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Abstract

We prove that de Branges spaces of entire functions describe universality
limits in the bulk for random matrices, in the unitary case. In particular,
under mild conditions on a measure with compact support, we show that
each possible universality limit is the reproducing kernel of a de Branges
space of entire functions that equals a classical Paley-Wiener space. We
also show that any such reproducing kernel, suitably dilated, may arise as a
universality limit for sequences of measures on [−1, 1].

1. Introduction and Results

Let µ be a finite positive Borel measure on R with all moments
∫

xjdµ (x),
j ≥ 0, finite, and with infinitely many points in its support. Then we may
define orthonormal polynomials

pn (x) = γnx
n + · · · , γn > 0,

n = 0, 1, 2, . . . satisfying the orthonormality conditions

∫
pnpmdµ = δmn.

Throughout we use µ′ (x) = dµ
dx

to denote the almost everywhere existing
Radon-Nikodym derivative of µ.
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Orthogonal polynomials play an important role in random matrix theory,
especially in the unitary case [2], [5], [12], [27]. One of the key limits there
involves the reproducing kernel

Kn (x, y) =

n−1∑

k=0

pk (x) pk (y) . (1.1)

Because of the Christoffel-Darboux formula, it may also be expressed as

Kn (x, y) =
γn−1

γn

pn (x) pn−1 (y) − pn−1 (x) pn (y)

x − y
, x 6= y. (1.2)

Define the normalized kernel

K̃n (x, y) = µ′ (x)1/2 µ′ (y)1/2 Kn (x, y) . (1.3)

The simplest case of the universality law is the limit

lim
n→∞

K̃n

(
ξ + a

eKn(ξ,ξ)
, ξ + b

eKn(ξ,ξ)

)

K̃n (ξ, ξ)
=

sin π (a − b)

π (a − b)
, (1.4)

involving the sinc kernel. It describes the distribution of spacing of eigen-
values of random matrices. Typically this limit holds uniformly for ξ in the
interior of the support of µ and a, b in compact subsets of the real line. Of
course, when a = b, we interpret sinπ(a−b)

π(a−b)
as 1.

There are a wide variety of methods for establishing universality, and
we cannot survey them all here. Perhaps the deepest are Riemann-Hilbert
methods, which yield much more than universality, though they require some
smoothness properties for the measure [2], [5], [26]. There are a number of
methods that use techniques of mathematical physics [7], [31]. Eli Levin
observed that first order asymptotics for orthogonal polynomials are sufficient
to establish universality [16].

One recently introduced technique [21] (see also [14], [18], [19]) involves
a comparison inequality, and allows one to start with universality for a given
measure, and extend it to far more general measures. The disadvantage
there is that one needs to start with some measure, with a similar support
to the given measure, for which universality is known. However, it has been
greatly extended, using devices such as polynomial pullbacks by Totik [38],
and his student Findley [6]. Simon [34] obtained equally impressive results
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by combining this method with Jost functions. In particular, Findley and
Totik showed that for regular measures, universality holds a.e. in any interval
where log µ′ is integrable. Here regularity in the sense of Stahl and Totik [36]
can be defined as the condition

lim
n→∞

γ1/n
n =

1

cap (supp [µ])
,

where cap (supp [µ]) is the logarithmic capacity of the support of µ.
A perhaps more promising idea was introduced in [22]. It uses classical

complex analysis, such as the theory of normal families, entire functions of
exponential type, and reproducing kernels for Paley Wiener spaces. Its ad-
vantage is that it does not require a base measure for which universality is
known, nor regularity. It shows that universality is equivalent to “univer-
sality along the diagonal”, or alternatively, ratio asymptotics for Christoffel
functions λn (x) = 1/Kn (x, x). Here is a typical result:

Theorem 1.1 Let µ be a finite positive Borel measure on the real line with
compact support. Let J ⊂ supp[µ] be compact, and such that µ is absolutely
continuous in an open set containing J . Assume that µ′ is positive and
continuous at each point of J . The following are equivalent:

(I) Uniformly for ξ ∈ J and a in compact subsets of the real line,

lim
n→∞

Kn

(
ξ + a

eKn(ξ,ξ)
, ξ + a

eKn(ξ,ξ)

)

Kn (ξ, ξ)
= 1. (1.5)

(II) Uniformly for ξ ∈ J and a, b in compact subsets of the complex plane,
we have

lim
n→∞

Kn

(
ξ + a

eKn(ξ,ξ)
, ξ + b

eKn(ξ,ξ)

)

Kn (ξ, ξ)
=

sin π (a − b)

π (a − b)
. (1.6)

While it is possible that (1.5) always holds under the initial hypotheses of
Theorem 1.1, it has been established only when we assume that µ is regular.
In [22], it was also shown that instead of continuity of w, we may assume a
Lebesgue point type condition. The method may also be applied to varying
and exponential weights, and at the “hard” or “soft” edge of the spectrum,
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where we obtain a Bessel or Airy kernel [15], [17], [20]. Avila, Last and
Simon [1] have shown that this method can be adapted to prove universality
for measures whose support is a Cantor set of positive measure, while Simon
has extended Theorem 1.1 in a number of other directions [35].

In this paper, we explore the possible limits of subsequences of the se-
quence {fn}, where

fn (a, b) =
Kn

(
ξn + a

eKn(ξn,ξn)
, ξn + b

eKn(ξn,ξn)

)

Kn (ξn, ξn)
, (1.7)

and {ξn} is a sequence of real numbers. Since the {Kn} are reproducing
kernels for polynomials, it is scarcely surprising that limits of subsequences
of {fn} are reproducing kernels for suitable spaces of entire functions. It
turns out that the natural such spaces are de Branges spaces. We can use
some of their remarkable theory to characterize universality limits.

de Branges spaces [4, p. 50], [25, p. 983. ff], [30, p. 793 ff.] are built
around the Hermite-Biehler class. An entire function E is said to belong to
the Hermite-Biehler class if it has no zeros in the upper half-plane C

+ =
{z : Im z > 0} and

|E (z)| ≥ |E (z̄)| for z ∈ C
+. (1.8)

We write E ∈ HB. Recall that the Hardy space H2 (C+) is the set of all
functions g analytic in the upper-half plane, for which

sup
y>0

∫ ∞

−∞

|g (x + iy)|2 dx < ∞.

Given an entire function g, we let

g∗ (z) = g (z̄). (1.9)

Definition 1.2 The de Branges space H (E) corresponding to the entire
function E ∈ HB, is the set of all entire functions g such that both g/E and
g∗/E belong to H2 (C+), with

‖g‖E =

(∫ ∞

−∞

∣∣∣ g
E

∣∣∣
2
)1/2

< ∞. (1.10)

H (E) is a Hilbert space with inner product

(g, h) =

∫ ∞

−∞

gh̄

|E|2
.
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One may construct a reproducing kernel for H (E) from E [25, p. 984], [30,
p. 793]. Indeed, if we let

K (ζ, z) =
i

2π

E (z) E (ζ) − E∗ (z) E∗ (ζ)

z − ζ̄
, (1.11)

then for all ζ , K (ζ, ·) ∈ H (E) and for all complex ζ and all g ∈ H (E) ,

g (ζ) =

∫ ∞

−∞

g (t)K (ζ, t)

|E (t)|2
dt. (1.12)

We shall later identify K
(
ζ̄ , z
)

with a function f (ζ, z) that arises as a univer-
sality limit. We emphasize that the standard reproducing kernel K for a de
Branges space involves a conjugate variable, while the standard reproducing
kernel Kn for an orthogonal polynomial system does not.

The classical de Branges spaces are the Paley-Wiener spaces PWσ, con-
sisting of entire functions of exponential type ≤ σ that are square integrable
along the real axis. There one may take E (z) = exp (−iσz), and the norm
is just

‖g‖L2(R) =

(∫ ∞

−∞

|g|2
)1/2

.

We write
H (E) = PWσ

if the two spaces are equal as sets, and have equivalent norms (we do not
imply isometric isomorphism). Recall that having equivalent norms means
that for some C > 1 independent of g ∈ PWσ,

C−1 ‖g‖L2(R) ≤ ‖g‖E ≤ C ‖g‖L2(R) . (1.13)

The closed graph theorem can be used to show that this norm equivalence
follows from mere equality as sets.

Our main conclusion is that, under mild conditions,
Universality limits in the bulk are reproducing kernels of de Branges spaces
that equal classical Paley-Wiener spaces.

