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Abstract. Let � > 0 not be an even integer. We derive Lagrange
type series representations for the entire function of exponential
type 1 that minimizes

jjjxj� � f (x)jjLp(R)
amongst all such entire functions f , when p = 1 and p =1. This
minimum arises as the scaled limit of the Lp error of polynomial
approximation of jxj� on [�1; 1], and is one representation of the
Lp Bernstein constant.

1. 1Introduction

Let � > 0 be not an even integer. S.N. Bernstein [2], [3] established
the limit

��1;� = lim
n!1

n�En [jxj� ;L1 [�1; 1]] ;
where

En [f ;Lp [a; b]] = inf
�
k f � P kLp[a;b]: deg (P ) � n

	
denotes the error in best Lp approximation of a function f on [a; b]
by polynomials of degree � n. Bernstein�s 1938 method yielded a
formulation of the limit as the error in approximation on the whole
real axis by entire functions of exponential type, namely

��1;�

= inf
�
k jxj� � f (x) kL1(R): f is entire of exponential type � 1

	
:

Recall here that f is of exponential type A � 0 means that for each
" > 0, and for jzj large enough,

jf (z)j � exp (jzj (A+ ")) :
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Moreover, A is the smallest number with this property. The exact value
of ��1;� is not known for any �, and the search for it has inspired much
research. See [5], [6], [8], [9] for references.
There are extensions to spaces other than L1. It is known [6], [9]

that for 1 � p � 1, there exists

��p;� = lim
n!1

n�+
1
pEn[jxj� ;Lp [�1; 1]]

= inf
�
k jxj� � f (x) kLp(R): f is entire of exponential type � 1

	
:

Only for p = 1 and p = 2 is ��p;� known explicitly. Nikolskii [10] proved
that

��1;� =

��sin ��
2

��
�

8� (�+ 1)
1X
k=0

(�1)k (2k + 1)���2

(for some �, while Bernstein observed this remains true for all �) and
Raitsin [11] proved that

��2;� =

��sin ��
2

��
�

2� (�+ 1)
p
�= (2�+ 1):

There is a series representation for the minimizing entire function
in L1. The author is not certain who �rst derived it, but it appears
in a recent paper of Ganzburg [6]. An integral representation is given
below. In the case p = 2, M. Ganzburg has informed the author that
one can can use Fourier transforms, the Paley-Wiener Theorem, and
the theory of distributions, to derive a representation. It is the purpose
of this paper to derive a series representation for the minimizing entire
function in L1, using the same method that can be used in L1.
There is a substantial body of estimates for approximation by en-

tire functions of exponential type, when the approximated function is
bounded or has bounded derivatives of some order [1], [4], [12], [13],
[14]. With a view to applications in number theory, there are also ex-
plicit representations of the best approximating entire function when
p = 1 and g is one of a special class of functions. For example for
g (x) = sign (x), the best L1 entire function was determined by Vaaler
[15]. For other special g, it can be determined using the theory of
minimal extrapolations [12, Chapter 7].
Quite recently Littman [7] has used these ideas to determine a rep-

resentation for the best L1 entire function when g (x) = xn+, that is
g (x) = xn in [0;1) and is 0 on the negative real axis. Then one can de-
duce from this the extremal entire function for g (x) = jxjn = 2xn+�xn.
For odd integers n, this gives another approach to the L1 results of this
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paper. It is not clear that the approach there can be extended to all
� > 0.
Our approach is based on an integral representation established in

[9, Theorem 1.3, and remarks thereafter]:

Theorem 1.1
Let 1 � p � 1 and � > �1

p
; not an even integer. The unique entire

function H�
p;� of exponential type 1 satisfying

k jxj� �H�
p;� (x) kLp(R)

= inf
�
k jxj� � f (x) kLp(R): f is entire of exponential type � 1

	
(1.1)

admits for Re z � 0 the representation

(1.2) H�
p;� (z) = z

� +
sin �

2
�

�
F �p;� (z)

Z 1

�1

jsj�+1

s2 + z2
ds

F �p;� (is)
;

where

(1.3) F �p;� (z) =
1Y
j=1

 
1�

�
z

x�j

�2!
;

and

(1.4) 0 < x�1 < x
�
2 < x

�
3 < :::

with

(1.5) x�j 2
��
j � 3

2

�
�;

�
j � 1

2

�
�

�
; j � 2:

In the special case p = 1, F �1;� (z) = cos z:
From this, we shall derive for p =1 :

Theorem 1.2
Let � > 0; not an even integer. Then

(1.6) H�
1;� (z) = F

�
1;� (z) fP � (z) + 2z`

1X
j=1

�
x�j
���`+1�

z2 � x�2j
�
F �01;�

�
x�j
�g;

where ` is the even integer in (� � 1; � + 1], and P � is a polynomial
of degree at most `� 2,

