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Let sm[ f ] denote the m th partial sum of the orthonormal expansion of f : R � R

with respect to the orthonormal polynomials for the weight W 2 (x)=exp(&|x| :),
:>1. We show that for some C independent of f and n,

"\1
n

:

n

m=1

sm[ f ]+ W,&2�3
n "L�(R)

�C & fW&L�(R)

where

,n (x) :=\} 1& } x
an } }+n&2�3+

and an denotes the n th Mhaskar�Rahmanov�Saff number for Q(x)= 1
2 |x|:. The

novelty is the presence of the factor ,&2�3
n , which is large close to \an : that factor

was absent in the classic results of G. Freud. Related results are proved for more
general exponential weights on (&1, 1) or R. � 2000 Academic Press

1. INTRODUCTION AND RESULTS

Let I denote either (&1, 1) or R. Let W: I � (0, �) be such that all the
power moments

|
I

xnW 2 (x) dx, n�0,
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are finite. Then we may define orthonormal polynomials

pn (x)=#n xn+ } } } , #n>0, n�0,

satisfying

|
I

pn pm W 2=$mn .

For f : I � R such that f (x) x jW 2 (x) # L1 (I ), j�0, we may form the formal
orthonormal expansion

f W :
�

j=0

bj pj ,

where

bj :=bj ( f ) :=|
I

fpjW 2, j�0. (1)

The mth partial sum of this expansion is denoted by

sm[ f ] := :
m&1

j=0

b j ( f ) pj , m�1. (2)

A classic result of G. Freud, proved using the still more classic de la
Vallee Poussin argument, asserts that for a class of weights including the
exponential weights

(W(x)=) W: (x) :=exp(&1
2 |x|:), :>1, (3)

there is strong (C, 1) summability of the orthonormal expansions:

"\1
n

:
n

m=1

|sm[ f ]|+ W:"L�(R)

�C & fW:&L�(R) (4)

with C independent of f and n. This inequality was the basis of Freud's
methods for proving weighted Jackson theorems, see [6, 7, 23]. Strictly
speaking Freud considered only :�2, but later work established that his
proofs could be extended to all :>1. For :<1, the polynomials are not
dense in a suitable weighted space, while the boundary case :=1 is not
fully understood as regards Jackson theorems. See [19, 23] for further
orientation.

In this paper, we show that it is possible to strengthen (4) in the sense
that one can insert a factor that is large near the largest zero of pn in the
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left-hand side of (4). To further elucidate this, we require the notion of the
Mhaskar�Rahmanov�Saff number. We shall assume throughout that our
weight has the form

W=e&Q, (5)

where Q: I � R is even and convex. The n th Mhaskar�Rahmanov�Saff
number an is the positive root of the equation

n=
2
? |

1

0
antQ$(an t)

dt

- 1&t2
, n�1. (6)

One of its properties is that

&PW&L�(I )=&PW&L�(&an , an) , P # Pn , (7)

where Pn denotes the polynomials of degree �n. For example, for W=W: ,
it is easily seen that

an=Cn1�:, n�1,

where C may be expressed in terms of gamma functions (see [19, 20, 26]).
We shall show that one may insert a factor ( |1&(|x|�an)|+n&2�3)&1�3 in

the left-hand side of (4), for a class of weights including W: , :>1;
moreover, when we drop the absolute value in (4), that is when we con-
sider ordinary (C, 1) summability, then we may replace &1�3 by &2�3.
The most general class of Freud weights that we have in mind is given in:

Definition 1. Freud Weights F.
Let W=e&Q, where Q: R � R is even, continuous and Q" is continuous

in (0, �). Assume moreover, that Q$>0 in (0, �), and that for some A,
B>1,

A�1+
xQ"(x)
Q$(x)

�B, x # (0, �). (8)

Then we write W # F.

Note that for W=W: , (8) holds with A=B=:. In addition to Freud
weights on the real line, we consider a class of Erdo� s weights, for which the
exponent Q grows faster than any polynomial:
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Definition 2. Erdo� s Weights E.
Let W=e&Q, where Q: R � R is even, continuous and Q" is continuous

in (0, �). Assume that Q$>0, Q"�0 in (0, �), and that the function

T(x) :=1+
xQ"(x)
Q$(x)

, x # (0, �) (9)

is increasing in (0, �) with

lim
x � 0+

T(x)>1; lim
x � �

T(x)=�. (10)

Assume moreover that for some Cj>0, j=1, 2, 3,

C1�T(x)
Q(x)

xQ$(x)
�C2 , x�C3 .

Then we write W # E.

The archetypal example of W # E is

W(x)=Wk, : (x)=exp(&expk ( |x|:)) (11)

where :>1 and k�1 and

expk := exp(exp( } } } exp() } } } ))

k times

denotes the k th iterated exponential. We also set

exp0 (x) :=x.

See [12, 13] for further orientation on Erdo� s weights.
The third class of weights we consider is a class of exponential weights

on (&1, 1):

Definition 3. Exponential Weights on (&1, 1) EXP.
Let W=e&Q, where Q: (&1, 1) � R is even and Q" is continuous in

(&1, 1). Assume that Q$>0, Q"�0 in (0, 1), and that the function

T(x) :=1+
xQ"(x)
Q$(x)

, x # (0, 1) (12)

is increasing in (0, 1) with

lim
x � 0+

T(x)>1. (13)
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Assume moreover that for some C1>0, C2>0,

C1�T(x)
Q(x)
Q$(x)

�C2 , x close enough to 1 (14)

and that for some A>2 and x close enough to 1,

T(x)�
A

1&x2 . (15)

Then we write W # EXP.