More precisely:

Theorem 1.3 Let µ be a measure with compact support. Let Jbe a compact
set such that µ is absolutely continuous in an open set O containing J , and
for some C > 1,

C−1 ≤ µ′ ≤ C in O.
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Choose {ξn} ⊂ J and define {fn} by (1.7).

(a) {fn (·, ·)} is a normal family in compact subsets of C2.

(b) Let f (·, ·) be the limit of some subsequence {fn (·, ·)}n∈S . Then f is
an entire function of two variables, that is real valued in R2 and has
f (0, 0) = 1. Moreover, for some σ > 0, f (·, ·) is entire of exponential
type σ in each variable.

(c) Define
L (u, v) = (u − v) f (u, v) , u, v ∈ C. (1.14)

Let a ∈ C have Im a > 0 and let

Ea (z) =
√

2π
L (ā, z)

|L (a, ā)|1/2
. (1.15)

Then f is a reproducing kernel for H (Ea). In particular, for all z, ζ,

f
(
z, ζ̄
)

=
i

2π

Ea (z) Ea (ζ) − E∗
a (z) E∗

a (ζ)

z − ζ̄
. (1.16)

(d) Moreover,
H (Ea) = PWσ (1.17)

and the norms ‖·‖Ea
of H (Ea) and ‖·‖L2(R) of PWσ are equivalent.

We emphasize that there are many de Branges spaces that equal PWσ,
but their reproducing kernel is not the sinc kernel sinπt

πt
. We shall present

some examples after Theorem 1.7. A complete description of such spaces is
given in [25].

In the case where there is a little smoothness of w at ξ such as continuity,
or a Lebesgue point type condition, and the measure is regular in the sense
of Stahl and Totik, indeed f above equals the sinc kernel, as shown in [6],
[21], [22], [34], [38]. Nor does the above theorem exclude the possibility that
f above is always a sinc kernel. We shall show below, however, that for
sequences of measures, universality limits can definitely be the reproducing
kernel of any de Branges space that equals a classical Paley-Wiener space.

More information about f and L are given in the following result:

Theorem 1.4 Assume the hypotheses of Theorem 1.3.
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(a) The function L satisfies the functional equation

L (u, v)L (a, b) = L (a, u)L (b, v) − L (b, u)L (a, v) (1.18)

for all complex a, b, u, v. Moreover, the functions L (·, ·) and f (·, ·)are
uniquely determined by the functional equation (1.18), and the values
of the function f (a, ·) for one non-real a.

(b)
F (z) = zf (0, z) (1.19)

has countably many real simple zeros {ρj}, and no other zeros.

(c) Each g ∈ PWσ admits the expansion

g (z) =

∞∑

j=−∞

g (ρj)
f (ρj , z)

f (ρj , ρj)
, (1.20)

which is an orthonormal expansion in H (Ea), and moreover,

∫ ∞

−∞

∣∣∣∣
g

Ea

∣∣∣∣
2

=

∞∑

j=−∞

|g (ρj)|2
f (ρj , ρj)

. (1.21)

Remarks (a) Note that the right-hand side of (1.21) is independent of a,
which is surprising as Ea appears in the left-hand side. This phenomenon is
well understood. Indeed, for a non-negative measure ω, we have [30, p. 794]

∫ ∞

−∞

∣∣∣ g
E

∣∣∣
2

=

∫ ∞

−∞

∣∣∣ g
E

∣∣∣
2

dω

for all g ∈ H (E) iff there is a function A analytic in the interior of C
+, with

|A| ≤ 1 there, and

Im z

π

∫ ∞

−∞

dω (t)

|t − z|2
= Re

E + E∗A

E − E∗A
(z) , Im z > 0.

(b) When ξn = ξ, n ≥ 1, and ξ is a Lebesgue point of w, then the exponential
type of f in each variable is

σ = π sup
x∈R

f (x, x) .
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The proof of this given in [22, Lemma 6.4] goes through without change
under the above hypotheses.
(c) As a consequence of (1.20), we can say a lot about the distribution of the
{ρj}, which in the special case of the sinc kernel are just the integers. Define
the counting function of {ρj},

ν [a, b] = # {j : ρj ∈ [a, b]} (1.22)

and

ν (t) =

{
ν ([0, t]) , t ≥ 0
ν ([t, 0]) , t ≤ 0

. (1.23)

Classical complex analysis [13, p. 126 ff.] shows that

lim
|t|→∞

ν (t)

|t| =
σ

π
.

Much more is true - roughly speaking, for each ε > 0,

ν (t) − σ

π
t = O(log |t|)1+ε :

Theorem 1.5 Let p > 0 and τ > 1. Then
∫ ∞

−∞

∣∣ν (t) − σ
π
t
∣∣p

(1 + |t|) (log (2 + |t|))p+τ dt < ∞. (1.24)

All of the above results can be proven for a sequence of measures {µn},
rather than a fixed measure µ. The hypotheses (1.26) to (1.28) below in
a sense generalize the notion of the bulk of the support to sequences of
measures.

Theorem 1.6 For n ≥ 1, let µn be a measure with support on the real line,
for which the power moments

∫
xjdµn (x), 0 ≤ j ≤ 2n−2, are finite. Let Kn

denote the nth reproducing kernel for the measure µn, and K̃n its normalized
cousin. Let {ξn} be a sequence of real numbers, and let

fn (a, b) =
Kn

(
ξn + a

eKn(ξn,ξn)
, ξn + b

eKn(ξn,ξn)

)

Kn (ξn, ξn)
. (1.25)

Assume that there exists a ∈ C\R, and C1, C2, C3 > 0 with the following
property: given A > 0, there exists n0 such that for n ≥ n0 and |z| ≤ A,

|fn (a, z)| ≤ C1e
C2|Im z|, (1.26)
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and for x ∈ [−A, A],
fn (x, x) ≥ C3. (1.27)

Assume moreover, that for some C0 > 0 and a.e. real t,

lim inf
n→∞

µ′
n

(
ξn + t

eKn(ξn,ξn)

)

µ′
n (ξn)

≥ C0. (1.28)

Then the conclusions of Theorems 1.3, 1.4 and 1.5 hold true for {fn}.
Barry Simon has shown [35] that one can weaken the growth assumption

(1.26) in a number of ways. We shall also prove a partial converse, showing
that any reproducing kernel for a de Branges space that equals a classical
Paley-Wiener one, can arise as a multiple of a universality limit:

Theorem 1.7 Let H (E) be a de Branges space that equals PWσ for some
σ > 0. Let f

(
ζ̄ , z
)

be the reproducing kernel for H (E) normalized so that
f (0, 0) = 1. Assume also that |E (0)| = 1. Then there exists for n ≥ 1,
an absolutely continuous measure µn, with support [−1, 1], with µ′

n infinitely
differentiable in (−1, 1), with µ′

n (0) = 1, and for which

fn (a, b) =
Kn

(
0 + a

eKn(0,0)
, 0 + b

eKn(0,0)

)

Kn (0, 0)

satisfies (1.26) and (1.27), while

lim
n→∞

fn (a, b) = f (a, b) , (1.29)

uniformly for a, b in compact subsets of C.Moreover, given R > 0, (1.28)
holds for t ∈ [−R, R]. If in addition, there exists C1 > 1 such that

C−1
1 ≤ |E (x)| ≤ C1, x ∈ R, (1.30)

then (1.28) holds for all t ∈ R.

Remarks (a) The hypothesis f (0, 0) = 1 matches the conclusion in Theo-
rem 1.3(b). It can always be achieved by multiplying E by a suitable con-
stant. However, the hypothesis |E (0)| = 1 is more problematic. Without it,
we have to replace (1.29) by

lim
n→∞

fn (a, b) = f
(
|E (0)|2 a, |E (0)|2 b

)
.
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By a dilation of the variable, we can ensure |E (0)| = 1. More precisely, make
the substitution t = s |E (0)|2 in the reproducing kernel relation (1.12), and
let

E1 (z) =
E
(
|E (0)|2 z

)

|E (0)| .

One can check that the reproducing kernel for H (E1) is f1 (·, ·) = f(|E (0) |2·,
|E (0) |2·). Then E1 (0) = 1 and f1 (0, 0) = 1, and the above result may be
applied to H (E1).
(b) Lyubarskii and Seip [25, p. 1005] presented a range of examples of E (z)
other than e−iπz for which H (E) = PWπ. For 0 ≤ δ < 1

4
, let

Eδ (z) = (z + i)
∞∏

k=1

((
1 − z

k − δ − ik−4δ

)(
1 +

z

k − δ + ik−4δ

))
.

