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Abstract. In the theory of random matrices for unitary ensem-
bles associated with Hermitian matrices,m−point correlation func-
tions play an important role. We show that they possess a useful
variational principle. Let µ be a measure with support in the real
line, and Kn be the nth reproducing kernel for the associated or-
thonormal polynomials. We prove that for m ≥ 1,

det [Kn (µ, xi, xj)]1≤1,j≤m = m! sup
P

P 2 (x)∫
P 2 (t) dµ×m (t)

where the sup is taken over all alternating polynomials P of degree
≤ n− 1, in m variables x= (x1, x2, ..., xm). Moreover, µ×m is the
m−fold Cartesian product of µ. As a consequence, the suitably
normalized m− point correlation functions are monotone decreas-
ing in the underlying measure µ. We deduce pointwise, one-sided,
universality for arbitrary compactly supported measures, and other
limits.

Orthogonal Polynomials, RandomMatrices, Unitary Ensembles, Cor-
relation Functions, Christoffel functions. 15B52, 60B20, 60F99, 42C05,
33C50

1. Introduction1

Let µ be a positive measure on the real line with infinitely many
points in its support, and

∫
xjdµ (x) finite for j = 0, 1, 2, ... . Then we

may define orthonormal polynomials

pn (x) = γnx
n + ..., γn > 0,

satisfying ∫
pnpmdµ = δmn.
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The nth reproducing kernel is

Kn (µ, x, t) =
n−1∑
j=0

pj (x) pj (t)

and the nth Christoffel function is

(1.1) λn (µ, x) = 1/Kn (µ, x, x) = 1/
n−1∑
j=0

p2j (x) .

It admits an extremal property that is very useful in investigating as-
ymptotics of orthogonal polynomials [24], [29]:

λn (µ, x) = inf
deg(P )<n

∫
P (t)2 dµ (t)

P 2 (x)
.

Equivalently,

(1.2) Kn (µ, x, x) = sup
deg(P )<n

P 2 (x)∫
P (t)2 dµ (t)

.

We shall prove a direct generalization for det [Kn (µ, xi, xj)]1≤i,j≤m, a
determinant that plays a key role in analysis of random matrices.
Random Hermitian matrices rose to prominence, with the work of

Eugene Wigner, who used their eigenvalues as a model for scattering
theory of heavy nuclei. One places a probability distribution on the
entries of an n by n Hermitian matrix. When expressed in "spectral
form", that is, as a probability distribution on the (real) eigenvalues
x1, x2, ..., xn, it has the form

P(n) (x1, x2, ..., xn) =

( ∏
1≤j<k≤n

(xk − xj)2
)
dµ (x1) dµ (x2) ...dµ (xn)

∫
...
∫ ( ∏

1≤j<k≤n

(tk − tj)2
)
dµ (t1) ...dµ (tn)

,

[5, p. 102]. Given 1 ≤ m ≤ n, we define the m−point correlation
function

Rn
m (µ;x1, x2, ..., xm)

=
n!

(n−m!)

∫
...

∫
P(n) (x1, x2, ..., xn) dµ (xm+1) ...dµ (xn) .

(1.3)

Thus Rn
m is, up to normalization, a marginal distribution, where we

integrate out tm+1, tm+2, ..., tn. Note that we exclude from Rn
m, a factor
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of µ′ (x1)µ′ (x2) ...µ′ (xm), which is used in [5]. It is a well established
fact [5, p. 112] that

(1.4) Rn
m (µ;x1, x2, ..., xm) = det [Kn (µ, xi, xj)]1≤i,j≤m .

Again, we emphasize that in [5], as distinct from this paper, µ′ is
absorbed into Kn. Since much of the interest lies in asymptotics as
n → ∞, for fixed m, it is obviously easier to handle asymptotics of
this fixed size determinant, than to deal with the n −m fold integral
in (1.3).
Rn
m can be used to describe the local spacing of m-tuples of eigen-

values. For example, if m = 2, and B ⊂ R is measurable, then [5, p.
117] ∫

B

∫
B

Rn
2 (µ; t1, t2) dµ (t1) dµ (t2)

is the expected number of pairs (t1, t2) of eigenvalues, with both t1, t2 ∈
B.
Of course there are other settings for random matrices that do not

involve orthogonal polynomials. There one considers a class of matrices
(such as normal matrices or symmetric matrices) where the elements
of the matrix are independently distributed, or there are appropriate
bounds on the dependence. The methods are quite different, but re-
markably, similar limiting results arise [8], [9], [10], [12], [31].
The formulation of our main result involves ALmn , the alternating

polynomials of degree at most n in m variables. We say that P ∈ ALmn
if

(1.5) P (x1, x2, ..., xm) =
∑

0≤j1,j2,...,jm≤n
cj1j2...jmx

j1
1 x

j2
2 ...x

jm
m ,

so that P is a polynomial of degree≤ n in each of itsm variables, and in
addition is alternating, so that for every pair (i, j) with 1 ≤ i < j ≤ m,

(1.6) P (x1, ..., xi, ..., xj, ..., xm) = −P (x1, ..., xj, ..., xi, ..., xm) .

Thus swapping variables changes the sign. Sometimes, these are called
skew-symmetric polynomials.
Observe that if Pi is a univariate polynomial of degree ≤ n for each

i = 1, 2, ...,m, then

(1.7) P (t1, t2, ..., tm) = det [Pi (tj)]1≤i,j≤m ∈ AL
m
n .

The set of such determinants of polynomials is a proper subset of ALmn .
It is well known, and easy to see, that every alternating polynomial is
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the product of a Vandermonde determinant and a symmetric polyno-
mial. Thus P ∈ ALmn iff

P (t1, t2, ..., tm) =

( ∏
1≤i<j≤m

(tj − ti)
)
S (t1, t2, ..., tm) ,

where S is symmetric, and of degree ≤ n−m+ 1 in each variable.
Given a fixed m, we shall use the notation

x = (x1, x2, ..., xm) , t = (t1, t2, ..., tm)

while µ×m denotes the m−fold Cartesian product of µ, so that

(1.8) dµ×m (t) = dµ (t1) dµ (t2) ...dµ (tm) .

We prove:

Theorem 1.1
Let m ≥ 1, n ≥ m + 1. Let x = (x1, x2, ..., xm) be an m-tuple of real
numbers. Then

(1.9) det [Kn (µ, xi, xj)]1≤i,j≤m = m! sup
P∈ALmn−1

(P (x))2∫
(P (t))2 dµ×m (t)

.

The sup is attained for

(1.10) P (t) = det [Kn (µ, xi, tj)]1≤i,j≤m .