The archetypal example of W # EXP is

W(x)=W k, : (x) :=exp(&expk ((1&x2)&:)), x # (&1, 1) (16)

where k�0, :>0. For further orientation on EXP, see [10].
It is possible to treat the classes F, E, EXP in a more general and

unified framework [11], but we prefer here to quote already published
results. In any event, it is possible to describe simultaneously several
features of the (C, 1) means of the orthonormal expansions for all three
classes of weights: this requires some additional notation. We set

$n :=(nT(an))&2�3, n�1, (17)

and define the functions

,n (x) := } 1&
|x|
an }+$n (18)

and

�n (x) :=
,n (x)+T(an)&1

- ,n (x)
=
} 1&

|x|
an }+$n+T(an)&1

�} 1&
|x|
an }+$n

. (19)

The function �n plays a role in describing the spacing between successive
zeros of pn , the growth of Christoffel functions, and related quantities, in
much the same way as does the function 1&x2+n&2 for Jacobi weights
and their generalizations on (&1, 1). Note that for Freud weights, T is
bounded above and below by positive constants, so $n behaves like n&2�3.

By a minor modification of the classical de la Vallee Poussin argument
for L� and then via standard duality and interpolation techniques, we prove:
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Theorem 4. Let W # F, E or EXP. Let 1� p<� and let

9n (x) :=max[�1�2
n (x), �2�3

n (x)], x # I. (20)

Then for some C independent of f and n,

"\1
n

:
n

m=1

sm[ f ]+ W9 1&1�p
n "Lp(I )

�C & fW9 &1�p
n &Lp(I ) . (21)

For the case p=�, we have

"\1
n

:
n

m=1

|sm[ f ]|+ W9n"L�(I )

�C & fW&L�(I ) . (22)

We note that if one uses the classical de la Vallee Poussin argument, one
has to omit the �2�3

n in (20); our modification permits the inclusion of this
factor.

In [16], strong (C, 1) means of orthonormal expansions for Erdo� s
weights were investigated; there for p=�, instead of 9n in (22) there was
a factor T &1�4 in the left-hand side. Since one can show that

T &1�4�C�1�2
n �C9n

for the class E, the above result constitutes an improvement of the result
in [16].

To acquire some perspective on how Theorem 4 relates to Freud's (4),
we specialize to Freud weights. Here 9n �,&1�3

n is bounded above and below
by positive constants and we obtain:

Corollary 5. Let W # F. Let 1� p<�. Then for some C independent
of f and n,

"\1
n

:
n

m=1

sm[ f ]+ W,&(1&1�p)�3
n "Lp(I )

�C & fW,1�(3p)
n &Lp(I ) . (23)

For the case p=�, we have

"\1
n

:
n

m=1

|sm[ f ]|+ W,&1�3
n "L�(I )

�C & fW&L�(I ) . (24)

Thus under the same hypotheses as Freud, one may insert the factor
,&1�3

n , which is large near \an . The obvious question is whether or not 1�3
is sharp. If one assumes more about the orthonormal polynomials, it is not.
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Recall that the orthonormal polynomials [ pn] satisfy the three term
recurrence relation

xpn&1 (x)=:n pn (x)+:n&1 pn&2 (x), n�1 (25)

where we set p&1 :=0 and

:n :=#n&1 �#n , n�1. (26)

It is known for large classes of Freud weights [14] that

:n= 1
2 an (1+o(1)), n � �. (27)

Assuming somewhat more allows us to improve on the 1�3 in (23) and
(24):

Theorem 6. Let W # F and assume that for some ;>0,

:n= 1
2 an (1+O(n&;)) n � �. (28)

Let

} :=min {2
3

,
1
3

+
;
2

,
5

12
+

;
4= . (29)

Let 1� p<�. Then for some C independent of f and n,

"\1
n

:
n

m=1

sm[ f ]+ W,&(1&1�p) }
n "Lp(I )

�C & fW,}�p
n &Lp(I ) . (30)

For the case p=�, we have

"\1
n

:
n

m=1

sm[ f ]+ W,&}
n "L�(I )

�C & fW&L�(I ) . (31)

For W: , :>1, (28) is known with ;=min[:, 2]. This was recently
proved by Kriecherbauer and McLaughlin [8], thereby improving results
of Rakhmanov [25]. For : a positive even integer, more complete
asymptotics are known, [3], [18]. Likewise when Q is a polynomial, more
complete asymptotics are known [1, 3]. Thus we may deduce:

Corollary 7. For W=W: , :>1, and 1� p<�,

"\1
n

:
n

m=1

sm[ f ]+ W: ,&(2�3)(1&1�p)
n "Lp(I )

�C & fW: ,2�3p
n &Lp(I ) . (32)
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For the case p=�, we have

"\1
n

:
n

m=1

sm[ f ]+ W: ,&2�3
n "L�(I )

�C & fW:&L�(I ) . (33)

It is an interesting problem to determine the sharp power of ,n in (33).
This paper is organised as follows: in Section 2, we present the de la

Vallee Poussin argument, and its minor modification, which leads to the
proof of Theorem 4 and hence Corollary 5. In Section 3, we present an
estimate on sums of squares of pm+1& pm&1 , under the assumption (28).
In Section 4, we prove Theorem 6 and deduce Corollary 7.

2. PROOF OF THEOREM 4

We begin by recalling the classic de la Vallee Poussin argument. (This
has been clearly presented often [7], [23],... but we do need the details).
Let f : I � R, x # I and \n>0. We let

fn (t) :={ f (t),
0,

|t&x|�\n

|t&x|>\n
(34)

and

Fn (t) :=
f (t)& fn (t)

x&t
={

f (t)
x&t

, |t&x|>\n
(35)

0, |t&x|�\n .

