1. Misprints

I apologize for these!
(1-3) is correct in the online edition, but not in the print edition. This is what it should be: Given $1 \leq m \leq n$, we define the m-point correlation function

$$
\begin{aligned}
& R_{m}^{n}\left(\mu ; x_{1}, x_{2}, \ldots, x_{m}\right) \\
= & \frac{n!}{(n-m!)} \frac{\int \ldots \int\left(\prod_{1 \leq j<k \leq n}\left(x_{k}-x_{j}\right)^{2}\right) d \mu\left(x_{m+1}\right) \ldots d \mu\left(x_{n}\right)}{\int \ldots \int\left(\prod_{1 \leq j<k \leq n}\left(t_{k}-t_{j}\right)^{2}\right) d \mu\left(t_{1}\right) \ldots d \mu\left(t_{n}\right)} .
\end{aligned}
$$

In (1-12), (1-16) and (1-17), in both the printed and online edition, the lower and upper indices of summation are wrong. Thus $1 \leq j_{1}<j_{2}<$ $\ldots<j_{m} \leq n$ should be replaced by $0 \leq j_{1}<j_{2}<\ldots<j_{m}<n$. For example, (1-12) should be:

$$
K_{n}^{m}(\mu, \underline{x}, \underline{t})=\frac{1}{m!} \sum_{0 \leq j_{1}<j_{2}<\ldots<j_{m}<n} T_{j_{1}, j_{2}, \ldots, j_{m}}(\underline{x}) T_{j_{1}, j_{2}, \ldots, j_{m}}(\underline{t}) .
$$