We could also just take the supremum in (1.9) over the strictly
smaller class of determinants of the form (1.7). An immediate, but
important consequence is

Corollary 1.2
Rn
m (µ;x1, x2, ..., xm) is a monotone decreasing function of µ, and a
monotone increasing function of n.

Despite an extensive literature search, I have not found Theorem 1.1
or Corollary 1.2 in the (extensive!) literature for random matrices. At
the very least, they must be new to those interested in universality
limits, because of the applications they have there. We shall present
some in Section 2.
The proof of Theorem 1.1 is based on multivariate orthogonal polyno-

mials built from µ. Givenm ≥ 1, and non-negative integers j1, j2, ..., jm,
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we define

Tj1,j2,...,jm (x1, x2, ..., xm)

= det (pji (xk))1≤i,k≤m

= det


pj1 (x1) pj1 (x2) . . . pj1 (xm)
pj2 (x1) pj2 (x2) . . . pj2 (xm)

...
...
. . .

...
pjm (x1) pjm (x2) . . . pjm (xm)

 .(1.11)

We show that the {Tj1,j2,...,jm}j1<j2<...<jm form an orthogonal family
with respect to µ×m, and moreover, the m−point correlation function
admits an expansion as a sum of squares of {Tj1,j2,...,jm}, just as does
Kn in terms of squares of the orthonormal polynomials. We shall need
an associated reproducing kernel,

(1.12) Km
n (µ, x, t) =

1

m!

∑
1≤j1<j2<...<jm≤n

Tj1,j2,...,jm (x)Tj1,j2,...,jm (t) .

Theorem 1.3
(a) Let 0 ≤ j1 < j2 < ... < jm and 0 ≤ k1 < k2 < ... < km. Then∫

Tj1,j2,...,jm (t)Tk1,k2,...,km (t) dµ×m (t)

= m!δj1k1δj2k2 ...δjmkm .

(1.13)

(b) For P ∈ ALmn−1, and x ∈ Rn,

(1.14) P (x) =

∫
P (t)Km

n (µ, x, t) dµ×m (t) .

(c) For x, t ∈ Rn,
det [Kn (µ, xi, tj)]1≤i,j≤m

= m!Km
n (µ, x, t) .(1.15)

In particular,

det [Kn (µ, xi, xj)]1≤i,j≤m

=
∑

1≤j1<j2<...<jm≤n
(Tj1,j2,...,jm (x))2 .(1.16)

Remarks
(a) Note that in the case m = 1, (1.16) reduces to (1.1) for Kn (µ, x, x).
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After an extensive literature search, we found that (1.16) already ap-
pears for general m in [8, Section 1.5.3]. We may also express it as

det [Kn (µ, xi, xj)]1≤i,j≤m

=
1

m!

∑
1≤j1,j2,...,jm≤n

(Tj1,j2,...,jm (x))2 ,(1.17)

as Tj1,j2,...,jm vanishes if any two indices ji are equal.
(b) The expression (1.15) may also be thought of as a Christoffel-
Darboux formula, for it expresses the sum (1.12) in a compact form
involving an m×m determinant.
One consequence of the variational principle is a lower bound for

ratios of correlation functions:

Theorem 1.4
Let m ≥ 2, n ≥ m + 1, and x1, x2, ..., xm be distinct real numbers.
Define a measure ν by

dν (t) = dµ (t)
m∏
j=2

(t− xj)2 .

Then

Kn (µ, x1, x1) ≥
det [Kn (µ, xi, xj)]1≤i,j≤m
det [Kn (µ, xi, xj)]2≤i,j≤m

≥ 1

m
Kn−m+1 (ν, x1, x1)

m∏
j=2

(x1 − xj)2 .(1.18)

The upper bound is a well known consequence of inequalities for posi-
tive definite matrices. It is the lower bound that is new.
This paper is organised as follows: in Section 2, we state some ap-

plications of Theorem 1.1 to asymptotics and universality limits. In
Section 3, we first prove Theorem 1.3, and then deduce Theorem 1.1
and Corollary 1.2, followed by Theorem 1.4. Theorems 2.1, 2.2, and
2.3 are proved in Section 4. Theorem 2.4 is proved in Section 5, and
Theorem 2.5 and Corollary 2.6 in Section 6.

2. Applications to Asymptotics and Universality Limits

The extremal property (1.2) is essential in proving the following: if
µ is any measure with support in [−1, 1], then at every Lebesgue point
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x of µ in (−1, 1) ,

(2.1) lim inf
n→∞

1

n
Kn (µ, x, x)µ′ (x) ≥ 1

π
√

1− x2
.

Here µ′ is understood as the Radon-Nikodym derivative of the ab-
solutely continuous part of µ. This is more commonly formulated for
Christoffel functions as

lim sup
n→∞

nλn (µ, x) ≤ µ′ (x) π
√

1− x2.

Barry Simon calls this the Maté-Nevai-Totik upper bound. See, for
example [22], [29, Thm. 5.11.1, p. 334], [32].
Under additional conditions, including regularity of µ, there is equal-

ity in (2.1), with a full limit. We say that µ is regular in the sense of
Stahl, Totik, and Ullman, or just regular, if the leading coeffi cients {γn}
of its orthonormal polynomials satisfy

(2.2) lim
n→∞

γn
1/n =

1

cap (supp [µ])
.

Here cap(supp [µ]) is the logarithmic capacity of the support of µ. We
shall need only a very simple criterion for regularity, namely a version
of the Erdős-Turán criterion: if the support of µ consists of finitely
many intervals, and µ′ > 0 a.e. with respect to Lebesgue measure in
that support, then µ is regular [30, p. 102].
In 1991, Maté, Nevai and Totik [22] showed that if µ is a regular

measure with support [−1, 1], and in some subinterval I of (−1, 1), we
have

(2.3)
∫
I

log µ′ > −∞,

then for a.e. x ∈ I,

(2.4) lim
n→∞

1

n
Kn (µ, x, x)µ′ (x) =

1

π
√

1− x2
.

Totik gave a far reaching extension of this to measures with compact
support J [32], [33]. Here one needs the equilibrium measure νJ for
the compact set J , as well as its Radon-Nikodym derivative, which
we denote by ωJ . Thus νJ is the unique probability measure that
minimizes the energy integral∫ ∫

log
1

|s− t|dν (s) dν (t)

amongst all probability measures ν with support in J [25], [26]. If
I is some subinterval of J , then νJ is absolutely continuous in I, and
moreover, ωJ > 0 in the interior Io of I. In the special case J = [−1, 1],
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dνJ (x) = ωJ (x) dx = dx
π
√
1−x2 . Totik showed that if µ is regular, and

in some subinterval I of J , we have (2.3), then for a.e. x ∈ I,

(2.5) lim
n→∞

1

n
Kn (µ, x, x)µ′ (x) = ωJ (x) .

