, ξ)

]

1≤i,j≤m

= det [S (ai − aj)]1≤i,j≤m .

�

Lemma 3.4. Assume the hypotheses of Theorem 1.3, except for (1.12)
and (1.13). Then for n ≥ 1, and t ∈ J ,

(3.16) p2
n (t) ≤ C

(

p2
n−2 (t) + p2

n−1 (t)
)

.

Proof. We shall show below that

(3.17) inf
n

γn−1

γn
≥ C.

Once we have this, we can apply the three term recurrence relation in the
form

γn−1

γn
pn (x) = (x− bn) pn−1 (x) − γn−2

γn−1
pn−2 (x) ,

and the fact that {|bn|} and
{

γn−1

γn

}

are bounded above, (for J = supp [µ]

is compact) to deduce (3.16). We turn to the proof of (3.17). From the
confluent form of the Christoffel-Darboux formula, we have

Kn (xjn , xjn) =
γn−1

γn
pn−1 (xjn) p′n (xjn) .
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Let I4 be a non-empty compact subinterval of I3. By the spacing estimate
(3.4), there are at least C4n zeros xjn ∈ I4, so

C4n ≤
∑

xjn∈I4

λn (xjn)Kn (xjn , xjn) =
γn−1

γn

∑

xjn∈I4

λn (xjn)
∣

∣pn−1 (xjn) p′n (xjn)
∣

∣

≤ γn−1

γn





∑

j

λn (xjn) p2
n−1 (xjn)





1/2



∑

xjn∈I4

λn (xjn) p′n (xjn)2





1/2

.

(3.18)

The first quadrature sum is 1. By a theorem of P. Nevai [12, p. 167,
Thm. 23], followed by Bernstein’s inequality, the second sum may be es-
timated as





∑

xjn∈I4

λn (xjn) p′n (xjn)2





1/2

≤ C

(

∫

I′4

p′n (t)2 dt

)1/2

≤ Cn

(

∫

I′′4

p2
n (t) dt

)1/2

≤ Cn,

recall that µ′ is bounded above and below in I3. We also use I ′4 and I ′′4 to
denote nested intervals containing I4 but inside I3. Substituting in (3.18)
gives (3.17). �

Next we handle the case β > 2 :

Lemma 3.5. Assume all the hypotheses of Theorem 1.3, except (1.12)
and (1.13). Instead of those, assume

(3.19) sup
t∈J,x∈I2

λn (t) |Kn (x, t)| ≤ C, n ≥ 1,

where I2 is a compact subinterval of I1 containing I in its interior. Let
β > 2. Then as L→ ∞,
(3.20)

TL,β =
∑

(j1,j2,...,jm):
maxi|ji|>L

m
∏

k=1

λn (xjkn)β−1

Kn (ξ, ξ)m

∣

∣

∣det [Kn (xjin, yk)]1≤i,k≤m

∣

∣

∣

β
→ 0.

In particular, (3.19) holds when (1.12) or (1.13) holds.

Proof. We see that
(3.21)

TL,β ≤ TL,2











max
(j1,j2,...,jm):
maxi|ji|>L

[

m
∏

k=1

λn (xjkn)

]

∣

∣

∣
det [Kn (xjin, yk)]1≤i,k≤m

∣

∣

∣











β−2

,
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where by Lemma 3.3, TL,2 → 0 as L→ ∞. Next, if σ denotes a permutation
of {1, 2, . . . ,m}, we see that

[

m
∏

k=1

λn (xjkn)

]

∣

∣

∣det [Kn (xjin, yk)]1≤i,k≤m

∣

∣

∣

≤
∑

σ

m
∏

k=1

λn (xjkn)
∣

∣Kn

(

xjkn, yσ(k)

)∣

∣

≤ m!