(1.7) P � (z) =
2 sin �

2
�

�

`=2�1X
j=0

�
�z2

�j Z 1

0

s��1�2j

F �1;� (is)
ds:

For p = 1, where F �1;� (z) = cos (z), the representation is more explicit:
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Theorem 1.3
Let � > �1; not an even integer. Then

(1.8) H�
1;� (z) = (cos z) fP � (z) + 2z`

1X
j=1

(�1)j
��
j � 1

2

�
�
���`+1

z2 �
��
j � 1

2

�
�
�2 g;

where ` is the even integer in (� � 1; � + 1], and P � is a polynomial
of degree at most `� 2,

(1.9) P � (z) =
2 sin �

2
�

�

`=2�1X
j=0

�
�z2

�j Z 1

0

s��1�2j

cosh s
ds:

Remarks
(a) For � an odd integer, the case p = 1 may be deduced from results
of Littman [7]. However, for all �, the result of Theorem 1.2 is known,
and appears in a paper of Ganzburg [6]. The author is not sure where
it �rst appeared.
(b) There are several ways to prove Theorems1.2 and 1.3. The simplest
is based on the integral representation (1.2) and the residue theorem.
Another approach is to take scaled limit of polynomials of best Lp
approximation on [�1; 1].
(c) When � = 1, the representation simpli�es to

H�
1;� (z) = cos (z) f1 + 2z

1X
j=1

(�1)j

z2 �
��
j � 1

2

�
�
�2g:

(d) Let � > 0. We note that because of homogeneity of jxj�, the entire
function H of type � � that best approximates jxj� in Lp (R) is just

(1.10) H (z) = ���H�
p;� (�z) ;

This follows as ���H (�z) is of exponential type � � whenever H is of
exponential type � 1..
(e) One may also derive a representation for H�

2;� based on the ob-
servation that the best L2 polynomial approximation of jxj� is just a
partial sum of its orthonormal expansion in Legendre polynomials. For
example, for �1

2
< � < 1, the representation is

H�
2;� (z) =

2

�

Z 1

0

s�J (x; s) ds;
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where J (x; s) is a kernel familiar in universality theory,

J (x; s) =
1

2

�
sin (x+ s)

x+ s
+
sin (x� s)
x� s

�
=

x sin x cos s� s sin s cosx
x2 � s2 :

There is an analogue for all � > 0, and this provides a di¤erent rep-
resentation to the Fourier transform one that may be derived from
Raitsin�s work.
We prove the results in Section 2. Throughout, C;C1; C2, ... de-

note positive constants independent of variables x; z; s; t and indices
j; k;m; n; ::: . The same symbol may denote di¤erent constants in dif-
ferent occurrences.

2. Proofs

We shall concentrate on the proof for p = 1 and then indicate the
di¤erences for p = 1: We begin by summarizing results from [9].

Lemma 2.1
Let � > 0, not an even integer. Then
(a) There exist alternation points

�
y�j
	1
j=0

with

0 = y�0 < x
�
1 < y

�
1 < x

�
2 < y

�
2 < :::

and

(2.1) y��j �H�
1;�
�
�y�j

�
= (�1)j+

�
2

jx�j �H�
1;� (x)


L1(R)

:

Here �
2
is the least integer exceeding �

2
.

(b) For j � 1;

(2.2) (�1)j F �1;�
�
y�j
�
� Cy�2j :

(c) There exist C1 and C2 such that for jIm zj � 1;

(2.3)
��F �1;��� (z) � C1 jcos zj jzj�C2 :

Proof
(a) This is part of Theorem 1.2 in [9].
(b) In [9], we transformed approximation over the whole real line to the
non-negative axis [0;1), involving a factor x�1=2p in the Lp norm. In
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the case of the L1 norm, this factor is 1, and we considered an entire
function H1;�=2 such thatx�=2 �H1;�=2 (x)L1[0;1) = inf x�=2 � f (x)L1[0;1) ;
where the inf is over all entire functions f such that f (x2) is of expo-
nential type � 2. In Section 12 of [9], we showed that

H�
1;� (z) = 2

�H1;�=2

��z
2

�2�
:

H1;�=2 admits an integral representation like that in (1.2), involving
a function F1;�=2 and also has alternation points fyjg. The relation-
ship between these quantities and the corresponding ones for H�

1;� was
established in [9, Section 12], and is

F �1;� (z) = F1;�=2

��z
2

�2�
;

y�j = 2
p
yj:(2.4)

It was also shown in [9, Theorem 10.2] that

(�1)j F1;�=2 (yj) � Cyj:
Then the identities (2.4) give the result.
(c) In [9, Theorem 7.2(d)], it was shown that��log ��F1;�=2 (z)��� log ��cos �2pz����� � jlog jz � cjj+ log+ jzj+ C;
where c is the closest zero of cos 2

p
� or F1;�=2 (�) to z. Now the sub-

stitution z !
�
z
2

�2
easily yields (2.3). �

Proof of Theorem 1.2
Assume that P � is given by (1.7) and H�

1;� by (1.2). We start with the
identity

`=2�1X
j=0

�
�
�z
s

�2�j
=

s2

z2 + s2
+ (�1)`=2+1

�
z
s

�`
s2

z2 + s2
;

which follows from the formula for a �nite geometric sum. We multiply
by 2 sin ��

2

�
s��1=F �1;� (is), integrate over (0;1), and use (1.2) and (1.7).