Further developments are explored in Simon’s monograph [29].
It is a fairly straightforward consequence of this last relation, and the

Christoffel-Darboux formula, that for m ≥ 2 and a.e. (x1, x2, ..., xm) ∈
Im,

(2.6) lim
n→∞

1

nm
det [Kn (µ, xi, xj)]1≤i,j≤m =

m∏
j=1

ωJ (xj)

µ′ (xj)
.

The right-hand side is interpreted as ∞ if any µ′ (xj) = 0. Thus, the
matrix [Kn (µ, xi, xj)]1≤i,j≤m behaves essentially like its diagonal. We
shall prove this in Section 4. Without having to assume regularity, or
(2.3), we can use Theorem 1.1 to prove one-sided versions of (2.6).
For measures µ with compact support J , and x ∈ J , we let

(2.7) ωµ (x) = inf
{
ωL (x) : L ⊂ J is compact, µ|L is regular, x ∈ L.

}
Since νL decreases as L increases, one can roughly think of ωµ as the
density of the equilibrium measure of the largest set to whose restric-
tion µ is regular. In the sequel, Jo denotes the interior of J .

Theorem 2.1
Let µ have compact support J , of positive Lebesgue measure, and let
ωJ denote the equilibrium density of J. Let m ≥ 1.
(a) For Lebesgue a.e. (x1, x2, ..., xm) ∈ (Jo)m,

(2.8) lim inf
n→∞

1

nm
det [Kn (µ, xi, xj)]1≤i,j≤m ≥

m∏
j=1

ωJ (xj)

µ′ (xj)
.

The right-hand side is interpreted as ∞ if any µ′ (xj) = 0.
(b) Suppose that I is a compact subset of J consisting of finitely many
intervals, for which (2.3) holds. Then for Lebesgue a.e. (x1, x2, ..., xm) ∈
Im,

(2.9) lim sup
m→∞

1

nm
det [Kn (µ, xi, xj)]1≤i,j≤m ≤

m∏
j=1

ωµ (xj)

µ′ (xj)
.

A perhaps more impressive application of Theorem 1.1 is to univer-
sality limits in the bulk, which describe local spacing of eigenvalues of
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random Hermitian matrices [5], [6], [12], [23]. One of the more standard
formulations, for a measure µ supported on [−1, 1], is

lim
n→∞

(
µ′ (x) π

√
1− x2

n

)m
Rn
m

(
µ;x+ a1

π
√

1− x2
n

, ..., x+ am
π
√

1− x2
n

)
= lim

n→∞

(
µ′ (x) π

√
1− x2

n

)m
det

[
Kn

(
µ;x+ ai

π
√

1− x2
n

, x+ aj
π
√

1− x2
n

)]
1≤i,j≤m

= det (S (ai − aj))1≤i,j≤m ,

where

(2.10) S (t) =
sin πt

πt

is the sine (or sinc) kernel. There is a vast literature for universality
limits, especially in the case where µ is replaced by varying weights. A
great many methods have been applied, including classical asymptotics
for orthonormal polynomials, Riemann Hilbert techniques, and theory
of entire functions of exponential type [1], [2], [5], [6], [7], [11], [12] [16],
[19], [28], [29], [33].
For fixed measures µ with compact support J , the most general

pointwise result is due to Totik [33]. It asserts that if µ is regular,
while (2.3) holds in some interval I in the support, then for a.e. x ∈ I,
and all real a1, a2, ..., am, there are limits for the scaled reproducing
kernels that immediately yield

lim
n→∞

(
µ′ (x)

nωJ (x)

)m
Rn
m

(
µ;x+

a1
nωJ (x)

, ..., x+
am

nωJ (x)

)
= det (S (ai − aj))1≤i,j≤m .

Simon had a similar result, proved using Jost functions [27], [28]. Totik
uses the comparison method of the author [19], together with "poly-
nomial pullbacks". Without any local or global restrictions on µ, the
author showed [21] that universality holds in measure in {µ′ > 0} =
{x : µ′ (x) > 0}.
We prove pointwise, almost everywhere, one-sided universality, with-

out any local or global restrictions on µ:

Theorem 2.2
Let µ have compact support J , and let ωJ denote the equilibrium den-
sity of J. Let m ≥ 1.
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(a) For a.e. x ∈ Jo ∩ {µ′ > 0}, and for all real a1, a2, ..., am,

lim inf
n→∞

(
µ′ (x)

nωJ (x)

)m
Rn
m

(
µ;x+

a1
nωJ (x)

, ..., x+
am

nωJ (x)

)
≥ det (S (ai − aj))1≤i,j≤m .

(2.11)

(b) Suppose that I is a compact subset of J consisting of finitely many
intervals, for which (2.3) holds. Then for a.e. x ∈ I, and for all real
a1, a2, ..., am,

lim sup
n→∞

(
µ′ (x)

nωµ (x)

)m
Rn
m

(
µ;x+

a1
nωµ (x)

, ..., x+
am

nωµ (x)

)
≤ det (S (ai − aj))1≤i,j≤m .

(2.12)

Pointwise universality at a given point x seems to usually require at
least something like µ′ being continuous at x, or x being a Lebesgue
point of µ. Indeed, when µ′ has a jump discontinuity, the universal-
ity limit is different from the sine kernel [13], and involves de Branges
spaces [20]. In our next result, we show that one can still bound the
behavior of the correlation function above and below near such a given
x. It is noteworthy, though, that pure singularly continuous measures
can exhibit sine kernel behavior [4].

Theorem 2.3
Let µ have compact support J , be regular, and let ωJ denote the equi-
librium density of J . Assume that the singular part µs of µ satisfies
at a given x in the interior of J ,

(2.13) lim
h→0+

µs [x− h, x+ h] /h = 0.

Assume moreover, that the derivative µ′ of the absolutely continuous
part of µ satisfies

(2.14) 0 < C1 = lim inf
t→x

µ′ (t) ≤ lim sup
t→x

µ′ (t) = C2 <∞.
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Then for all real a1, a2, ..., am,

C−m2 det (S (ai − aj))1≤i,j≤m

≤ lim inf
n→∞

(
1

nωJ (x)

)m
Rn
m

(
µ;x+

a1
nωJ (x)

, ..., x+
am

nωJ (x)

)
≤ lim sup

n→∞

(
1

nωJ (x)

)m
Rn
m

(
µ;x+

a1
nωJ (x)

, ..., x+
am

nωJ (x)

)
≤ C−m1 det (S (ai − aj))1≤i,j≤m .