Then we may split for m�n,

sm[ f ](x)=sm[ fn](x)+sn[Fn ( } )(x& } )](x). (36)

Let

Km (x, t) := :
m&1

j=0

p j (x) p j (t) (37)

so that

sm[ fn](x)=|
I

Km (x, t) fn (t) W2 (t) dt. (38)
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The de la Vallee Poussin�Freud Estimate for sm[ fn](x).

|sm[ fn](x)|�& fW&L�(I ) |
I & [x&\n , x+\n]

|Km (x, t)| W(t) dt (39)

�& fW&L�(I ) - 2\n �|
I

K 2
m(x, t) W2 (t) dt

=& fW&L�(I ) - 2\n � :
m&1

j=0

p2
j (x), (40)

by the Cauchy�Schwarz inequality and then orthogonality. Recall now the
Christoffel function:

*&1
m (W2, x) := :

m&1

j=0

p2
j (x). (41)

Since *&1
m clearly increases with m, we deduce that (note that the *n+1

simplifies later calculations)

1
n

:
n

m=1

|sm[ fn](x)| W(x)�& fW&L�(I ) - 2\n - *&1
n+1(W2, x) W 2 (x). (42)

The de la Vallee Poussin�Freud Estimate for sm[Fn ( } )(x& } )](x). We
need the Christoffel Darboux formula

Km (x, t)=:m
pm (x) pm&1 (t)& pm&1 (x) pm (t)

x&t
. (43)

We see then that

sm[Fn ( } )(x& } )](x)=|
I

Km (x, t) Fn (t)(x&t) W 2 (t) dt

=:m[ pm (x) bm&1 (Fn)& pm&1 (x) bm (Fn)]. (44)

Let us abbreviate bm (Fn) as bm . We deduce that

1
n

:
n

m=1

|sm[Fn ( } )(x& } )(x)]|

�
1
n

( max
1�m�n

:m) :
n

m=1

( | pm (x)| |bm&1|+ | pm&1 (x)| |bm | )

�( max
1�m�n

:m)
2
n � :

n

m=0

p2
m(x) � :

n

m=0

b2
m
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by the Cauchy�Schwarz inequality. Using Bessel's inequality for orthonor-
mal expansions, we continue this as

�( max
1�m�n

:m)
2
n

- *&1
n+1(W

2, x) �|
I

F2
nW2

�( max
1�m�n

:m)
2
n

- *&1
n+1(W

2, x) & fW&L�(I ) �|
|t&x| �\n

dt
(t&x)2

=( max
1�m�n

:m)
2 - 2

n
- *&1

n+1(W 2, x) \&1
n & fW&L�(I ) . (45)

The de la Vallee Poussin estimate for the strong (C, 1) means of sm[ f ].
Combining (36), (42) and (45) gives

1
n

:
n

m=1

|sm[ f ](x)| W(x)�& fW&L�(I ) - *&1
n+1(W

2, x) W2 (x)

_\- 2\n +( max
1�m�n

:m) 2 � 2
n2\n+ . (46)

Choosing

\n :=
max1�m�n :m

n

gives

1
n

:
n

m=1

|sm[ f ](x)| W(x)

�5 & fW&L�(I ) - *&1
n+1(W

2, x) W2 (x) �max1�m�n :m

n
. (47)

We turn to a minor modification of the de la Vallee Poussin�Freud
estimate before proving Theorem 4:

A simple alternative estimate for sm[ fn](x). Now for |t&x|�\n , and
m�n, the Cauchy�Schwarz inequality gives

|Km (x, t)|�- Km (x, x) - Km (t, t)

�- Kn+1 (x, x) - Kn+1 (t, t)

=- *&1
n+1(W 2, x) - *&1

n+1(W2, t).
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Then from (39),

|sm[ fn](x)| W(x)�& fW&L�(I ) 2\n - *&1
n+1(W2, x) W 2 (x)

_- max
|t&x|�\n

*&1
n+1(W2, t) W 2 (t). (48)

Then instead of (46), we obtain

1
n

:
n

m=1

|sm[ f ](x)| W(x)

�& fW&L�(I ) - *&1
n+1(W 2, x) W2 (x)

_{2\n - max
|t&x| �\n

*&1
n+1(W2, t) W2 (t)+( max

1�m�n
:m) 2 � 2

n2\n= .

Choosing

\n :=\max1�m�n :m

n
- *n+1 (W 2, x)�W2 (x)+

2�3

(49)

gives

1
n

:
n

m=1

|sm[ f ](x)| W(x)

�3 & fW&L�(I ) \max1�m�n :m

n
*&1

n+1 (W2, x) W2 (x)+
2�3

__ max
|t&x|�\n \

*&1
n+1(W2, t) W 2 (t)

*&1
n+1(W2, x) W2 (x)+

1�2

+1& . (50)

Thus far, we have the estimates (47) and (50) for the strong (C, 1) means.
Before we can choose which to apply, we need technical estimates for *&1

n+1 ,
for :m and so on. We use the standard notation t for sequences of real
numbers: we write

cn tdn

if there exists positive constant C1 , C2 independent of n such that for the
relevant range of n,

C1�cn �dn�C2 .
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Similar notation is used for functions and sequences of functions.
Moreover, in the sequel, C, C1 , C2 , ... denote positive constants inde-

pendent of n, x, f. The same symbol does not necessarily denote the same
constant in different occurrences.

Lemma 8. Let W # F, E or EXP. Then

(a)

max
1�m�n

:m t:n tan . (51)

(b) Let ', L>0. There exists n0 such that uniformly for n�n0 and for
|x|�an (1+L$n),

*n (W2, x)t
an

n
W2 (x) �n (x). (52)

(c) Let '>0. There exists n0 such that uniformly for n�n0 and for
|x|�an (1+L$n),

|t&x|�'
an

n
�n (x) O �n (t)t�n (x) and ,n (t)t,n (x). (53)

The constants in t are independent of n, x, t.
(d) There exists n0 such that for n�n0

1
2

�
m
n

�2 O } 1&
am

an }t
1

T(an) } 1&
m
n }. (54)

Moreover,

T(an)tT(a2n); $n t$2n ; $&1�2
n =o(n). (55)

(e) Let L>0. There exists n0 such that uniformly for n�n0 and for
|x|�an (1+L$n),

�n (x)t�n+1 (x); ,n (x)t,n+1 (x). (56)

( f ) Let L>0, 0<p��. There exist C and n0 such that for n�n0

and for P # Pn ,

&PW&Lp(I )�C &PW&Lp(&an(1&L$n), an(1&L$n)) . (57)

Moreover, if r>1, there exist C1 , C2>0 such that for n�1 and for P # Pn ,

&PW&Lp(I"[a&rn , arn])�C1 exp(&C2nT(an)&1�2) &PW&Lp(I ) . (58)
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Proof. (a) We note that since am increases with m, it suffices to show
that

:m tam , m�1.