(

sup
t∈J,y∈I2

λn (t) |Kn (t, y)|
)m

≤ C,

by our hypothesis (3.19). Combined with (3.21), this gives the result. We
turn to proving (3.19) under (1.12) or (1.13). Recall that I ⊂ I2 ⊂ I3 ⊂ I1.
If firstly t ∈ I3 and x ∈ I2,

λn (t) |Kn (x, t)| ≤ λn (t)Kn (x, x)1/2 Kn (t, t)1/2 ≤ C,

by (3.3). In the sequel, we let

An (t) = p2
n (t) + p2

n−1 (t) .

From the Christoffel-Darboux formula,

(3.22) |Kn (x, t)| ≤ γn−1

γn

An (t)1/2An (x)1/2

|x− t| .

Here
{

γn−1

γn

}

is bounded as µ has compact support. If next, t 6∈ I3 and

x ∈ I2, we have |x− t| ≥ C, so

λn (t) |Kn (x, t)| ≤ Cλn (t)A1/2
n (t)A1/2

n (x) .

Here by Lemma 3.4, λn (t)An (t) ≤ Cλn (t)An−1 (t) ≤ C, so

λn (t) |Kn (x, t)| ≤ C (λn (t)An (x))1/2 .

If (1.12) holds, then An (x) ≤ C, while λn (t) ≤
∫

dµ, so (3.19) follows. If
instead (1.13) holds, then

λn (t) |Kn (x, t)| ≤ C
(

n−1An (x)
)1/2

≤ C
(

n−1Kn+1 (x, x)
)1/2 ≤ C.

This in all cases, we have (3.19). �

The case β < 2 is more difficult:

Lemma 3.6. Assume all the hypotheses of Theorem 1.3, including (1.12)
and (1.15). Let β < 2. Then as L→ ∞, (3.20) holds.

Proof. Each term in TL,β has the form
m
∏

k=1

λn (xjkn)β−1

Kn (ξ, ξ)m

∣

∣

∣det [Kn (xjin, yk)]1≤i,k≤m

∣

∣

∣

β
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≤ C

nm

∑

σ

m
∏

k=1

(

λn (xjkn)β−1
∣

∣Kn

(

xjkn, yσ(k)

)∣

∣

β
)

,(3.23)

Here the sum is over all permutations σ. If first xjkn ∈ I3, then by the
estimate (3.3) for λn, and by (3.22),

1

n
λn (xjkn)β−1

∣

∣Kn

(

xjkn, yσ(k)

)∣

∣

β

≤ C

nβ

A
β/2
n (xjkn)A

β/2
n

(

yσ(k)

)

∣

∣xjkn − yσ(k)

∣

∣

β

≤ C
(

n
∣

∣xjkn − yσ(k)

∣

∣

)β
,

by our bound (1.12) on pn. Here, recalling (3.10),

∣

∣xjkn − yσ(k)

∣

∣ =

∣

∣

∣

∣

xjkn − ξ −
an,σ(k)

K̃n (ξ, ξ)

∣

∣

∣

∣

≥ C1
|jk|
n

− C2
maxi |ai|

n
,

by (3.4) and (3.3). It follows that there exists B > 0 depending only on
maxi |ai| such that for |jk| ≥ B,

∣

∣xjkn − yσ(k)

∣

∣ ≥ C3
|jk|
n
.

In particular, B is independent of L. Then for |jk| ≥ B, and xjkn ∈ I3,

(3.24)
1

n
λn (xjkn)β−1

∣

∣Kn

(

xjkn, yσ(k)

)∣

∣

β ≤ C

(1 + |jk|)β
.

Now if |jk| ≤ B, we can just use our bounds (3.3) on λn and Cauchy-Schwarz
to deduce that

1

n
λn (xjkn)β−1

∣

∣Kn

(

xjkn, yσ(k)

)∣

∣

β ≤ C
1

nβ
nβ ≤ C

(1 + |jk|)β
.