(2.15)

At the boundary of the support of the measure, (referred to as the
edge of the spectrum in random matrix theory), the universality limit
takes a different form [12], [15]. For fixed measures that behave like
Jacobi weights near the endpoints, they involve the Bessel kernel of
order α > −1,

Jα (u, v) =
Jα (
√
u)
√
vJ ′α (

√
v)− Jα (

√
v)
√
uJ ′α (

√
u)

2 (u− v)
.

Here Jα is the usual Bessel function of the first kind and order α. Us-
ing a comparison method, the author proved [17] that if µ is a regular
measure on [−1, 1], and µ is absolutely continuous in some left neigh-
borhood (1−η, 1] of 1, and there µ′ (t) = h (t) (1− t)α, where h (1) > 0
and h is continuous at 1, then

(2.16) lim
n→∞

1

2n2
K̃n

(
µ, 1− a

2n2
, 1− b

2n2

)
= Jα (a, b) ,

uniformly for a, b in compact subsets of (0,∞). Here, and in the sequel,

K̃n (µ, x, y) = µ′ (x)1/2 µ′ (y)1/2Kn (µ, x, y) .

When α ≥ 0, we may allow also a, b = 0. This has the immediate
consequence that for m ≥ 2, and a1, a2, ..., am > 0,

lim
n→∞

(
1

2n2

)m
Rn
m

(
µ; 1− a1

2n2
, ..., 1− am

2n2

)( m∏
j=1

µ′
(

1− aj
2n2

))
= det (Jα (ai, aj))1≤i,j≤m .

(2.17)

Under weak conditions at the edge, we can prove one-sided universality:

Theorem 2.4
Let µ have support contained in [−1, 1] and let 1 be the right endpoint
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of that support. Assume that µ is absolutely continuous near 1, and
for some α > −1,
(2.18)

0 < C1 = lim inf
t→1−

µ′ (t) (1− t)−α ≤ lim sup
t→1−

µ′ (t) (1− t)−α = C2 <∞.

Then for a1, a2, ..., am > 0,

lim inf
n→∞

(
1

2n2

)m
Rn
m

(
µ; 1− a1

2n2
, ..., 1− am

2n2

) m∏
j=1

µ′
(

1− aj
2n2

)
≥

(
C1
C2

)m
det (Jα (ai, aj))1≤i,j≤m .

(2.19)

If α ≥ 0, we may also allow a1, a2, ..., am ≥ 0.
We note that if in addition, µ has support [−1, 1] and is regular, then

we may replace the lim inf by lim sup, the asymptotic lower bound by
an upper bound, provided we replace (C1/C2)

m by (C2/C1)
m.

Our final result has a comparison or "localization" flavor, generaliz-
ing similar results for Christoffel functions. Recall that a set J ⊂ R
is said to be regular for the Dirichlet problem [25], [30], if for every
function f continuous on J , there exists a function harmonic in C̄\J ,
continuous on C, whose restriction to J is f . Of course, this is confus-
ing when juxtaposed with the notion of a regular measure!

Theorem 2.5
Let µ, ν have compact support J and both be regular. Assume that
J is regular with respect to the Dirichlet problem. Let ξ ∈ J and
µ′ (ξ) , ν ′ (ξ) be finite and positive, with

(2.20) lim
dist(I,ξ)→0

µ (I)

ν (I)
=
µ′ (ξ)

ν ′ (ξ)
,

where the limit is taken over intervals I of length |I|, and dist (I, ξ) =
sup {|x− ξ| : x ∈ I}. Let m ≥ 1. Assume that for n ≥ 1,

y
n

= (y1n, y2n, ..., ymn)

is a vector of real numbers satisfying

(2.21) lim
n→∞

(
max
1≤j≤m

|ymj − ξ|
)

= 0,
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and

(2.22) lim
ε→0+

lim sup
n→∞

∣∣∣∣∣∣
Km
[n(1±ε)]

(
ν, y

n
, y

n

)
Km
n

(
ν, y

n
, y

n

) − 1

∣∣∣∣∣∣
 = 0.

Then

(2.23) lim
n→∞

Km
n

(
µ, y

n
, y

n

)
Km
n

(
ν, y

n
, y

n

) =

(
ν ′ (ξ)

µ′ (ξ)

)m
.

Of course in (2.22), [n (1± ε)] denotes the integer part of n (1± ε).
As an immediate consequence, we obtain:

Corollary 2.6
Let µ, ν have compact support J and be regular. Assume that J is reg-
ular with respect to the Dirichlet problem. Let x ∈ J and µ′ (x) , ν ′ (x)
be finite and positive, with (2.20) holding at ξ = x. Assume that for
given m ≥ 2 and all real a1, a2, ...am,

lim
n→∞

(
ν ′ (x)

nωJ (x)

)m
Rn
m

(
ν;x+

a1
nωJ (x)

, ..., x+
am

nωJ (x)

)
= det (S (ai − aj))1≤i,j≤m .

(2.24)

Then for all real a1, a2, ...am,

lim
n→∞

(
µ′ (x)

nωJ (x)

)m
Rn
m

(
µ;x+

a1
nωJ (x)

, ..., x+
am

nωJ (x)

)
= det (S (ai − aj))1≤i,j≤m .

(2.25)

3. Proof of Theorems 1.1, 1.3, 1.4 and Corollary 1.2

We begin with

Proof of Theorem 1.3 (a)
We use σ and η to denote permutations of (1, 2, ...,m) with respective
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signs εσ and εη. We see that

I =

∫
...

∫
Tj1,j2,...,jm (t1, t2, ..., tm)Tk1,k2,...,km (t1, t2, ..., tm) dµ (t1) ...dµ (tm)

=
∑
σ,η

εσεη

∫
...

∫ ( m∏
i=1

pjσ(i) (ti)

)(
m∏
i=1

pkη(i) (ti)

)
dµ (t1) ...dµ (tm)

=
∑
σ,η

εσεη

m∏
i=1

δjσ(i)kη(i)

=
∑
σ,η

εσεη

m∏
`=1

δj`kη(σ−1(`)),

(3.1)

where σ−1 is the inverse of the permutation σ. For a term in this last
sum to be non-zero, we need

(3.2) j` = kη(σ−1(`)) for all 1 ≤ ` ≤ m.