For W # F, this is Theorem 12.3(b) in [9, p. 529]; for W # E, this is (10.33)
in [12, p. 285]; for W # EXP, this follows from a far more general result
of Rakhmanov [24] that for W>0 a.e. in [&1, 1], :m � 1

2 , m � �.

(b) For W # F, Theorem 1.1 in [9, p. 465] states that

*n (W2, x)�W2 (x)t
an

n
,&1�2

n (x)t
an

n \}1&
|x|
an }+n&2�3+

&1�2

for the relevant range of n and x. Note that for W # F, A�T�B, where
A, B are as in (8), so

�n (x)=
,n (x)+T(an)&1

- ,n (x)
t

1

- ,n (x)
.

Thus we have (52) in this case. Next, if W # E, Theorem 1.2 in [12, p. 204]
implies that

*n (W2, x)�W2 (x)t
an

n
max[- ,n (x), [T(an) - ,n (x)]&1] (59)

for the relevant range of n and x. This is easily recast in the form (52).
Finally, if W # EXP, Theorem 1.2 in [10, p. 7] again implies (59) and
hence (52).

(c) In view of the form of �n , it clearly suffices to show that ,n (t)t

,n (x) for the relevant range n, t, x. Let us denote the zeros of pn (x)=
pn (W2, x) by

xnn<xn&1, n< } } } <x2n<x1n .

It is known for all three classes of weights that uniformly in n and j,

,n (x jn)t,n (xj&1, n) and hence �n (x jn)t�n (x j&1, n). (60)

For W # F, this is (11.10) in [9, p. 521]; for W # E, this is (9.9) in [12,
p. 265]; and for W # EXP, this is (10.12), in [10, p. 111]. Next, for all
three classes of weights it is known that uniformly in n and j;

xj&1, n&xj+1, n t*jnW&2 (xjn)

t
an

n
�n (xjn); } 1&

x1n

an }�C$n . (61)
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For W # F, this follows from (b) above and Corollary 1.2 in [9, pp. 466-
467]; for W # E, this follows from Corollary 1.3 in [12, p. 205]; and for
W # EXP, this follows from Corollary 1.4 in [10, p. 9]. The monotonicity
of ,n in [0, an] or [&an , 0] and (60) and (61) then give the result.

(d) For W # F, these follow from Lemma 5.2(c) in [9, p. 478] (recall
that Tt1 and $n tn&2�3 for this case); for W # E, these follow from
Lemma 2.2 in [12, pp. 208�209]; and for W # EXP, these follow from
Lemma 3.2 in [10, p. 24�25].

(e) This follows easily from (d), which shows that

}1&
an

an+1 }t
1

nT(an)
=o($n), n � �.

(f) For W # F, (57) is Theorem 1.8 in [9, p. 469] while (58) follows
easily from (7.14) in [9, p. 486] and (10.2) in [9, p. 512]; for W # E, (57)
is Theorem 1.5 in [12, p. 206] while (58) follows from (4.18) in [12,
p. 228] and (5.2) in [12, p. 231]; and for W # EXP, (57) is Theorem 1.7 in
[10, p. 12] while (58) follows from (5.18) in [10, p. 53] and (6.2) in [10,
p. 57]. K

We proceed to:

Proof of Theorem 4 for p=�. Let us substitute the estimates of the last
lemma in (47): we obtain for |x|�an ,

1
n

:
n

m=1

|sm[ f ](x)| W(x)�C & fW&L�(I ) �&1�2
n (x). (62)

Next, provided we choose \n by (49), so that by Lemma 8(a), (b), (e),

\n t
an

n
�n (x)1�3 (63)

we have also from (50) and Lemma 8(a), (b), (e),

1
n

:
n

m=1

|sm[ f ](x)| W(x)

�C & fW&L�(I ) �&2�3
n (x) _ max

|t&x| �\n \
�n (t)
�n (x)+

&1�2

+1& .

Now if

�n (x)� 1
2 ,
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then (63) shows that

\n�C
an

n
�n (x)

and then from Lemma 8(c),

max
|t&x|�\n \

�n (t)
�n (x)+

&1�2

�C.

Thus

�n (x)�
1
2

O
1
n

:
n

m=1

|sm[ f ](x)| W(x)�C & fW&L�(I ) �&2�3
n (x).

This and (62) show that

1
n

:
n

m=1

|sm[ f ](x)| W(x) max[�1�2
n , �2�3

n ](x)�C & fW&L�(I ) .

When �n (x)< 1
2 , (62) shows that this inequality persists as then �2�3

n (x)<
�1�2

n (x). Thus

max
|x|�an

1
n

:
n

m=1

|sm[ f ](x)| W(x) max[�1�2
n , �2�3

n ](x)�C & fW&L�(I ) . (64)

To extend this to the rest of I, we use infinite-finite range inequalities in the
following way: let us suppose that there are polynomials Rn with the
following properties:

(i) Rn has degree O($&1�2
n );

(ii) Rn t9n=max[�1�2
n , �2�3

n ] in [&an , an];

(iii) Rn�C9n in I"[&an , an].

We now use a device of J. Szabados [27] to apply the infinite-finite
range inequalities: for any =m=\1, (64) gives

max
|x|�an }

1
n

:
n

m=1

=m sm[ f ](x) Rn (x)} W(x)�C & fW&L�(I ) .