This gives for Re (z) > 0;

P � (z) =
H�
1;� (z)� z�

F �1;� (z)
+
2 sin ��

2

�
(�1)`=2+1 z`

Z 1

0

s��`+1

(z2 + s2)F �1;� (is)
ds:

(2.5)
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We now express the integral in the last right-hand side as a contour
integral over the imaginary axis, assuming that Re (z) > 0. Since

i��`+1 + (�i)��`+1 = 2 sin ��
2
(�1)`=2+1 ;

we see that

2 sin ��
2

�
(�1)`=2+1

Z 1

0

s��`+1

(z2 + s2)F �1;� (is)
ds

=
1

�

Z 1

0

(is)��`+1 + (�is)��`+1�
z2 � (is)2

�
F �1;� (is)

ds

=
1

i�

Z
L

t��`+1

(z2 � t2)F �1;� (t)
dt;(2.6)

where L is the directed contour along the imaginary axis from �i1 to
i1. We next re-express this as an in�nite series. To start, let R = y�n
for some large n, and consider a rectangular positively oriented contour
in the right-half plane determined as follows: let LR be a vertical line
segment along the imaginary axis from iR to �iR. LetMR denote a
vertical line segment from R� iR to R+ iR. Finally, let HR denote the
two horizontal line segments with Im (z) = �R joining LR and MR.
Note that LR has the opposite orientation to L. If R is large enough
so that this contour encloses z, the integrand in (2.6) has simple poles
at z and at x�j ; 1 � j � n. The residue theorem gives

1

2�i

�Z
Lr
+

Z
MR

+

Z
HR

�
t��`+1

(z2 � t2)F �1;� (t)
dt

= � z��`+1

2zF �1;� (z)
+

nX
j=1

�
x�j
���`+1�

z2 � x�2j
�
F �01;�

�
x�j
� :(2.7)

We next show that the integral over MR[HR ! 0 as R = y�n ! 1.
Firstly, since F �1;� has only real zeros, we see that for t = R+is 2MR;��F �1;� (R + is)�� � ��F �1;� (R)�� � CR2;
by Lemma 2.1(b). Then���� 12�i

Z
MR

t��`+1

(z2 � t2)F �1;� (t)
dt

���� � C
R��`+1

R2 � jzj2
Z R

�R

ds��F �1;��� (R + is)
� CR��`�2 ! 0;
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as �� `� 2 < 0, recall our choice of `. Next by Lemma 2.1(c), and as
jcos (s� iR)j � jsinh (R)j ;���� 12�i

Z
HR

t��`+1

(z2 � t2)F �1;� (t)
dt

���� � C
R��`+1

R2 � jzj2
Z R

0

ds��F �1;��� (s� iR)
� CRC3= sinh (R)! 0;

R!1. Thus, letting R = y�n !1 in (2.7), and recalling the opposite
orientation of LR and L gives

� 1

2�i

Z
L

t��`+1

(z2 � t2) cos (t)dt = �
z��`+1

2zF �1;� (z)
+

1X
j=1

�
x�j
���`+1�

z2 � x�2j
�
F �01;�

�
x�j
� :

Combining this, (2.5) and (2.6), gives

P � (z) =
H�
1;� (z)� z�

F �1;� (z)
+

z�+1

zF �1;� (z)
� 2z`

1X
j=1

�
x�j
���`+1�

z2 � x�2j
�
F �01;�

�
x�j
� :

So we obtain (1.6) for Re (z) > 0. Its validity follows for all complex
z, by analytic continuation. �

Proof of Theorem 1.3
Here we follow exactly the same steps, except that the calculations are
easier because

F �1;� (z) = cos z;

and so the zeros
�
x�j
	
are

x�j =

�
j � 1

2

�
�; j � 1;

while
F �01;�

�
x�j
�
= (�1)j :

For the dimensions of the contour above, we choose R = n�, and in
estimating the integral overMR, use

jcosh (R + is)j � sinh (jsj)
as well as

jcosh (R + is)j � 1

2
; jsj � C;

some C independent of R = n�. Then���� 12�i
Z
MR

t��`+1

(z2 � t2) cos (t)dt
���� � C

R��`+1

R2 � jzj2
Z R

�R

ds

jcosj (R + is)

� CR��`�1
Z 1

�1

ds

max
�
1
2
; sinh (jsj)

	 ! 0;
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R!1 as �� `� 1 < 0. �
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