This is an entire function of exponential type π with H (E) = PWπ that
satisfies (1.30) only if δ = 0. In fact, if Λδ denotes the zero set of Eδ, then
uniformly for all real x, and for some C1 > 1,

C−1
1 ≤ |Eδ (x)| /

[
(1 + |x|)2δ dist (x, Λδ)

]
≤ C1.

Here dist (x, Λδ) denotes the distance from x to Λδ. For δ > 0, the reproduc-
ing kernel fδ of H (Eδ) is not the sinc kernel. Indeed, using (1.16) for fδ, we
see that

f (z,−i) =
i

2π

Eδ (z) Eδ (i)

z + i

and this has a very different zero set, with respect to z, from sinπ(z+i)
π(z+i)

.

(c) If we let
E0 (z) = c sin π (z + i) ,

for some normalizing constant c, a straightforward calculation shows that the
reproducing kernel f0 for H (E0), given by (1.16), is

f (z, ζ) = c
sinh (2π)

2

sinh π (z − ζ)

π (z − ζ)
.

If we let

E1 (z) =
z + 2i

z + i
E0 (z) ,
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then on the real line,
C1 ≤ |E1| ≤ C2

so (1.30) is satisfied. Moreover, it is easily seen that H (E1) = H (E0) =
PWπ. However, the reproducing kernel f1 for H (E1) is not the sinc kernel.
Indeed, (1.16) shows that for some constant C,

f1 (z,−2i) = C
sin π (z + i)

π (z + i)
,

and this is not a constant multiple of sinπ(z+2i)
π(z+2i)

.

This paper is organized as follows. In Section 2, we present notation and
general background, such as on orthogonal polynomials. In Section 3, we
present background on entire functions and de Branges spaces. In Section 4,
we discuss some polynomial de Branges spaces. In Section 5, we use these
to examine de Branges spaces of entire functions associated with general
measures µ. In Section 6, we prove Theorems 1.3, 1.4, and 1.5. In Section 7,
we prove Theorems 1.6 and 1.7.

2. Notation and Background

In this section, we record our notation, though some of it has already
been introduced earlier. In the sequel C, C1, C2, . . . denote constants inde-
pendent of n, x, y, s, t. The same symbol does not necessarily denote the same
constant in different occurences. We shall write C = C (α) or C 6= C (α)
to respectively denote dependence on, or independence of, the parameter α.
We use ∼ in the following sense: given real sequences {cn}, {dn}, we write

cn ∼ dn

if there exist positive constants C1, C2 with

C1 ≤ cn/dn ≤ C2.

Similar notation is used for functions and sequences of functions.
Throughout, µ denotes a finite positive Borel measure with not necessarily

compact support on the real line. Its Radon-Nikodym derivative, which
exists a.e., is µ′. The corresponding orthonormal polynomials are denoted
by {pn}∞n=0, so that ∫

pnpmdµ = δmn.
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We denote the zeros of pn by

xnn < xn−1,n < · · · < x2n < x1n. (2.1)

The reproducing kernel Kn (x, t) is defined by (1.1), while the normalized
reproducing kernel is defined by (1.3). We let

Ln (x, t) = (x − t) Kn (x, t)

=
γn−1

γn
(pn (x) pn−1 (t) − pn−1 (x) pn (t)) . (2.2)

The nth Christoffel function is [8, p. 25], [29],

λn (x) = 1/Kn (x, x) = inf
deg(P )≤n−1

∫
P 2dµ

P 2 (x)
. (2.3)

When we need to display dependence of pn, Kn or λn on µ (or some other
measure), we use pn (µ, ·), Kn (µ, ·, ·), λn (µ, ·), and so on. The Gauss quadra-
ture formula asserts that whenever P is a polynomial of degree ≤ 2n − 1,

n∑

j=1

λn (xjn) P (xjn) =

∫
P dµ. (2.4)

In addition to this, we shall need another Gauss type of quadrature formula
[8, p. 19 ff.]. Given a real number ξ, there are n or n− 1 points tjn = tjn (ξ),
one of which is ξ, such that

∑

j

λn (tjn) P (tjn) =

∫
P dµ, (2.5)

whenever P is a polynomial of degree ≤ 2n − 2. The {tjn} are zeros of

Ln (ξ, t) =
γn−1

γn

(pn (ξ) pn−1 (t) − pn−1 (ξ) pn (t)) ,

regarded as a function of t.
Because we consider a sequence {ξn} of points in J , rather than a fixed

ξ, we use the quadrature rule that includes ξn, so that

tjn = tjn (ξn) for all j.
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Moreover, because we wish to focus on ξn, we shall set t0n = ξn, and order
the {tjn} around ξn, treated as the origin:

· · · < t−2,n < t−1,n < t0n = ξn < t1n < · · · . (2.6)

Of course the sequence {tjn} consists of either n−1 or n points, so terminates,
and it is possible that all tjn lie to the left or right of ξn. It is known [8, p. 19]
that when (pnpn−1) (ξn) 6= 0, then one zero of Ln (ξn, t) lies in (xjn, xj−1,n)
for each j, and the remaining zero lies outside (xnn, x1n).

For the given sequence {ξn} in J , we shall define for n ≥ 1,

fn (a, b) =
Kn

(
ξn + a

K̃n(ξn,ξn)
, ξn + b

K̃n(ξn,ξn)

)

Kn (ξn, ξn)
(2.7)

and
L̃n (a, b) = (a − b) fn (a, b) . (2.8)

The zeros of

fn (0, t) =
Kn

(
ξn, ξn + t

K̃n(ξn,ξn)

)

Kn (ξn, ξn)

will be denote by {ρjn}j 6=0. Since {tjn} = {tjn (ξn)} are the zeros of Ln (ξn, t),
we have

ρjn = K̃n (ξn, ξn) (tjn − ξn) . (2.9)

We also set
ρ0n = 0,

corresponding to t0n = ξn.
For an appropriate subsequence S of integers, we shall let

f (a, b) = lim
n→∞,n∈S

fn (a, b) . (2.10)

The zeros of f (0, ·) will be denoted by {ρj}j 6=0, and we set ρ0 = 0. Our
ordering of zeros is

· · · ≤ ρ−2 ≤ ρ−1 < ρ0 = 0 < ρ1 ≤ ρ2 ≤ · · · . (2.11)

In Theorem 5.3, and only in that Theorem, we shall further restrict the {ρj}
to exclude those zeros ρ for which f (ρ, ρ) = 0. This eventuality can not
happen under the hypotheses of Theorems 1.3, 1.6 or 5.4. We shall denote
the (exponential) type of f (a, ·) by σ. (We shall show it is independent of
a.) We let

L (a, b) = (a − b) f (a, b) . (2.12)
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3. Background on Entire functions

We first review some theory that we shall use about entire functions of
exponential type. Most of this can be found in the elegant series of lectures
of B. Ja. Levin [13]. Recall that if g is entire of order 1, then its exponential
type σ is

σ = lim sup
r→∞

max|z|=r log |g (z)|
r

. (3.1)

We say that an entire function g belongs to the Cartwright class and write
g ∈ C if it is of exponential type and

∫ ∞

−∞

log+ |g (t)|
1 + t2

dt < ∞. (3.2)

Here log+ s = max {0, log s}.
We let n (g, r) denote the number of zeros of g in the ball center 0, radius

r, counting multiplicity. An important result is that for g ∈ C, that is real
valued on the real axis,

lim
r→∞

n (g, r)

2r
=

σ

π
. (3.3)

For this, see [13, Theorem 1, p. 127] or [11, p. 66].
When g is entire of exponential type σ and bounded along the real axis,

we have [13, p. 38, Theorem 3]

|g (z)| ≤ eσ|Im z| ‖g‖L∞(R) , z ∈ C. (3.4)

When g is entire of exponential type ≤ σ and g ∈ L2 (R), we write g ∈ PWσ.
(In [13], the notation is g ∈ L2

σ). Here, we have instead of the last inequality,
[13, p. 149]

|g (z)| ≤
(

2

π

)1/2

eσ(|Im z|+1) ‖g‖L2(R) , z ∈ C. (3.5)

Another useful result is that if g ∈ C, has exponential type σ, and has all
real zeros, then [13, p. 126, p. 118]

lim
r→∞

log
∣∣g
(
reiθ
)∣∣

r
= σ |sin θ| , 0 < |θ| < π. (3.6)
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If we do not know that all zeros are real, it is known that [13, p. 118, p. 55,
no. 3]

lim sup
r→∞

log
∣∣g
(
reiθ
)∣∣

r
≤ σ |sin θ| , 0 < |θ| < π. (3.7)

The Hermite-Biehler class HB was defined in Section 1, as was the de
Branges space H (E), for a given entire function E ∈ HB. It is possible to
give an abstract definition of a de Branges space [4, pp. 56–57]. de Branges’
original definition involved the notions of mean type and bounded type. One
useful alternative involves the reproducing kernel K (ζ, z), defined in terms
of E by (1.11). Then [4, p. 53] H (E) is the set of all entire functions g with

‖g‖E =

(∫ ∞

−∞

∣∣∣ g
E

∣∣∣
2
)1/2

< ∞ (3.8)

and
|g (z)| ≤ K (z, z)1/2 ‖g‖E for all z ∈ C. (3.9)

We emphasize that later on, we shall identify K (ζ, z) with f
(
ζ̄ , z
)
.