Thus again (3.24) holds, so we have (3.24) for all jk with xjkn ∈ I3. Next if
xjkn /∈ I3, then

∣

∣xjkn − yσ(k)

∣

∣ ≥ C, so

1

n
λn (xjkn)β−1

∣

∣Kn

(

xjkn, yσ(k)

)∣

∣

β

≤ C

n
λn (xjkn)β−1Aβ/2

n (xjkn)Aβ/2
n

(

yσ(k)

)

≤ C

n
λn (xjkn)β−1Aβ/2

n (xjkn) ,
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by (1.12). Note that there is no dependence on σ in the bound in this last
inequality nor in (3.24). Then

TL,β ≤ C
∑

(j1,j2,...,jm):
maxi|ji|>L





∏

xjkn∈I3

(1 + |jk|)−β





∏

xjkn /∈I3

(

1

n
λn (xjkn)β−1Aβ/2

n (xjkn)

)

.

We can bound this above by a sum of m terms, such that in the kth term,
the index jk exceeds L in absolute value, while all remaining indices may
assume any integer value. As each such term is identical, we may assume
that j1 is the index with |j1| ≥ L, and deduce that

TL,β ≤ C





∑

|j1|≥L

(1 + |j1|)−β +
∑

xj1n /∈I3

1

n
λn (xj1n)β−1Aβ/2

n (xj1n)





×





∞
∑

j=−∞
(1 + |j|)−β +

∑

xjn /∈I3

1

n
λn (xjn)β−1Aβ/2

n (xjn)





m−1

.

Here by Hölder’s inequality with parameters p = 2
β and q =

(

1 − β
2

)−1
,

∑

xj1n /∈I3

1

n
λn (xj1n)β−1Aβ/2

n (xj1n)

≤ 1

n

∑

j1

(λn (xj1n)An (xj1n))β/2 λn (xj1n)β/2−1

≤ C

n





∑

j1

λn (xj1n)An (xj1n)





β/2



∑

j1

λn (xj1n)−1





1−β/2

.

Here by Lemma 3.4,
∑

j1

λn (xj1n)An (xj1n) ≤ C
∑

j1

λn (xj1n)An−1 (xj1n) ≤ 2C,

while




∑

j1

λn (xj1n)−1





1−β/2

= O (n)

by our hypothesis (1.15). Thus

TL,β ≤ C
(

L1−β + o (1)
)

,

and the lemma follows. �
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Proof of Theorem 1.3. This follows directly from Lemmas 3.2, 3.5
and 3.6: we can choose L so large that the tail in Lemma 3.5 or 3.6 is as
small as we please. Note that in (3.10),

yk = ξ +
an,k

K̃n (ξ, ξ)
= ξ +

ãn,k

nωJ (ξ)
,

where ãn,k → ak as n → ∞, in view of (3.2). This allows us to prove the
universality limit in both the forms (1.14) and (1.16). �

Proof of Corollary 1.4. We have to prove that

∞
∑

j1,j2···jm=−∞
det [S (ai − jk)]

2
1≤i,k≤m = m! det [S (ai − ak)]1≤i,k≤m .

We use the identity [19, p. 91]

∞
∑

k=−∞
S (a− k)S (b− k) = S (a− b) .

The left-hand side is
∞
∑

j1,j2···jm=−∞
det [S (ai − jk)]

2
1≤i,k≤m

=
∑

σ,η

εσεη

∞
∑

j1,j2···jm=−∞

m
∏

k=1

S
(

aσ(k) − jk
)

S
(

aη(k) − jk
)

=
∑

σ,η

εσεη

m
∏

k=1

∞
∑

jk=−∞
S
(

aσ(k) − jk
)

S
(

aη(k) − jk
)

=
∑

σ,η

εσεη

m
∏

k=1

S
(

aσ(k) − aη(k)

)

=
∑

σ,η

εσεη

m
∏

j=1

S
(

aj − aη◦σ−1(j)

)

,

where σ−1 denotes the inverse permutation of σ. Now [6, p. 189, p. 190]

εσεη = εη◦σ−1 ,

and we may replace the sum over all permutations ω = η ◦ σ−1 by a sum
over all permutations ω, so we continue this as

=
∑

σ

∑

ω

εω

m
∏

j=1

S
(

aj − aω(j)

)

= m! det [S (ai − aj)]1≤i,j≤m .

�
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