Since j1 < j2 < ... < jm and k1 < k2 < ... < km, we see that this will
fail unless

η
(
σ−1 (`)

)
= ` for all 1 ≤ ` ≤ m.

Indeed, if η (σ−1 (i)) 6= i for some smallest i, then ji−1 = ki−1 but either
ji = kη(σ−1(i)) ≥ ki+1 or ji = kη(σ−1(i)) ≤ ki−1. In the former case, all
of ji, ji+1, ..., jm > ki, and ki is omitted from the equalities in (3.2),
a contradiction. In the latter case, we obtain ji ≤ ji−1, contradicting
the strict monotonicity of the j′s. Thus necessarily η = σ, so (3.1)
becomes, under (3.2),

I =
∑
σ

ε2σ = m!.

�

Proof of Theorem 1.3(b)
We first show that every P ∈ ALmn−1 is a linear combination of the T
polynomials. We can write

P (x1, x2, ...xm) =
∑

0≤j̇1,j2,...,jm<n

cj1j2...jmpj1 (x1) pj2 (x2) ...pjm (xm) .

Because of the alternating property (1.6), and the linear independence
of
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{pj1 (x1) pj2 (x2) ...pjm (xm)}1≤j1,j2,...,jm≤n, necessarily, when we swap in-
dices jk and j`, the coeffi cients change sign, that is,

cj1...jk...j`...jm = −cj1...j`...jk...jm .
In particular, coeffi cients vanish if any two subscripts coincide. More
generally, this implies that if σ is a permutation of {1, 2, ...,m} with
sign εσ, then

cjσ(1)jσ(2)...jσ(m) = εσcj1j2...jm .

Next, given distinct 0 ≤ j1, j2, ..., jm < n, let j̃1 < j̃2 < ... < j̃m denote
these indices in increasing order. We can write for some permutation
σ,

ji = j̃σ(i), 1 ≤ i ≤ m.

Conversely, for the the given
{
j̃i
}
, every such permutation σ defines a

set of indices {ji} with 0 ≤ j1, j2, ..., jm < n. Thus

P (x1, x2, ...xm) =
∑

0≤j̃1<j̃2<...<j̃m<n

cj̃1j̃2...j̃m

∑
σ

εσpj̃σ(1) (x1) pj̃σ(2) (x2) ...pj̃σ(m) (xm)

=
∑

0≤j̃1<j̃2<...<j̃m<n

cj̃1j̃2...j̃m det
[
pj̃i (xk)

]
1≤i,k≤m

=
∑

0≤j̃1<j̃2<...<j̃m<n

cj̃1j̃2...j̃mTj̃1j̃2...j̃m (x1, x2, ..., xm) .

(3.3)

Inasmuch as each Tj̃1j̃2...j̃m ∈ AL
m
n−1, we have shown that ALmn−1 is the

linear span of the T polynomials, and (3.3) is an orthogonal expansion.
Orthogonality in the form (1.13) gives

cj̃1j̃2...j̃m =
1

m!

∫
P (t)Tj̃1j̃2...j̃m (t) dµ×m (t) .

Now our definition (1.12) of the reproducing kernel gives (1.14). �

Proof of Theorem 1.3 (c)
Fix x = (x1, x2, ..., xm). Let

(3.4) P (t) = P (t1, t2, ..., tm) = det [Kn (µ, xi, tj)]1≤i,j≤m .

By successively extracting the sums from the 1st, 2nd, ..., mth rows,
we see that

P (t) = det


∑n−1

j1=0
pj1 (x1) pj1 (t1) . . .

∑n−1
j1=0

pj1 (x1) pj1 (tm)
...

. . .
...∑n−1

jm=0
pjm (xm) pjm (t1) . . .

∑n−1
jm=0

pjm (xm) pj1 (tm)
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=

n−1∑
j1=0

...

n−1∑
jm=0

(pj1 (x1) ...pjm (xm))Tj1j2...jm (t1, t2, ..., tm) .

When ji = jk for distinct i, k, then Tj1j2...jm = 0. Thus only terms with
j1, j2, ..., jm distinct are non-zero. As in the proof of Theorem 1.3(b),
given distinct 0 ≤ j1, j2, ..., jm < n, we can write for some permutation
σ uniquely determined by these indices

ji = j̃σ(i)

where 0 ≤ j̃1 < j̃2 < ... < j̃m < n. As there, this yields

P (t) =
∑

0≤j̃1<j̃2<...<j̃m<n

∑
σ

εσ

(
pj̃σ(1) (x1) ...pj̃σ(m) (xm)

)
Tj̃1j̃2...j̃m (t1, t2, ..., tm)

=
∑

0≤j̃1<j̃2<...<j̃m<n

Tj̃1j̃2...j̃m (x1, x2, ..., x)Tj̃1j̃2...j̃m (t1, t2, ..., tm) .

So
det [Kn (µ, xi, tj)]1≤i,j≤m = P (t) = m!Km

n (µ, x, t) ,

and we have (1.15). Then (1.16) follows from (1.12). �

Proof of Theorem 1.1
By the reproducing kernel relation (1.14), and Cauchy-Schwarz, for all
P ∈ ALmn−1,

P (x)2 ≤
(∫

P (t)2 dµ×m (t)

)(∫
Km
n (µ, x, t)2 dµ×m (t)

)
=

(∫
P (t)2 dµ×m (t)

)
Km
n (µ, x, x) .

Thus

(3.5) Km
n (µ, x, x) ≥ sup

P∈ALmn−1

(P (x))2∫
(P (t))2 dµ×m (t)

.

By choosing P as in (3.4), we obtain equality in (3.5). Now (1.9) fol-
lows from (1.15). �

Proof of Corollary 1.2
This follows immediately from (1.9) and the positivity of all the terms
there. �

Proof of Theorem 1.4
The upper bound in (1.18) is a standard inequality for determinants
involving symmetric positive definite matrices. See, for example, [3,
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Thm. 7, p. 63]. For the lower bound, let R (t2, t3, ..., tm) ∈ ALn−1m−1. Let
P be a univariate polynomial of degree ≤ n− 1 satisfying P (xj) = 0,
2 ≤ j ≤ m. Let

S (t1, t2, ..., tm) =

m∑
j=1

P (tj) (−1)j R (t1, t2, ..., tj−1, tj+1, ..., tm) .