For real x, and E as above, we define a phase function ϕ by

E (x) = |E (x)| e−iϕ(x). (3.10)

Here ϕ is an increasing continuous function. We have [4, p. 54], [25, p. 984]
if E (x) 6= 0,

ϕ′ (x) =
πK (x, x)

|E (x)|2
. (3.11)

There is a sampling series determined by ϕ and a given real number α [4,
p. 55], [30, p. 794]. Let {sk} denote the increasing sequence such that

ϕ (sk) = α + kπ, k = 0,±1,±2, . . . . (3.12)

Assume
eiαE − e−iαE∗ /∈ H (E) . (3.13)

Then {
K (sk, z)√
K (sk, sk)

}

k

(3.14)
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is an orthonormal sequence in H (E), and for all g ∈ H (E) ,
∫ ∞

−∞

∣∣∣ g
E

∣∣∣
2

=
∑

k

π |g (sk)|2

ϕ′ (sk) |E (sk)|2
=
∑

k

|g (sk)|2
K (sk, sk)

, (3.15)

while for all z,

g (z) =
∑

k

g (sk)
K (sk, z)√
K (sk, sk)

. (3.16)

Moreover, there is at most one real α ∈ [0, π) for which (3.13) fails.
We shall later show that {ρj} of Theorem 1.4 is a complete interpolating

sequence for PWσ. That is, given any sequence {cj} with
∑

j

|cj |2 < ∞,

there exists a unique g ∈ PWσ such that

g (ρj) = cj for all j.

Such sequences have been characterized in [10], [24] using the distribution
of {ρj}. In particular, if ν is the counting function defined at (1.22)–(1.23),
then

h (t) = ν (t) − σ

π
t

lies in the class BMO of the real line. That is,

sup
I

1

|I|

∫

I

|h − hI | < ∞,

where for any interval I, with length |I|, we let

hI =
1

|I|

∫

I

h.

It is known that then [9, p. 233, Corollary 2.3], for each p > 0,

sup
I

1

|I|

∫

I

|h − hI |p < ∞. (3.17)

(Garnett considers only p ≥ 1, but the case p < 1 follows from Hölder’s
inequality.)

de Branges spaces that equal Paley-Wiener (and more general) spaces
have been characterized in [25]. In particular, they showed [25, Theorem 4(ii),
p. 982] that if H (E) = PWσ, then uniformly for all real x,

ϕ′ (x) |E (x)|2 = πK (x, x) ∼ 1. (3.18)
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4. de Branges Spaces of Polynomials

In this section, n ≥ 1 is fixed, and µ is a measure on the real line with∫
xjdµ (x) finite, for 0 ≤ j ≤ 2n. We assume the notation of section 2; in

particular,

Ln (u, v) = (u − v)Kn (u, v)

=
γn−1

γn

(pn (u) pn−1 (v) − pn−1 (u) pn (v)) . (4.1)

In [23], we used ideas inspired by de Branges spaces to generate formulae
for orthogonal polynomials with a weight that is a reciprocal of a positive
polynomial. Here, we begin with some simple identities. The first is inspired
by the more general theory of de Branges spaces, and the second is well
known [28]:

Lemma 4.1 (a) For all complex α, β, z, v,

Ln (z, v) Ln (α, β) = Ln (α, z) Ln (β, v) − Ln (β, z)Ln (α, v) . (4.2)

(b)

Ln (z, v) =
γn−1

γn
pn (z) pn (v) [Gn (v) − Gn (z)] , (4.3)

where

Gn (z) =
pn−1 (z)

pn (z)
=

γn−1

γn

n∑

j=1

λn (xjn) p2
n−1 (xjn)

z − xjn
. (4.4)

Proof. (a) Just substitute (4.1) into the right-hand side of (4.2), then
multiply out, cancel common factors, and refactorize. (A slightly sim-
pler manipulation is to substitute the formula (4.3) into the right-hand
side of (4.1)).

(b) Let Gn (z) = pn−1(z)
pn(z)

. Then (4.3) follows from (4.1). We really only

need to prove the second identity in (4.4). We apply the formula for
Lagrange interpolation at the zeros of pn to pn−1. This gives

pn−1 (z) =

n∑

j=1

pn−1 (xjn) pn (z)

p′n (xjn) (z − xjn)
. (4.5)
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We now use the confluent form of the Christoffel-Darboux formula,

λ−1
n (x) = Kn (x, x) =

γn−1

γn

(
p′n (x) pn−1 (x) − pn (x) p′n−1 (x)

)
.

Setting x = xjn gives

λ−1
n (xjn) =

γn−1

γn

p′n (xjn) pn−1 (xjn) .

Substituting this into (4.5) gives the second identity in (4.4). �

Lemma 4.2 (a) If Kn (z, w) = 0, then Im zand Im w have the same sign.
In particular, Im z > 0 ⇒ Im w > 0.

(b) Let Im a > 0. Then for Im z ≥ 0,

|Kn (ā, z)| ≥ |Kn (a, z)| ; (4.6)

|Ln (ā, z)| ≥ |Ln (a, z)| . (4.7)

In particular, Ln (ā, ·) ∈ HB.

Proof. (a) If z is real, then it is known [8, p. 19], that all zeros of Kn (z, ·)
are real. Thus in this case Im z = Im w = 0. Now suppose Im z > 0.
From (4.3), and the fact that all zeros of pnpn−1 are real, we deduce
that

Gn (z) = Gn (w) .

Taking imaginary parts in (4.4), we deduce that

(Im z)

n∑

j=1

λn (xjn) p2
n−1 (xjn)

|z − xjn|2
= (Im w)

n∑

j=1

λn (xjn) p2
n−1 (xjn)

|w − xjn|2
.

Since both sums are positive, the result follows.

(b) The rational function

h (z) := Kn (a, z) /Kn (ā, z)

is analytic for z in the closed upper-half plane {z : Im z ≥ 0}, and for
real x,

|h (x)| = 1.
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Moreover, as a polynomial in z, the coefficients of the Taylor expansion
about 0 of Kn (ā, z) are the conjugates of those of Kn (a, z). Then, as
z → ∞, |h (z)| → 1. The maximum-modulus principle now shows that

|h (z)| ≤ 1 for Im z ≥ 0.

Since for Im z ≥ 0, also |ā − z| ≥ |a − z|, we obtain (4.7) as well. �

From the above, we obtain some de Branges spaces that consist of poly-
nomials. Recall that Kn is the orthogonal polynomial reproducing kernel
arising from the measure µ, while K denotes the reproducing kernel for a de
Branges space. Recall too, the * notation introduced at (1.9).

Theorem 4.3 Fix a with Im a > 0, and let

En,a (z) =
√

2π
Ln (ā, z)

|Ln (a, ā)|1/2
. (4.8)

(a) Then

Kn

(
z, ζ̄
)

=
i

2π

En,a (z) En,a (ζ) − E∗
n,a (z) E∗

n,a (ζ)

z − ζ̄
. (4.9)

(b) The de Branges space H (En,a) corresponding to En,a is the space of
polynomials of degree ≤ n − 1.