The expression is the | | is a polynomial of degree at most [n+C$&1�2
n ] for

some C (here [x] denotes the integer part of x). But by (54) and then the
third relation in (55),

}1&
an

a[n+C$n
&1�2] }t

$&1�2
n

nT(an)
=$n t$[n+C$n

&1�2]
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so for some L>0, if n is large enough,

max
|x| �a[n+C$ n

&1�2
] (1&L$ [n+C$n

&1�2
]) }

1
n

:
n

m=1

=msm[ f ](x) Rn (x) } W(x)

�C & fW&L�(I ) .

The infinite-finite range inequality (57) shows that as the choice =m=\1 is
arbitrary,

max
x # I

1
n

:
n

m=1

|sm[ f ](x)| Rn (x) W(x)�C & fW&L�(I ) .

Finally, since 9n=O(Rn) in I, we obtain (22). It remains to give

The Construction of the [Rn] satisfying (i), (ii), (iii) above. Now
9n t�2�3

n +�1�2
n , and �n=- ,n +1�(T(an) - ,n ) so it suffices to show the

following: given b # R, there exist polynomials Rn* such that

(i*) Rn* has degree O($&1�2
n );

(ii*) Rn* t,b
n in [&an , an];

(iii*) Rn*�C,b
n in I"[&an , an].

We need only do this for |b|< 1
2 (raising to suitable powers gives the

general case). We use the Christoffel functions for the ultraspherical weight

u(x) :=(1&x2)&b&(1�2), x # (&1, 1).

Let us set

m :=m(n) :=[$&1�2
n ];

R*
n (x) :=m&1*&1

m (u, x).

It is well known that uniformly in m, x [21, p. 120]

R*
n (x)t( |1&|x| |+m&2)b in [&1, 1]. (65)

Then it is easily seen that

Rn*(x) :=R*
n \ x

an+
satisfies (i*), (ii*). To verify (iii*), it suffices to show that

R*
n (x)�C(x&1+m&2)b, x # (1, �).
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(Recall that R*
n is even). Let l denote the least integer �b�2. Let p*

j

denote the j th orthonormal polynomial for u, so that its zeros lie in
(&1, 1), and for some integer j0 and C1>0, p*

j has at least l zeros in
[1&(C1 j)&2, 1] for j� j0 . See, for example, [21, Thm. 22, p. 167]. Then
for j� j0 and x>1,

p*
j (x)

p*
j (1)

= `
y: pj

*( y)=0
\1+

x&1
1& y+�(1+(C1 j)2 (x&1))l.

Let ' # (0, 1). Then for x>1, m� j0 �',

*&1
m (u, x)> :

m&1

j=['m]+1

( p*
j (x))2

�(1+(C1'm)2 (x&1))b :
m&1

j=['m]+1

( p*
j (1))2.

It follows easily from the fact that |b|< 1
2 and from the estimate

k&1*&1
k (u, 1)tk&2b, k�1,

that if ' is small enough,

:
m&1

j=['m]+1

( p*
j (1))2

t :
m&1

j=0

( p*
j (1))2=*&1

m (u, 1)tm1&2b

and hence that for x>1,

R*
n (x)=m&1*&1

m (u, x)

�(1+(c1'm)2 (x&1))b m&2b�C(x&1+m&2)b,

as desired. K

The extension from p=� to 1� p<� is entirely standard [6], but we
provide the details:

The proof of Theorem 4 for p=1. Now

"1
n

:
n

m=1

sm[ f ] W"L1(I )

= sup
&gW&L�(I)�1

|
I \

1
n

:
n

m=1

sm[ f ] W+ gW

= sup
&gW&L�(I)�1

1
n

:
n

m=1
|

I
sm[ f ] gW 2

= sup
&gW&L�(I)�1

1
n

:
n

m=1
|

I
fsm[ g] W 2
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by self-adjointness of sm (this follows easily from orthogonality). We con-
tinue this as

� sup
&gW&L�(I)�1

1
n

:
n

m=1
|

I
| fW9 &1

n | |sm[ g] W9n |

� sup
&gW&L�(I)�1

|
I

| fW9 &1
n | "1

n
:
n

m=1

|sm[ g] W9n | "L�(I )

�C |
I

| fW9 &1
n |

by our result for p=�. K

Finally, we use weighted interpolation to treat the case 1<p<�:

Proof of Theorem 4 for 1<p<�. One applies a theorem of E. M. Stein
[2, p. 213] on interpolation in weighted spaces. More specifically, if

{[ f ] :=
1
n

:
n

m=1

sm[ f ]

and

q0 :=1; p0 :=1; v0 :=W; u0 :=W9 &1
n ;

q1 :=�; p1 :=�; v1 :=W9n ; u1 :=W,

we have shown that for i=0, 1 and some C independent of f, n, i

&{[ f ] vi &Lqi
(I )�C & fui&Lpi

(I )

and hence if 0<%<1 and

1
p

=
1&%

p0

+
%

p1

=1&%;
1
q

=
1&%

q0

+
%

q1

=1&%;

u :=u1&%
0 u%

1 ; v :=v1&%
0 v%

1

then

&{[ f ] v&Lq(I )�C & fu&Lp(I ) .

This is easily reformulated as (21). K
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Deduction of Corollary 5. Suppose first that 1� p<�. Recall that for
Freud weights Tt1 so in [&an , an],

�n =
,n+T(an)&1

- ,n

t
1

- ,n

�C

O 9n=max[�1�2
n , �2�3

n ]t�2�3
n t,&1�3

n .

Moreover, 9n�C,&1�3
n in I"[&an , an]. Then

"\1
n

:
n

m=1

sm[ f ]+ W,&(1&1�p)�3
n "Lp(I )

�C "\1
n

:
n

m=1

sm[ f ]+ W9 1&1�p
n "Lp(I )

�C & fW9 &1�p
n &Lp(I )�C & fW,1�(3p)

n &Lp(I ) .