We claim that S ∈ ALn−1m . Suppose we swap the variables tk and t`,
where 1 ≤ k < ` ≤ m. The terms involving P (tk) and P (t`) before
the variable swap are

P (tk) (−1)k R (t1, ..., tk−1, tk+1, ..., t`−1, t`, t`+1, ..., tm)

+P (t`) (−1)`R (t1, ..., tk−1, tk, tk+1, ..., t`−1, t`+1, ..., tm)

and become, after swapping tk, t`,

P (t`) (−1)k R (t1, ..., tk−1, tk+1, ..., t`−1, tk, t`+1, ..., tm)

+P (tk) (−1)`R (t1, ..., tk−1, t`, tk+1, ..., t`−1, t`+1, ..., tm) .

Using `− k − 1 swaps of adjacent variables in each R term, the alter-
nating property of R gives

−{P (t`) (−1)`R (t1, ..., tk−1, tk, tk+1, ..., t`−1, t`+1, ..., tm)

+P (tk) (−1)k R (t1, ..., tk−1, tk+1, ..., t`−1, t`, t`+1, ..., tm)}.

In the remaining terms P (tj) (−1)j R (t1, t2, ..., tj−1, tj+1, ..., tm) with
j 6= k, `, we swap tk and t`, and use the alternating property to obtain
−P (tj) (−1)j R (t1, t2, ..., tj−1, tj+1, ..., tm). So we have proved that S ∈
ALnm. Moreover, as P has zeros at x2, x3, ..., xm, we have

S (x1, x2, ..., xm) = −P (x1)R (x2, x3, ..., xm) .

Next, by Cauchy-Schwarz,∫
S2dµ×m

≤ m

∫ m∑
j=1

P 2 (tj)R
2 (t1, ..., tj−1, tj+1, ..., tm) dµ (t1) ...dµ (tm)

= m2

(∫
P 2dµ

)(∫
R2dµ×(m−1)

)
.
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Then (1.9) gives

det [Kn (µ, xi, xj)]1≤i,j≤m

≥ m!
S2 (x1, x2, ..., xm)∫

S2dµ×m

≥ m!

m2

P 2 (x1)∫
P 2dµ

R2 (x2, ..., xm)∫
R2dµ×(m−1)

.

Write

P (t) = P1 (t)

m∏
j=2

(t− xj) ,

where P1 is any polynomial of degree ≤ n −m. Next, take sup’s over
P1 of degree ≤ n −m and R ∈ ALn−1m−1. Recalling the definition of ν,
and (1.2) gives

det [Kn (µ, xi, xj)]1≤i,j≤m

≥ m!

m2
Kn−m+1 (ν, x1, x1)

(
m∏
j=2

(x1 − xj)2
)

1

(m− 1)!
det [Kn (µ, xi, xj)]2≤i,j≤m .

This gives the lower bound in (1.18). �

4. Proof of Theorems 2.1, 2.2, and 2.3

We first prove:

Lemma 4.1
Let µ have compact support J , let µ be regular, and assume that I is
a subset of the support consisting of finitely many intervals in which
(2.3) holds. Let m ≥ 2. Then for Lebesgue a.e. (x1, x2, ..., xm) ∈ Im,

(4.1) lim
n→∞

1

nm
det [Kn (µ, xi, xj)]1≤i,j≤m =

m∏
j=1

ωJ (xj)

µ′ (xj)
.

Proof
We already know that for a.e. x ∈ I,

(4.2) lim
n→∞

1

n
Kn (µ, x, x)

µ′ (x)

ωJ (x)
= 1,

by Totik’s result (2.5). (Formally, the integral condition (2.3) follows
in each of the intervals whose union is I, and hence (2.5) does.) We
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next show that there is a set E of Lebesgue measure 0 such that for
distinct x, y ∈ I\E , both (4.2) holds, and

(4.3) lim
n→∞

1

n
Kn (µ, x, y)

(
µ′ (x)µ′ (y)

ωJ (x)ωJ (y)

)1/2
= 0.

These last two assertions give the result. Indeed for distinct x1, x2...xm ∈
I\E , we have

1

nm
det [Kn (µ, xi, xj)]1≤i,j≤m

m∏
j=1

µ′ (xj)

ωJ (xj)

=
∑
σ

εσ

m∏
i=1

 1

n
Kn

(
µ, xi, xσ(i)

)( µ′ (xi)µ
′ (xσ(i))

ωJ (xi)ωJ
(
xσ(i)

))1/2


=
m∏
i=1

(
1

n
Kn (µ, xi, xi)

µ′ (xi)

ωJ (xi)

)
+ o (1) = 1 + o (1) ,

by (4.2) and (4.3). Of course the set of x1, x2, ..., xm where any two
xi = xj with i 6= j has Lebesgue measure 0 in Im.

We turn to the proof of (4.3). It follows from (4.2) that there is a
set E of measure 0 such that for x ∈ I\E , we have

lim
n→∞

1

n
p2n (x) = lim

n→∞

1

n
(Kn+1 (µ, x, x)−Kn (µ, x, x)) = 0.

Then for distinct x, y, the Christoffel-Darboux formula gives for x, y ∈
I\E ,

1

n
Kn (µ, x, y)

=
1

n

γn−1
γn

pn (x) pn−1 (y)− pn−1 (x) pn (y)

x− y = o (1) .

Here we are also using the fact that
{
γn−1
γn

}
is bounded as µ has com-

pact support. �

Proof of Theorem 2.1(a)
Since J = supp[µ] is compact, we can find a decreasing sequence of
compact sets {J`}∞`=1 such that each J` consists of finitely many dis-
joint closed intervals, and

J =

∞⋂
`=1

J`.
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(This follows by a straightforward covering of J by open intervals, and
using compactness, then closing them up; at the (`+ 1)st stage, we
ensure that J`+1 ⊂ J` by intersecting those intervals in J`+1 with those
in J`). For ` ≥ 1, let

(4.4) dµ` (x) = dµ (x) +
1

`
ωJ` (x) dx,

so that we are adding a (small) multiple of the equilibrium measure for
J` to µ. Because ωJ` > 0 in the interior of each J`, µ′` > 0 a.e. in J`,
and so µ` is a regular measure [30, p. 102]. Moreover, in each compact
subinterval I of the interior of J`, ωJ` is positive and continuous, so we
have

(4.5)
∫
I

log µ′` > −∞.

By Lemma 4.1, for a.e. (x1, x2, ..., xm) ∈ Im,

lim
n→∞

1

nm
det [Kn (µ`, xi, xj)]1≤i,j≤m =

m∏
j=1

ωJ` (xj)

µ′` (xj)
.

As µ` ≥ µ, Corollary 1.2 gives

(4.6) lim inf
n→∞

1

nm
det [Kn (µ, xi, xj)]1≤i,j≤m ≥

m∏
j=1

ωJ` (xj)

µ′` (xj)
.