(c) For all polynomials P of degree ≤ n − 1, and all z ∈ C, we have

P (z) =

∫ ∞

−∞

P (t)
Kn (t, z)

|En,a (t)|2
dt. (4.10)

(d) For all polynomials R of degree ≤ 2n − 2,
∫ ∞

−∞

R

|En,a|2
=

∫
R dµ. (4.11)

Proof. (a) The identity (4.2), with α = a; β = ā; v = ζ̄ gives

Ln

(
z, ζ̄
)
Ln (a, ā) = Ln (a, z) Ln

(
ā, ζ̄
)
− Ln (ā, z) Ln

(
a, ζ̄
)
. (4.12)

Since
Ln (a, ā) = 2i Im aKn (a, ā) = i |Ln (a, ā)| ,
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we obtain

Kn

(
z, ζ̄
)

=
i

|Ln (a, ā)|
Ln (ā, z) Ln

(
a, ζ̄
)
− Ln (a, z) Ln

(
ā, ζ̄
)

z − ζ̄
,

and (4.9) follows on taking account of (4.8).

(b) Note first that En,a ∈ HB by Lemma 4.2(b), so that H (En,a) is well
defined. By definition, it consists of all entire functions g for which
both g/En,a and g∗/En,a lie in the Hardy class of the upper-half plane,
and the norm ‖g‖En,a

is finite. The reproducing kernel K for this space

is given by (1.11), with E = En,a:

K (ζ, z) =
i

2π

En,a (z) En,a (ζ) − E∗
n,a (z) E∗

n,a (ζ)

z − ζ̄
. (4.13)

For g ∈ H (En,a), the reproducing kernel relation (1.12) and Cauchy-
Schwarz give, as at (3.9),

|g (z)| ≤ K (z, z̄)1/2 ‖g‖En,a
, z ∈ C.

Inasmuch as En,a is a polynomial of degree ≤ n − 1, we see that as
|z| → ∞,

K (z, z) = O
(
|z|2n−1) .

Indeed, if we write

En,a (t) =
n−1∑

j=0

cjt
j ,

a calculation shows that

K (ζ, z) =
i

2π

∑

0≤j<k≤n

(cjck − cjck)
zj ζ̄k − zk ζ̄j

z − ζ̄

and then the estimate above follows. Consequently, for g ∈ H (En,a),
as |z| → ∞,

|g (z)| = O
(
|z|n−1/2

)
,

so g is a polynomial of degree ≤ n− 1. Conversely, if g is a polynomial
of degree ≤ n − 1, then g (z) /En,a (z) = O

(
|z|−1) as |z| → ∞, and it

follows easily that g/En,a, g
∗/En,a ∈ H2 (C+), so g ∈ H (En,a).
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(c) From (4.9) and (4.13), we see that

K (ζ, z) = Kn

(
z, ζ̄
)
.

The reproducing kernel relation (1.12) gives, for polynomials P of de-
gree ≤ n − 1,

P (ζ) =

∫ ∞

−∞

P (t)K (ζ, t)

|En,a (t)|2
dt

=

∫ ∞

−∞

P (t) Kn

(
t, ζ̄
)

|En,a (t)|2
dt

=

∫ ∞

−∞

P (t) Kn (t, ζ)

|En,a (t)|2
dt.

(d) We can write R = PS where both P and S are polynomials of degree
≤ n − 1. We multiply the identity in (c) by S and then integrate with
respect to µ. We obtain

∫
R dµ =

∫
(PS) (z) dµ (z)

=

∫
S (z)

[∫ ∞

−∞

P (t)
Kn (t, z)

|En,a (t)|2
dt

]
dµ (z)

=

∫ ∞

−∞

P (t)
1

|En,a (t)|2
[∫

S (z) Kn (t, z) dµ (z)

]
dt

=

∫ ∞

−∞

P (t)
1

|En,a (t)|2
S (t) dt

=

∫ ∞

−∞

R

|En,a|2
.

Here, we have used the reproducing kernel formula for the measure µ.
Moreover, the interchange of integrals is justified by absolute conver-
gence of all integrals involved. �

Remark The identity in (d) is a real line analogue of a unit circle formula
much used in Szegő theory [8, p. 198, Theorem 2.2], but I am not sure it
is new. It seems similar to identities in the theory of orthogonal rational
functions [3, p. 145], and seems in spirit similar to identities used by Simon
[33, p. 456, Theorem 2.1].
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5. de Branges Spaces of Entire Functions

Recall the notation

fn (a, b) =
Kn

(
ξn + a

K̃n(ξn,ξn)
, ξn + b

K̃n(ξn,ξn)

)

Kn (ξn, ξn)
.

We shall prove four general theorems in this section, and we begin by stat-
ing them. Throughout this section, we do not assume the hypotheses of
Theorem 1.3.

Theorem 5.1 Let µ be a measure with support on the real line, with all
power moments

∫
xjdµ (x), j ≥ 0 finite, and with infinitely many points in

its support. Let {ξn} be a sequence of real numbers. Assume that there is a
non-real complex number a, and an infinite sequence of integers S, for which
there exists

f (a, z) = lim
n→∞,n∈S

fn (a, z) , (5.1)

uniformly in compact subsets of C, and that

f (a, ā) 6= 0. (5.2)

Then

(a) There exists, for all z, v ∈ C,

f (z, v) = lim
n→∞,n∈S

fn (z, v) ,

and the limit is uniform for z, v in compact subsets of C.

(b) Let
L (z, v) = (z − v) f (z, v) . (5.3)

For all complex α, β, z, v,

L (z, v)L (α, β) = L (α, z) L (β, v) − L (β, z)L (α, v) . (5.4)

(c) Let Im a > 0. Then for Im z > 0,

|f (ā, z)| ≥ |f (a, z)| ; (5.5)

|L (ā, z)| > |L (a, z)| . (5.6)

In particular, for Im z > 0,

|L (z, z̄)| > 0 and f (z, z̄) > 0. (5.7)
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(d) If f (z, v) = 0, then Im z and Im v have the same sign. In particular,
Im z > 0 ⇒ Im v > 0. Consequently, for Im a > 0, L (ā, ·) ∈ HB.

The assumption (5.2) is satisfied if a = iy, some y 6= 0. Indeed, as pn has
all real zeros,

Kn

(
ξn +

iy

K̃n (ξn, ξn)
, ξn − iy

K̃n (ξn, ξn)

)

=
n−1∑

k=0

∣∣∣∣pk

(
ξn +

iy

K̃n (ξn, ξn)

)∣∣∣∣
2

≥
n−1∑

k=0

|pk (ξn)|2 = Kn (ξn, ξn) ,

so
fn (iy,−iy) ≥ 1,

and also, for all real y,
f (iy,−iy) ≥ 1. (5.8)

Of course, it then follows from (5.7) that f (z, z̄) > 0 for all non-real z.

Theorem 5.2 Assume the hypotheses of Theorem 5.1. Fix a with Im a > 0,
and let

Ea (z) =
√

2π
L (ā, z)

|L (a, ā)|1/2
. (5.9)

(a) Then all zeros of Ea lie in the lower half plane, and Ea ∈ HB. More-
over,

f
(
z, ζ̄
)

=
i

2π

Ea (z) Ea (ζ) − E∗
a (z) E∗

a (ζ)

z − ζ̄
. (5.10)

(b) For all g ∈ H (Ea), and all z ∈ C, we have

g (z) =

∫ ∞

−∞

g (t)
f (z, t)

|Ea (t)|2
dt. (5.11)

Moreover, f (z, ·) ∈ H (Ea) for all z ∈ C.

(c) For any a, b, with Im a > 0, Imb > 0, H (Ea) = H (Eb) and the norms
‖·‖Ea

and ‖·‖Eb
are equivalent.
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Theorem 5.3 Assume the hypotheses of Theorem 5.1. Fix a with Im a > 0.

(a) Let
F (z) = L (z, 0) = zf (0, z) , (5.12)

and let {ρj} be the zeros ρ of F for which f (ρ, ρ) 6= 0. These are all
real and simple.