Here we have used (21). The case p=� is easier. K

3. ESTIMATE OF AN ORTHONORMAL POLYNOMIAL SUM

In this section, we prove:

Theorem 9. Let W # F and assume that for some ;>0,

:n

an
=

1
2

+O(n&;).

Then for n�1 and x # R,

:
n

m=1

( pm+1& pm&1)2 (x) W2 (x)

�C
n

an
,n (x)min[3�2, 1�2+3;�2, 3�4(1+;)]. (66)

We begin with a simple consequence of the recurrence relation:
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Lemma 10.

:
n

m=1

:m ( pm& pm&1)2 (x)

= :
n&1

m=1

p2
m(x)(:m+:m+1&x)+ p2

0(x)(:1&x)

+:n pn (x)( pn& pn&1)(x). (67)

Proof. Recall the recurrence relation

xpm&1 (x)=:m pm (x)+:m&1 pm&2 (x).

Multiplying this by pm&1 (x) and adding for m=1, 2, ..., n gives

x :
n

m=1

p2
m&1(x)= :

n

m=1

:m pm (x) pm&1 (x)+ :
n

m=1

:m&1 pm&2 (x) pm&1 (x).

Changing the index of summation from m to m&1 in the sum on the left
and the second sum on the right gives

x :
n&1

m=0

p2
m(x)=2 :

n

m=1

:m pm (x) pm&1 (x)&:n pn (x) pn&1 (x),

recall p&1=0. Then

:
n

m=1

:m ( pm& pm&1)2 (x)

= :
n

m=1

:m p2
m(x)+ :

n

m=1

:m p2
m&1(x)&2 :

n

m=1

:m pm (x) pm&1 (x)

= :
n&1

m=1

(:m+:m+1) p2
m(x)+:n p2

n(x)

+:1 p2
0(x)&x :

n&1

m=0

p2
m(x)&:n pn (x) pn&1 (x).

Then (67) follows. K

Surprisingly the most troublesome term on the right-hand side of (67) is
the third term. This is handled in the following lemma: there and in the
sequel, we assume that W # F, that (28) holds, and we shall use the
estimates [9, Cor. 1.4, p. 467]

| pnW| (x)�Ca&1�2
n ,&1�4

n (x), x # R, n�1 (68)
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and [9, Lemma 5.2(a), p. 478]

a2n

an
�C>1, n�1. (69)

Lemma 11. For x # [0, an],

| pn& pn&1| (x) W(x)�Cnmax[0, (1&;)�2]a&1�2
n ,1�4

n (x). (70)

Proof. We consider two ranges of x:

(i) x # [0, 1
2an]

Here ,n (x)t1 and the desired estimate follows from (68).

(ii) x # ( 1
2an , an]

We use the Dombrowski�Fricke identity [4, 5, 22] in the form

1n (x) :=
1

:2
n

:
n&1

k=0

(:2
k+1&:2

k) p2
k(x)

=( pn& pn&1)2 (x)+2pn&1 (x) pn (x) \1&
x

2:n+ .

This gives

1n (x) W2 (x)

=(( pn& pn&1) W)2 (x)+2( pn&1 pnW 2)(x) \_1&
x
an&+O(n&;)+

=(( pn& pn&1) W)2 (x)+O(a&1
n ,n (x)1�2)

+O(a&1
n ,n (x)&1�2 n&;). (71)

Here we have used (68), (56) and our hypothesis (28). Next, that
hypothesis gives for 0�k�n&1,

:2
k+1&:2

k =:2
k+1 \1&_ ak

ak+1&
2

_ :k �ak

:k+1 �ak+1&
2

+
=:2

k+1 \1&_1+O \ 1
k+1+&

2

[1+O((k+1)&;)]2+
�Ca2

n(k+1)&min[1, ;].

Here we have used not only (28) but also (54) (recall Tt1 for W # F).
Then from (51), we obtain

1n (x)�C :
n&1

k=0

(k+1)&min[1, ;] p2
k(x).
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Recall that x> 1
2an . Now from (69), there exists =1 independent of n, such

that for large enough n,

1
2an�a2=1n .

We then use (58) of Lemma 8 applied to W2 rather than W to deduce that

W2 (x) :
[=1 n]&1

k=0

(k+1)&min[1, ;] p2
k(x)

�W2 (x) :
[=1n]&1

k=0

p2
k(x)

=W2 (x) *&1
[=1n](W2, x)

�C1 exp(&C2n) sup
t # R

W2 (t) *&1
[=1n](W 2, t)

�C3 exp(&C4n).

Next,

W2 (x) :
n&1

k=[=1n]

(k+1)&min[1, ;] p2
k(x)�Cn&min[1, ;]W2 (x) *&1

n (W 2, x)

�Cn&min[1, ;] n
an

,n (x)1�2,

recall that �n t,&1�2
n for Freud weights. Thus, the last two estimates yield

1n (x) W 2 (x)�Cn&min[1, ;] n
an

,n (x)1�2 (72)

and hence from (71),

(( pn& pn&1) W)2 (x)

�C _n&min[1, ;] n
an

,n (x)1�2+a&1
n ,n (x)&1�2 n&;& . (73)

Now by definition of ,n ,

n&1�C,3�2
n (74)

and it then follows that the first term in the right-hand side of (73) is the
larger one (apart from a constant), so we obtain (70). K
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For future use, we record the estimate effectively proved in the above
lemma: for 2>0,

W2 (x) :
n&1

k=0

(k+1)&2 p2
k(x)�Cn1&2a&1

n ,n (x)1�2 x # [ 1
2 an , an]. (75)

The next step in the proof of Theorem 9 is:

Lemma 12. For x # [0, an],

:
n&1

m=1

:m ( pm& pm&1)2 (x) W2 (x)

�n,n (x)min[3�2, 1�2+(3�2) ;, 3�4(;+1)]. (76)