Since a countable union of sets of the form Im exhausts Jm` , this last
relation actually holds for a.e. (x1, x2, ..., xm) ∈ Jm` . Now [33, Lemma
4.2] uniformly for x in compact subsets of an open set contained in J,

(4.7) lim
`→∞

ωJ` (x) = ωJ (x) .

Moreover, ωJ is positive and continuous in that open set. We can now
let ` → ∞ in (4.6), and use the fact that the left-hand side in (4.6) is
independent of ` to obtain (2.8). �

Proof of Theorem 2.1(b)
Let L be a compact subset of supp[µ] such that µ|L is regular. L = I is
one such choice, because of the Szegő condition (2.3). We may assume
that I ⊂ L, since ωL decreases as L increases. Let

(4.8) dν (x) = µ′ (x)|L dx,

so that dν is the restriction to L of the absolutely continuous part of
µ. Here

∫
I

log ν ′ > −∞, so ν satisfies the hypotheses of Lemma 4.1,
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while µ ≥ ν, so Corollary 1.2, followed by Lemma 4.1, gives for a.e.
(x1, x2, ..., xm) ∈ Im,

lim sup
n→∞

1

nm
det [Kn (µ, xi, xj)]1≤i,j≤m

≤ lim sup
n→∞

1

nm
det [Kn (ν, xi, xj)]1≤i,j≤m

=

m∏
j=1

ωL (xj)

µ′ (xj)
,

recall that ν ′ = µ′ in I ⊂ L. Now take inf’s over all such L and use the
fact that the left-hand side is independent of L. �

We turn to the

Proof of Theorem 2.2(a)
Let µ` and J` be as in the proof of Theorem 2.1(a). It then follows from
results of Totik [33, Theorem 2.3] and/ or Simon [29, Thm. 5.11.13, p.
344] that for a.e. x ∈ J`, and all real a1, a2, .., am, and 1 ≤ i, j ≤ m,

lim
n→∞

1

n
Kn

(
µ`, x+

ai
n
, x+

aj
n

)
=

ωJ` (x)

µ′` (x)
S ((ai − aj)ωJ` (x)) .

Consequently,

lim
n→∞

1

nm
Rn
m

(
µ`;x+

a1
n
, ..., x+

am
n

)
=

(
ωJ` (x)

µ′` (x)

)m
det (S ((ai − aj)ωJ` (x)))1≤i,j≤m .

Now we use the fact that µ ≤ µ`, and Corollary 1.2: for a.e. x ∈ J ,
and all a1, a2, ..., am,

lim inf
n→∞

1

nm
Rn
m

(
µ;x+

a1
n
, ..., x+

am
n

)
≥

(
ωJ` (x)

µ′` (x)

)m
det (S ((ai − aj)ωJ` (x)))1≤i,j≤m .(4.9)

Moreover we have (4.7). We can now let ` → ∞ in (4.9), and use the
fact that the left-hand side in (4.9) is independent of ` to obtain (2.11),
with a scale change. �

Proof of Theorem 2.2(b)
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Let L and ν be, as in the proof of Theorem 2.1(b). We can use the
aforementioned results of Totik applied to ν, to obtain for a.e. x ∈ I,
and real a1, a2, ..., am,

lim
n→∞

1

nm
Rn
m

(
ν;x+

a1
n
, ..., x+

am
n

)
=

(
ωL (x)

ν ′ (x)

)m
det (S ((ai − aj)ωL (x)))1≤i,j≤m .(4.10)

Now we use the fact that µ ≥ ν, and that µ′ = ν ′ in I ⊂ L and
Corollary 1.2: for a.e. x ∈ I, and real a1, a2, ..., am,

lim sup
n→∞

1

nm
Rn
m

(
µ;x+

a1
n
, ..., x+

am
n

)
≤

(
ωL (x)

µ′ (x)

)m
det (S ((ai − aj)ωL (x)))1≤i,j≤m .

Now choose a sequence of compact subsets L of supp[µ] such that ωL (x)
converges to the infimum ωµ (x). �

Proof of Theorem 2.3
Let η ∈ (0, C1), and choose δ > 0 such that in (x− δ, x+ δ) ,

C1 − η ≤ µ′ ≤ C2 + η.

Here µ′ denotes the derivative of the absolutely continuous component
of µ. Define

dν = dµ in J\ (x− δ, x+ δ)

and
dν (t) = dµs (t) + (C1 − η) dt in (x− δ, x+ δ) .

Then dν ≤ dµ, and ν is regular on J (see [30, Thm. 5.3.3, p.148]).
Moreover, the derivative ν ′ of the absolutely continuous part of ν exists
and equals C1 − η in (x− δ, x+ δ), while (2.13) implies that

lim
h→0

νs [x− h, x+ h] /h = 0.

By a theorem of Totik [33, Theorem 2.3], we obtain for the given x and
real a1, a2, ..., am, that

lim
n→∞

1

nm
Rn
m

(
ν;x+

a1
n
, ..., x+

am
n

)
=

(
ωJ (x)

C1 − η

)m
det (S ((ai − aj)ωJ (x)))1≤i,j≤m .(4.11)

Note that the Lebesgue condition for the local Szegő function required
by Totik is satisfied because ν ′ is smooth (even constant) near x. Then
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Corollary 1.2 gives

lim sup
n→∞

1

nm
Rn
m

(
µ;x+

a1
n
, ..., x+

am
n

)
≤

(
ωJ (x)

C1 − η

)m
det (S ((ai − aj)ωJ (x)))1≤i,j≤m .

As the left-hand side is independent of η, we obtain

lim sup
n→∞

1

nm
Rn
m

(
µ;x+

a1
n
, ..., x+

am
n

)
≤

(
ωJ (x)

C1

)m
det (S ((ai − aj)ωJ (x)))1≤i,j≤m .

The lower bound is similar. �

5. Proof of Theorem 2.4

Let
w (t) = (1− t)α , t ∈ (−1, 1) .

Choose δ > 0 such that µ is absolutely continuous in (1− δ, 1), satis-
fying there

(C1 − δ)w (t) ≤ µ′ (t) ≤ (C2 + δ)w (t) .

Here C1, C2 are as in (2.18). Let

dν (t) = dµ (t) + (C2 + δ)w (t) dt, in (−1, 1− δ]

and
dν (t) = (C2 + δ)w (t) dt in (1− δ, 1].

Then
dν ≥ dµ in [−1, 1] .

Note too that in (1−δ, 1), the derivative µ′ of the absolutely continuous
component of µ satisfies

(5.1)
µ′ (t)

ν ′ (t)
≥ C1 − δ
C2 + δ

.