(b) The set

{
f(ρj ,·)√
f(ρj ,ρj)

}

j

is an orthonormal sequence in H (Ea) and for all

g ∈ H (Ea),
∑

j

|g (ρj)|2
f (ρj , ρj)

≤
∫ ∣∣∣∣

g

Ea

∣∣∣∣
2

, (5.13)

while

G [g] =
∑

j

g (ρj)
f (ρj , z)

f (ρj , ρj)
∈ H (Ea) . (5.14)

(c) Assume that F /∈ H (Ea). Then for all g, h ∈ H (Ea), we have

∫ ∞

−∞

gh̄

|Ea|2
=
∑

j

(
gh̄
)
(ρj)

f (ρj , ρj)
, (5.15)

and
G [g] = g. (5.16)

Remarks (a) Note that if ρ is a zero of F , then ρ is necessarily real, but
we have not excluded the possibility that f (ρ, ρ) = 0. If this is the
case, then g (ρ) = 0 for all g ∈ H (Ea). This follows easily from the
reproducing kernel relation (5.11) and Cauchy-Schwarz.

(b) The possibility that f (ρ, ρ) = 0 occurs only in the above theorem.
It cannot happen under the hypotheses of Theorems 1.3, 1.6, and 5.4
below.

Theorem 5.4 Assume, in addition to the hypothesis of Theorem 5.1, that
f (a, ·) is an entire function of exponential type σ and

f (t, t) ∼ 1 for t ∈ R. (5.17)
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(a) Then for all complex b, f (b, ·) is an entire function of exponential type
σ.

(b) For all g ∈ PWσ,
g = G [g] ∈ H (Ea) . (5.18)

In particular,
PWσ ⊂ H (Ea) .

(c) Assume that there exists C0 > 0 such that for a.e. t ∈ R,

lim inf
n→∞

µ′
(
ξn + t

K̃n(ξn,ξn)

)

µ′ (ξn)
≥ C0, (5.19)

or, assume that for each r > 0,

lim
n→∞

∫ r

−r

∣∣∣∣∣∣

µ′
(
ξn + t

K̃n(ξn,ξn)

)

µ′ (ξn)
− 1

∣∣∣∣∣∣
dt = 0. (5.20)

Then
PWσ = H (Ea) .

We note that we do not assume that µn is absolutely continuous in the
above result. Recall from (2.2) and (2.8) our notations

Ln (u, v) = (u − v)Kn (u, v)

and

L̃n (a, b) = (a − b) fn (a, b)

= µ′
n (ξn) Ln

(
ξn +

a

K̃n (ξn, ξn)
, ξn +

b

K̃n (ξn, ξn)

)
. (5.21)

Lemma 5.5 For all complex α, β, z, v,

L̃n (z, v) L̃n (α, β) = L̃n (α, z) L̃n (β, v) − L̃n (β, z) L̃n (α, v) . (5.22)

Proof. This is immediate from (5.21) and (4.2). �
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Proof of Theorem 5.1. (a) From Lemma 5.5, we have

L̃n (z, v) L̃n (a, ā) = L̃n (a, z) L̃n (ā, v) − L̃n (ā, z) L̃n (a, v) . (5.23)

Our hypothesis (5.1), the conjugate relation fn (ā, z) = fn (a, z̄) and the
symmetry fn (a, b) = fn (b, a) give, uniformly for z in compact subsets
of C,

lim
n→∞,n∈S

L̃n (a, z) = (a − z) f (a, z) = L (a, z) ;

lim
n→∞,n∈S

L̃n (ā, z) = (ā − z) f (ā, z) = L (ā, z) ;

lim
n→∞,n∈S

L̃n (a, ā) = L (a, ā) .

By our hypothesis (5.2), and (5.3),

L (a, ā) = 2i (Im a) f (a, ā) 6= 0,

so (5.23) gives, uniformly for z, v in compact subsets of C,

lim
n→∞,n∈S

L̃n (z, v) =
1

L (a, ā)
[L (a, z) L (ā, v) − L (ā, z) L (a, v)] .

That is, there exists,

f (z, v) = lim
n→∞,n∈S

fn (z, v) =
L (a, z) L (ā, v) − L (ā, z) L (a, v)

L (a, ā) (z − v)
,

(5.24)
and the limit is uniform for z, v in compact sets with z 6= v. For the
case z = v, we can use convergence continuation theorems and the
maximum-modulus principle.

(b) This follows directly from (5.22), by taking limits.

(c), (d) Taking limits in Lemma 4.2(b) gives for Im z ≥ 0,

|f (ā, z)| ≥ |f (a, z)| and |L (ā, z)| ≥ |L (a, z)| . (5.25)

We must show strict inequality in the second inequality. We first show
the assertion on the zeros. Suppose Im v > 0 and f (z, v) = 0. Hurwitz’s
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Theorem and Lemma 4.2(a), show that there exist {zn} with fn (zn, v) = 0
and

lim
n→∞,n∈S

zn = z.

By Lemma 4.2(a), Im zn > 0. Then Im z ≥ 0. To prove that it is positive,
we use our functional relation (5.24). Assume Im z = 0. Then the numerator
in (5.24) can be written as

0 = L (a, z) L (ā, v) − L (ā, z) L (a, v)

= L (a, z) L (ā, v) − L (a, z)L (a, v) .

Defining

h (u) =
L (a, u)

L (ā, u)
for Im u ≥ 0,

we have that h is meromorphic in the upper-half plane, satisfying there by
(5.25),

|h (u)| ≤ 1,

except perhaps at isolated poles. But these are removable singularities, be-
cause of the local boundedness, so we obtain that h is analytic in the upper
half-plane. Also, |h (x)| = 1 for real x (again, we can remove isolated singu-
larities), while

|h (v)| =

∣∣∣∣
L (a, v)

L (ā, v)

∣∣∣∣ =

∣∣∣∣∣
L (a, z)

L (a, z)

∣∣∣∣∣ = 1.

Since Im v > 0, the maximum-modulus principle shows that h = c in the
upper-half plane, for some unimodular constant c. Then for all u in the
upper-half plane, (5.24) gives

f (u, v) =
cL (ā, u)L (ā, v) − L (ā, u) cL (ā, v)

L (a, ā) (u − v)
= 0.

Hence f (u, v) = 0 for all complex u, and by conjugate symmetry, f (u, v̄) = 0
for all complex u. It follows that for each u in the upper-half plane, f (u, ·) has
a zero in the upper-half plane. The exact same argument we just used shows
that f (u, z) = 0 for all complex z. Hence, f is identically 0 as a function
of two complex variables, contradicting that f (0, 0) = 1. So Im z > 0, as
desired.
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It remains to prove strict inequality in (5.6). Suppose we have equality
in (5.6) for some z. As above, we form

h (u) =
L (a, u)

L (ā, u)
,

which is analytic for u in the upper-half plane, and has |h| ≤ 1 there. We
are also assuming |h (z)| = 1, so by the maximum-modulus principle, h = c
for some unimodular constant c. As above, we obtain a contradiction. �

Proof of Theorem 5.2(a), (b). (a) First, Theorem 5.1(d) shows that
all zeros of Ea must lie in the open lower half-plane. Moreover, (5.6)
shows that |Ea (z)| > |Ea (z̄)| for Im z > 0. So Ea ∈ HB. Next,

L (a, ā) = 2i (Im a) f (a, ā) = i |L (a, ā)| ,

so the functional equation (5.4) gives

L
(
z, ζ̄
)
i |L (a, ā)| = L (a, z) L

(
ā, ζ̄
)
− L (ā, z) L

(
a, ζ̄
)

⇒
(
z − ζ̄

)
f
(
z, ζ̄
)
|L (a, ā)| = i

(
L (ā, z) L (ā, ζ) − L (ā, z̄)L

(
ā, ζ̄
))

.

Taking account of the definition (5.9) of Ea, and recalling that E∗
a (z) =

E∗
a (z̄), gives (5.10).

(b) By Theorem 5.1, the function Ea ∈ HB, so H (Ea) is well-defined. If K
denotes its reproducing kernel, (1.11) and (5.10) show that f

(
z, ζ̄
)

=
K (ζ, z) and (1.12) gives (5.11). By de Branges’ theory, outlined in
Section 3, also f (z, ·) ∈ H (Ea). �

For the proof of Theorem 5.2(c), we need:

Lemma 5.6 (a) For Im a > 0, Im b > 0, and Im z ≥ 0,

∣∣∣∣∣
L
(
z, b̄
)

L (z, ā)

∣∣∣∣∣ ≤ 2

∣∣L
(
a, b̄
)∣∣

|L (a, ā)| . (5.26)

(b) For all u, v ∈ C,
|f (u, v)|2 ≤ f (u, ū) f (v, v̄) . (5.27)
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(c) For all a, b ∈ R, with L (a, b) 6= 0, and all z ∈ C,

f(z, z̄) ≤
( |b − z|
|Im z|

|L (a, z)|
|L (a, b)|

)2

f (b, b) . (5.28)

Proof. (a) The functional equation (5.4) gives

L
(
z, b̄
)
L (a, ā) = L (a, z) L

(
ā, b̄
)
− L (ā, z) L

(
a, b̄
)
.