Proof. For x # [0, 1
2an], the estimate follows easily from (51), (52) since

,n (x)t1. We now assume that x # [ 1
2an , an]. We use (28). Now for

m�n&1,

:m+:m+1&x�
am

2
+

am+1

2
&x+O \am+1

m; +�an&x+O \an

m;+ ,

so

W2 (x) :
n&1

m=1

p2
m(x)(:m+:m+1&x)

�(an&x) W2 (x) *&1
n (W 2, x)+CanW 2 (x) :

n&1

m=1

p2
m(x)
m;

�Cn,n (x)3�2+Cn1&;,n (x)1�2

by (52), (75). Using (74), we continue this as

W2 (x) :
n&1

m=1

p2
m(x)(:m+:m+1&x)

�Cn,n (x)min[3�2, 1�2+(3�2) ;]. (77)

Next, combining (68) and (70) gives

W2 (x) :n | pn (x)( pn& pn&1 (x))|

�Cnmax[0, (1&;)�2]�Cn } n&min[1, (;+1)�2]

�Cn,n (x) (3�2) min[1, (;+1)�2].
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Finally,

W2 (x) p2
0(x) |:1&x|�C�Cn,n (x)3�2.

Combining the last three estimates and (67) gives the result. K

We turn to

The Proof of Theorem 9. Firstly for x # [0,1
4an],

:
n

m=1

( pm+1& pm&1)2 (x) W2 (x)�4*&1
n+2(W

2, x) W2 (x)�C
n

an

and then (66) follows as ,n (x)t1. We now assume that x # [ 1
4 an , an]. Let

=0 # (0, 1
2). Since

( pm+1& pm&1)2�2( pm+1& pm)2+2( pm& pm&1)2,

we obtain from (51) and then Lemma 12 and (56), that

:
n

m=[=0n]

( pm+1& pm&1)2 (x) W 2 (x)

�
C
an _ :

n

m=[=0 n]

:m+1 ( pm+1& pm)2 (x) W2 (x)

+ :
n

m=[=0n]

:m ( pm& pm&1)2 (x) W2 (x)&
�C

n
an

,n (x)min[3�2, 1�2+(3�2) ;, 3�4(;+1)].

If we choose =0 small enough, then it follows as in the proof of (72) of
Lemma 11 that the contribution of the terms with m<[=0n] is negligible.
Thus we have the desired estimate (66) for x # [0, an] and hence for all
x # [&an , an], recall that ( pm+1& pm&1)2 is even. To extend the estimate
to the whole real line, one uses the same trick as in the proof of Theorem 4
for p=�: one approximates powers of ,n by polynomials Rn of degree
O($&1�2

n )=O(n1�3), and then uses infinite-finite range inequalities. K

We shall actually apply not Theorem 9, but a simple consequence
thereof:
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Corollary 13. Let W # F and assume that for some ;>0,

:n

an
=

1
2

+O(n&;).

Then for n�1 and x # R,

:
n

m=1
\pm+1&

:m

:m+1

pm&1 +
2

(x) W2 (x)

�C
n

an
,n (x)min[3�2, 1�2+3;�2, 3�4(1+;)]. (78)

Proof. We have

\pm+1&
:m

:m+1

pm&1 +
2

�2( pm+1& pm&1)2+2 \1&
:m

:m+1+
2

p2
m&1

�2( pm+1& pm&1)2+Cm&2 min[1, ;]p2
m&1 .

Here for x # [ 1
2an , an], (75) gives

W2 (x) :
n

m=1

m&2 min[1, ;]p2
m&1(x)�Cn1&2 min[1, ;]a&1

n ,n (x)1�2

�C
n

an
,n (x)3 min[1, ;]+1�2

and the rest of the details follow as before. K

4. PROOF OF THEOREM 6

Throughout, we assume the hypotheses of Theorem 6. We shall also
assume that the sequence \n decays to 0 no faster than some negative
power of n. The proof is based on:

An alternative estimate for sm[Fn ( } )(x& } )](x). The alternative
estimate involves a simple change of indices in summation, that has been
employed several times before (for example in [17]); we do not know who
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first used it. Recall the notation (1), (44) and the abbreviation bm=bm (Fn).
Then

1
n

:
n

m=1

sm[Fn ( } )(x& } )](x)

=
1
n _ :

n

m=1

:m pmbm&1& :
n

m=1

:m pm&1bm&
=

1
n _ :

n&1

m=0

:m+1 pm+1bm& :
n

m=1

:m pm&1bm&
=

1
n _ :

n&1

m=1

bm (:m+1 pm+1&:m pm&1)+:1 p1b0&:n pn&1 bn&
:=T (1)+T (2)+T (3). (79)

Estimation of T (1). Here

|T (1)|=
1
n } :

n&1

m=1

bm (:m+1 pm+1&:m pm&1)}
�

1
n � :

n&1

m=1

b2
m � :

n&1

m=1

(:m+1 pm+1&:m pm&1)2

�C & fW&L�(R) � a2
n

n2\n
� :

n

m=1
\pm+1&

:m

:m+1

pm&1+
2

,

exactly as in the de la Vallee Poussin estimate for sm[Fn ( } )(x& } )](x) (see
(44�45)). Using Corollary 13, we continue this as

|T (1)W| (x)�C & fW&L�(R) � an

n\n
- ,n (x)min[3�2, 1�2+3;�2, 3�4(1+;)],

x # R. (80)

Estimation of T (2). Next,

|b0 |= } |I
Fn p0W2 }�& fW&L�(R) #0 |

|t&x|�\n

W(t)
|t&x|

dt.

We consider separately two ranges of x:
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(I) x such that an,n (x)�1.
Then we estimate

|b0 |�& fW&L�(R) #0 \W(0) |
\n�|t&x| <an ,n(x)

dt
|t&x|

+
1

an,n (x) ||t&x|�an,n(x)
W(t) dt+

�C & fW&L�(R) \log+ \an,n (x)
\n ++1+ .