Inasmuch as w > 0 in (−1, 1), ν is a regular measure in the sense
of Stahl, Totik and Ullman, while ν ′ (t) (1− t)−α is continuous and
positive at 1. By a result of the author [17, Theorem 1.2],

lim
n→∞

1

2n2
K̃n

(
ν, 1− a

2n2
, 1− b

2n2

)
= Jα (a, b) ,
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uniformly for a, b in compact subsets of (0,∞). If α ≥ 0, we may also
allow a, b to lie in compact subsets of [0,∞). Then form ≥ 2, Corollary
1.2 and (5.1) give for a1, a2, ..., am > 0,

lim inf
n→∞

(
1

2n2

)m
Rn
m

(
µ; 1− a1

2n2
, ..., 1− am

2n2

) m∏
j=1

µ′
(

1− aj
2n2

)
≥

(
C1 − δ
C2 + δ

)m
lim inf
n→∞

(
1

2n2

)m
Rn
m

(
ν; 1− a1

2n2
, ..., 1− am

2n2

) m∏
j=1

ν ′
(

1− aj
2n2

)
=

(
C1 − δ
C2 + δ

)m
det (Jα (ai, aj))1≤i,j≤m .

Now let δ → 0+. �

6. Proof of Theorem 2.5 and Corollary 2.6

We begin with a lemma that uses the by now classical technique of
Totik involving fast decreasing polynomials:

Lemma 6.1
Assume the hypotheses of Theorem 2.5, except that we do not assume
(2.22), nor that µ is regular. Let ε ∈ (0, 1). Then

(6.1) lim inf
n→∞

Km
n

(
µ, y

n
, y

n

)
Km
[n(1−ε)]

(
ν, y

n
, y

n

) ≥ (ν ′ (ξ)
µ′ (ξ)

)m
.

Proof
We may assume that the common support J of µ and ν is contained
in [−1, 1], as a linear transformation of the variable changes the limits
in a trivial way. Let η > 0, and

c =
µ′ (ξ)

ν ′ (ξ)
.

Our hypothesis (2.20) ensures that we can choose δ > 0 such that

(6.2)
µ (I)

ν (I)
≤ (c+ η) for I ⊂ [ξ − δ, ξ + δ] .

Let n ≥ 4
ε
and ` = ` (n) =

[
ε
2
n
]
, so that n − ` ≥ [n (1− ε)]. We may

choose a polynomial R` of degree ≤ ` and κ ∈ (0, 1) such that

0 ≤ R` ≤ 1 in [−2, 2] ;

(6.3) |R` (t)− 1| ≤ κ` in
[
−δ

2
,
δ

2

]
;
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(6.4) |R` (t)| ≤ κ` in [−2,−δ] ∪ [δ, 2] .

The crucial thing here is that κ is independent of `, depending only on
δ. These polynomials are easily constructed from the approximations
to the sign function of Ivanov and Totik [14, Theorem 3, p. 3]. For the
given ξ and n, we let

Ψn (t) = Ψn (t1, t2, ..., tm) =

m∏
j=1

R` (ξ − tj) .

Observe that this is a symmetric polynomial in t1, t2, ..., tm. Moreover,
for large enough n, we have from (2.21), (6.3), and (6.4),

(6.5) Ψn

(
y
n

)
≥
(
1− κ`

)m
;

(6.6) |Ψn (t)| ≤ κl in [−1, 1]m \Q,
where

Q =

{
(t1, t2, ..., tm) : max

1≤j≤m
|ξ − tj| ≤ δ

}
.

Next, let P1 ∈ ALmn−`−1, and set P = P1Ψn. We see that P ∈ ALmn−1.
Using (6.2), (6.6), we see that∫

P 2dµ×m

≤ (c+ η)m
∫
Q
P 21 dν

×m + ‖P1‖2L∞(Jm) κ
2`

∫
Jm\Q

dµ×m.(6.7)

Now we use the regularity of ν, and the fact that J is regular for the
Dirichlet problem. These properties imply that [30, Thm. 3.2.3(v), p.
68]

lim
n→∞

(
sup

deg(T )≤n

‖T‖2L∞(J)∫
|T 2| dν

)1/n
= 1.

The sup is taken over all univariate polynomials T of degree at most n.
By successively applying this in each of the m variables, we see that

‖P1‖2L∞(Jm) ≤ (1 + o (1))n
∫
P 21 dν

×m,

where the o (1) term is crucially independent of P1. Thus we may
continue (6.7) as∫

P 2dµ×m

≤ (c+ η)m
(∫

P 21 dν
×m
)

(1 + (1 + o (1))n κnε) .
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Since also
P 2
(
y
n

)
≥ P 21

(
y
n

)
(1 +O (κεn)) ,

we see from (3.5), with an appropriate choice of P1, that

Km
n

(
µ, y

n
, y

n

)
≥

P 2
(
y
n

)
∫
P 2dµ×m

≥ sup
P1∈ALmn−`−1

P 21

(
y
n

)
(1 +O (κεn))

(c+ η)m
(∫

P 21 dν
×m
)

(1 + (1 + o (1))n κnε)

=
1 + o (1)

(c+ η)m
Km
n−`

(
ν, y

n
, y

n

)
.

Thus

lim inf
n→∞

Km
n

(
µ, y

n
, y

n

)
Km
[n(1−ε)]

(
ν, y

n
, y

n

) ≥ (c+ η)−m .

As the left-hand side is independent of η, we obtain (6.1). �

Proof of Theorem 2.5
Lemma 6.1 asserts that

lim inf
n→∞

Km
n

(
µ, y

n
, y

n

)
Km
[n(1−ε)]

(
ν, y

n
, y

n

) ≥ (ν ′ (ξ)
µ′ (ξ)

)m
.

Swapping the roles of µ and ν, Lemma 6.1 also gives

lim inf
n→∞

Km
[n(1+ε)]

(
ν, y

n
, y

n

)
Km
n

(
µ, y

n
, y

n

) ≥
(
µ′ (ξ)

ν ′ (ξ)

)m
.

Now we apply our hypothesis (2.22) and let ε→ 0+. �

Proof of Corollary 2.6
We apply Theorem 2.5 with ξ = x and for n ≥ 1,

y
n

=

(
x+

a1
nωJ (x)

, ..., x+
am

nωJ (x)

)
.

This satisfies (2.21) with ξ = x. Now det [S (ai − aj)]1≤1,j≤m > 0, so
our hypothesis (2.24) easily implies (2.22). Then Theorem 2.5 gives
the result. �
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