If Im z ≥ 0, we obtain from Theorem 5.1(c), that |L (a, z)| ≤ |L (ā, z)|
and

∣∣L
(
ā, b̄
)∣∣ = |L (a, b)| ≤

∣∣L
(
a, b̄
)∣∣. Thus

∣∣L
(
z, b̄
)
L (a, ā)

∣∣ ≤ 2
∣∣L (ā, z) L

(
a, b̄
)∣∣ .

(b) By the Cauchy-Schwarz inequality,

|Kn (z, w)|2 ≤ Kn (z, z̄)Kn (w, w̄) .

After appropriate substitutions in variable, and division by Kn (ξn, ξn),
this leads to

|fn (u, v)|2 ≤ fn (u, ū) fn (v, v̄) .

Now let n → ∞ through S.

(c) Let a, b ∈ R. The functional equation (5.4) gives

L (z, z̄)L (a, b) = L (a, z) L (b, z̄) − L (b, z) L (a, z̄) .

Then

2 |Im z| f(z, z̄) |L (a, b)| ≤ 2 |L (a, z)| |L (b, z)|
≤ 2 |L (a, z)| |b − z| f (b, b)1/2 f (z, z̄)1/2 ,

by (b). Rearranging this gives the result. �

Proof of Theorem 5.2(c). From (a) of the lemma, we see that for all z
in the upper-half plane,

|Eb (z) /Ea (z)| ≤ 2

∣∣L
(
a, b̄
)∣∣

|L (a, ā)|1/2
∣∣L
(
b, b̄
)∣∣1/2

.
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Recall that the denominator is positive, in view of (5.7). To show H (Ea) =
H (Eb), let g ∈ H (Eb). Then g/Eb, g∗/Eb ∈ H2 (C+). The last inequality
shows that also g/Ea, g∗/Ea ∈ H2 (C+). Thus H (Ea) ⊇ H (Eb), and the
converse inclusion is then obvious. Finally it follows that for all g,

‖g‖Eb
≤ 2

∣∣L
(
a, b̄
)∣∣

|L (a, ā)|1/2
∣∣L
(
b, b̄
)∣∣1/2

‖g‖Ea
,

and the inequality is reversible, and thus the two norms are equivalent. �

Proof of Theorem 5.3(a). First note that F cannot have any non-real
zeros, for it is a uniform limit as n → ∞ through S, of zfn (0, z), which has
only real zeros. Define, as at (3.10), the phase function ϕ by

Ea (x) = |Ea (x)| e−iϕ(x).

From (5.10), for real x,

F (x) = xf (x, 0)

=
i

2π

(
Ea (x) Ea (0) − E∗

a (x)E∗
a (0)

)

=
1

π
|Ea (x)| |Ea (0)| sin (ϕ (x) − ϕ (0)) . (5.29)

Also,

F ′ (x) =
1

π

(
d

dx
|Ea (x)|

)
|Ea (0)| sin (ϕ (x) − ϕ (0))

+
1

π
|Ea (x)| |Ea (0)| cos (ϕ (x) − ϕ (0))ϕ′ (x) . (5.30)

It follows from (5.29) and the fact that Ea has non-real zeros, that,

F (x) = 0 ⇐⇒ sin (ϕ (x) − ϕ (0)) = 0.

Let α = ϕ (0) and recall that {sj} were defined at (3.12) by ϕ (sj) = α + jπ,
j = 0,±1,±2, . . . . It follows that after reordering, the {ρj} are just the
{sk}. We next show that these zeros with f (ρj , ρj) 6= 0 are simple. If ρj is
not simple, it follows from (5.29) and (5.30) that both ϕ (ρj) = α + kπ for
some k, and ϕ′ (ρj) = 0. Then (3.11) with K taken as f shows that

f (ρj, ρj) =
1

π
ϕ′ (ρj) |Ea (ρj)|2 = 0,

a contradiction. Thus, all zeros {ρj} of F with f (ρj , ρj) 6= 0 are simple. �
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Proof of Theorem 5.3(b). Recall that α = ϕ (0). The second equation
in (5.29) shows that for some constant C,

eiαEa (z) − e−iαE∗
a (z) = CF (z) . (5.31)

Of course C 6= 0, as Ea and E∗
a have zeros in opposite half-planes. If we

knew that (3.13) holds, then we could simply apply the de Branges theory,
but we do not. So we proceed as follows: we know that f (·, ·) is the locally
uniform limit of fn (·, ·), so the {ρj} are limits of the zeros {ρjn} of fn. Here
if j′ 6= k′,

fn (ρj′n, ρk′n) =
Kn (tj′n, tk′n)

Kn (ξn, ξn)
= 0.

(Recall (2.2) and (2.9)). Taking appropriate limits with appropriate j′ =
j′ (n) , k′ = k′ (n), and using Hurwitz’ Theorem, leads to

f (ρj , ρk) = 0, j 6= k. (5.32)

The reproducing kernel relation (5.11) gives

0 =

∫ ∞

−∞

f (t, ρj) f (t, ρk)

|Ea (t)|2
dt.

It follows then that

{
f(ρk,·)√
f(ρk,ρk)

}

k

is an orthonormal sequence in H (Ea) and

for all g ∈ H (Ea), we have (in view of (5.11)), the orthonormal expansion

G [g] (z) =
∑

j

g (ρj)√
f (ρj , ρj)

f (ρj , z)√
f (ρj , ρj)

.

By Bessel’s inequality,

∑

j

|g (ρj)|2
f (ρj , ρj)

≤ ‖g‖2
Ea

=

∫ ∞

−∞

∣∣∣∣
g

Ea

∣∣∣∣
2

.

Moreover, every partial sum of G [g] ∈ H (Ea), and the convergence of the
series in the last inequality easily yields that G [g] is the limit of these partial
sums in the norm of H (Ea). As the latter space is a Hilbert space, we obtain
(5.14). �
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Proof of Theorem 5.3(c). Since F /∈ H (Ea), then recalling that α =
ϕ (0), (5.31) shows that

eiαEa − e−iαE∗
a /∈ H (Ea) . (5.33)

This allows one to apply the theory in Section 3. We identified the {ρj} with
the {sk}, and can just apply (3.14) to (3.16). �

Proof of Theorem 5.4(a). We are assuming for a given a, with Im a >
0, that f (a, z) is of exponential type σ. Then the same is true of L (a, z) =
(z − a) f (a, z) and L (ā, z). By Lemma 5.6(a), if Im b > 0, Im z ≥ 0,

∣∣L
(
z, b̄
)∣∣ ≤ 2

∣∣L
(
a, b̄
)∣∣

|L (a, ā)| |L (z, ā)| ,

and by Theorem 5.1(c),
∣∣L
(
z̄, b̄
)∣∣ = |L (z, b)| ≤

∣∣L
(
z, b̄
)∣∣ .

It follows easily that the exponential type of L
(
b̄, ·
)

is no greater than that
of L (ā, ·). The same is then true for f

(
b̄, ·
)

and f (ā, ·), and hence also
f (b, ·) and f (a, ·). The reverse assertion follows by symmetry. By conjugate
symmetry, the same is true when Im a < 0 or Im b < 0. Thus when a is
non-real, L (a, ·) and f (a, ·) have exponential type σ.

It remains to show that if a is real, L (a, z) has type σ. From the functional
relation (5.4), if α, β ∈ C with Im α, Im β 6= 0, and L (α, β) 6= 0,

|L (a, z)| = |L (z, a)|

=
1

|L (α, β)| |L (α, z) L (β, a) − L (β, z)L (α, a)| .

As both L (α, z) and L (β, z) are of exponential type σ, it follows that L (a, z)
is of type at most σ. To show that it is of type ≥ σ, we let b be real with
L (a, b) 6= 0, c be non-real, and use Lemma 5.6(b), (c):

|f (c, z)| ≤ f (c, c̄)1/2 f (z, z̄)1/2

≤ f (c, c̄)1/2 |b − z|
|Im z|

|L (a, z)|
|L (a, b)|f (b, b)1/2 .