Here we set

log+ t :=max[0, log t].

(II) x such that an,n (x)<1
Then

}1&
x
an }<

1
an

<
1
2

for large enough n, so that |t&x|�1 O W(t) is geometrically small:

|t&x|�1 O W(t)�exp(&C1n).

(See [9, Lemma 5.1(c), p. 477]). Then we estimate

|b0 |�& fW&L�(R) #0 \exp(&C1n) log+ \ 1
\n++|

|t&x|�1
W(t) dt+

�C & fW&L�(R) \log+ \an ,n (x)
\n ++1+ .

(Recall our hypothesis \n�n&C). Thus we have this estimate in all cases
and hence

|T (2)W| (x)=
1
n

|:1 p1 (x) b0 | W(x)

�
C
n

& fW&L�(R) \log+ \an,n (x)
\n ++1+ . (81)
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Estimation of T (3). It is more difficult to estimate bn :

|bn |= } |I
Fn pnW2 }

�C & fW&L�(R) \a&1�2
n |

\n�|t&x|�(1�4) an

,n (t)&1�4

|t&x|
dt

+a&1
n |

|t&x|>(1�4) an

| pnW| (t) dt+
�C & fW&L�(R) \a&1�2

n |
\n�|t&x|�(1�4) an

,n (t)&1�4

|t&x|
dt+a&1�2

n + . (82)

Here we have used an estimate for the L1 norm of pn W from [15, Thm. 1,
p. 44]. In subsequent estimation, we consider x�0, and consider two
subcases:

(I) x # [0, 1�4an]
Here |t&x|� 1

4an O |t|� 1
2an , so that ,n (t)t1 and we obtain

|bn |<C & fW&L�(R) a&1�2
n _log + \ an

4\n++1& . (83)

(II) x # [ 1
4an , an (1&n&2�3)]

Here |t&x|� 1
4an O t�0 and ,n (t)t1&(t�an) so that

|
\n�|t&x| �(1�4) an

,n (t)&1�4

|t&x|
dt

t|
\n�|t&x| <(1�4) an

} 1&
t

an }
&1�4

an }\1&
t

an +&\1&
x
an+}

dt

=\1&
x
an+

&1�4

|
(\n�an(1&(x�an)))�|s&1|�(1�4(1&(x�an)))

|s|&1�4

|1&s|
ds

�C \1&
x
an+

&1�4 _log+

an \1&
x
\n+

\n
+1& ,
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by first the substitution 1&(t�an)=s(1&(x�an)) and then some
straightforward estimation. Together with our estimates (82), (83), this
shows that for all x # [0, an (1&n2�3)],

|bn |�C & fW&L�(R) a&1�2
n ,n (x)&1�4 _log+ an ,n (x)

\n
+1& .

Then for |x|�an (1&n&2�3),

|T (3)W| (x)=
1
n

|:n pn&1 (x) W(x) bn |

�
C
n

& fW&L�(R) ,n (x)&1�2 _log+ an ,n (x)
\n

+1& .

We obtain from (79)�(81) and this last estimate that for |x|�
an (1&n&2�3),

} 1n :
n

m=1

sm[Fn ( } )(x& } )](x)} W(x)

�C & fW&L�(R) {� an

n\n
,n (x)min[3�4, 1�4+3;�4, 3�8(1+;)]

+n&1,&1�2
n (x) _log+ an,n (x)

\n
+1&= . (84)

We turn to

The Proof of Theorem 6. Combining (36), (48), (52), (84) gives for
|x|�an (1&n&2�3),

1 :=
1
n } :

n

m=1

sm[ f ](x)} W(x)

� an

n\n
,n (x)min[3�4, 1�4+3;�4, 3�8(1+;)]+n&1,&1�2

n (x)

�C & fW&L�(R) _log+ _an ,n (x)
\n

+1& .

+
n\n

an
,1�4

n (x) max |t&x|�\n
,1�4

n (t) (85)
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(Recall that for Freud weights, �n t,&1�2
n ). Now fix x such that

|x|�an (1&n&2�3), fix 2 # [0, 1
2) and set

\n :=
an

n
,2

n (x)�C
an

n
,&1�2

n (x)�C
an

n
�n (x). (86)

Then (53) shows that for |t&x|�\n , ,n (t)t,n (x). So (85) becomes

1�C & fW&L�(R)

_{,n (x)&2�2+min[3�4, 1�4+3;�4, 3�8(1+;)]

+n&1,&1�2
n (x)[log +[n,1&2

n (x)]+1]+,2+1�2
n (x)= . (87)

The ratio of the second and third terms in the last right-hand side is

n&1,&1&2
n (x)[log +[n,1&2

n (x)]+1]

�C
log n

n
,&1&2

n (x)�C
log n

n
(n&2�3)&1&2=o(1)

as 2< 1
2 . It follows that the second term in the right-hand side of (87) is

bounded by a constant times the third. Finally, we deduce for |x|�
an (1&n&2�3),

1�C & fW&L�(R) ,n (x)min[&2�2+min[3�4, 1�4+3;�4, 3�8(1+;)], 2+1�2]

Choosing

2 :=
2
3

min {3
4

,
1
4

+
3;
4

,
3
8

(1+;)=&
1
3

# _0,
1
6&

gives for |x|�an (1&n&2�3),

1
n } :

n

m=1

sm[ f ](x)}
�C & fW&L�(R) ,n (x)2�3 min[3�4, 1�4+3;�4, 3�8(1+;)]+1�6.

We extend this estimate to the whole real line exactly as in the proof of
Theorem 4. Then we obtain (31) for p=�. The extension to p # [1, �)
follows as in the proof of Theorem 4 for that range of p. K

Proof of Corollary 7. As we have noted, Kriecherbauer and
McLaughlin proved that (28) holds for W=W: with ;=min[:, 2]. Then
}=2�3 in (29) and the result follows. K
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