Thus for |Im z| ≥ 1, |f (c, z)| grows no faster than C |z| |L (a, z)|. Since both
f (c, ·) and L (a, ·) are entire of order ≤ σ, the Phragmen-Lindelöf principle
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allows one to estimate f (c, z) on the strip |Im z| ≤ 1. We deduce that the
exponential type of f (c, ·) is no smaller than that of L (a, ·). Consequently
L (a, ·), and hence f (a, ·) , have exponential type ≥ σ. Thus they have type
σ. �

For the proof of Theorem 5.4(b), we need:

Lemma 5.7 Assume in addition to the hypotheses of Theorem 5.1, that
f (a, ·) is of type σ and (5.17) holds. Then

(a) There exists C > 0 such that the zeros {ρj} of L (z, 0) satisfy for all j,

ρj+1 − ρj ≥ C. (5.34)

(b) There exists C > 0 such that for all g ∈ PWσ,
∑

j

|g (ρj)|2 ≤ C ‖g‖2
L2(R) . (5.35)

(c) For all z ∈ C,
∞∑

j=1

|f (ρj , z)|2
f (ρj , ρj)

≤ f (z, z̄) . (5.36)

Proof. (a) Recall from (5.32) that

f (ρj+1, ρj) = 0.

Next, by hypothesis, f (ρj+1, ·) is entire of exponential type, and bounded
on the real axis. Indeed, our hypothesis (5.17), and (5.27) give

|f (ρj+1, x)| ≤ f (ρj+1, ρj+1)
1/2 f (x, x)1/2 ≤ C1.

Bernstein’s inequality for entire functions of exponential type [13, p. 227]
gives for all real t, ∣∣∣∣

∂

∂t
f (ρj+1, t)

∣∣∣∣ ≤ C1σ.

Then using our (5.17) again, for some ξ between ρj and ρj+1,

C2 ≤ f (ρj+1, ρj+1)

= f (ρj+1, ρj+1) − f (ρj+1, ρj)

=

(
∂

∂t
f (ρj+1, t)|t=ξ

)
(ρj+1 − ρj)

≤ C1σ (ρj+1 − ρj) .
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(b) This is an immediate consequence of (a) and a well known estimate
[13, p. 150, no. 4.].

(c) This follows by applying Bessel’s inequality (5.13) to

g (t) = f (t, z) ,

and using the reproducing kernel identity (5.11). �

Proof of Theorem 5.4(b). Let g ∈ PWσ and

G (z) = G [g] (z) =
∞∑

j=−∞

g (ρj)
f (ρj , z)

f (ρj , ρj)
.

We claim that G ∈ H (Ea). Indeed, by (b) of the previous lemma, and as
f (ρj , ρj) ∼ 1 uniformly in j,

∑

j

|g (ρj)|2
f (ρj , ρj)

< ∞,

and as in the proof of Theorem 5.3(b), this gives G ∈ H (Ea).We are going
to show that G = g. To this end, let

Ψ (z) =
g (z) − G (z)

F (z)
.

As G (ρj) = g (ρj), (recall (5.32)) and F has simple zeros at each ρj (recall
Theorem 5.3(a)), so Ψ is entire. As both numerator and denominator are of
exponential type, so is Ψ [13, Theorem 5, p. 80]. Next, we claim that also

G (z) =
∞∑

j=−∞

g (ρj)
F (z)

F ′ (ρj) (z − ρj)
. (5.37)

Let F (α) = L (α, 0) 6= 0. Since L (0, ρj) = 0, the functional equation (5.4)
gives

L (z, ρj) L (α, 0) = L (α, z) L (0, ρj) − L (0, z)L (α, ρj) = F (z) L (α, ρj)

⇒ f (z, ρj) =
F (z) L (α, ρj)

F (α) (z − ρj)
.
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Letting z → ρj , we obtain

f (ρj, ρj) = F ′ (ρj)
L (α, ρj)

F (α)
.

Combining these last two identities, we see that

f (ρj , z)

f (ρj, ρj)
=

F (z)

F ′ (ρj) (z − ρj)
,

and we have (5.37). Next, that identity shows that

∣∣∣∣
G (z)

F (z)

∣∣∣∣ ≤
(

∞∑

j=−∞

|g (ρj)|2
)1/2( ∞∑

j=−∞

1

|F ′ (ρj) (z − ρj)|2

)1/2

.

Let ε ∈
(
0, π

2

)
. Here in the cut (double) sector Aε = {z : |z| ≥ 1 and

ε ≤ |arg z| ≤ π − ε}, there exists Cε such that for all j,

|z − ρj| ≥ Cε |i − ρj | .

Moreover,

∞∑

j=−∞

1

|F ′ (ρj) (i − ρj)|2
=

1

|F (i)|2
∞∑

j=−∞

|F (i)|2

|F ′ (ρj) (i − ρj)|2

=
1

|F (i)|2
∞∑

j=−∞

∣∣∣∣
f (ρj , i)

f (ρj , ρj)

∣∣∣∣
2

≤ 1

|F (i)|2 infx∈R f (x, x)
f (i, ı̄) < ∞,

by (5.36). Then for any n ≥ 1, we see that

lim sup
z→∞,z∈Aε

∣∣∣∣
G (z)

F (z)

∣∣∣∣ ≤
(

∞∑

j=−∞

|g (ρj)|2
)1/2


 1

C2
ε

∑

|j|≥n

1

|F ′ (ρj) (i − ρj)|2




1/2

.

Since this has limit 0 as n → ∞, we have shown that

lim
z→∞,z∈Aε

∣∣∣∣
G (z)

F (z)

∣∣∣∣ = 0. (5.38)
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Next, F is of exponential type σ, has real zeros, and

|F (x)| = |xf (0, x)| ≤ |x| f (0, 0)1/2 f (x, x)1/2 ≤ C |x|

by (5.17) and (5.27). Thus it lies in the Cartwright class. From (3.6), for
θ ∈ (−π, π) \ {0} ,

lim
r→∞

log
∣∣F
(
reiθ
)∣∣

r
= σ |sin θ| .

Let us now assume g has type τ < σ. Since it is square integrable along the
real axis, g also lies in the Cartwright class. By (3.7), for θ ∈ (−π, π) \ {0} ,

lim sup
r→∞

log
∣∣g
(
reiθ
)∣∣

r
≤ τ |sin θ| .

Then for θ ∈ (−π, π) \ {0}, as r → ∞,
∣∣∣ g
F

∣∣∣
(
reiθ
)
≤ exp ((τ − σ) r |sin θ| + o (r)) .

In particular, for such θ,

lim
r→∞

∣∣∣ g
F

∣∣∣
(
reiθ
)

= 0.

Then for θ ∈ (−π, π) \ {0} , this and (5.38) show that

lim
r→∞

|Ψ|
(
reiθ
)

= 0.

Inasmuch as Ψ is an entire function of exponential type, the Phragmen-
Lindelöf principle (applied on sectors of opening angle less than π) shows
that it is bounded in the plane, and hence constant. As it has limit 0 at ∞,
we have Ψ ≡ 0, so

g = G ∈ H (Ea) .

Finally, if g has type σ, then for ε ∈ (0, 1), the scaled function gε (z) = g (εz)
has type εσ < σ, so

gε = G [gε] .

It is easily seen that we can let ε → 1− in both sides of this identity. �

We note that for several of the proofs in this section, one can avoid using
de Branges’ machinery, and instead take limits in results that hold for the
original reproducing kernels Kn. For the proof of Theorem 5.4(c), we seem
to be forced to do the latter.
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Proof of Theorem 5.4(c). Let g ∈ H (Ea). Since g/Ea, g/E∗
a ∈ H2 (C+),

while Ea is of exponential type σ, it follows that g has exponential type at
most σ. Next, recall that {tjn} = {tjn (ξn)} are the quadrature points for µ
including ξn. Fix ℓ ≥ 1. The Gauss quadrature formula (2.5) and the fact
that Kn (tjn, tkn) = 0 for j 6= k, gives

∫ ∣∣∣∣∣∣

∑

|j|≤ℓ

g (ρj)
Kn (tjn, s)

Kn (tjn, tjn)

∣∣∣∣∣∣

2

dµ (s) =
∑

|j|≤ℓ

|g (ρj)|2
Kn (tjn, tjn)

.

Let r > 0 and make the substitution

s = ξn +
t

K̃n (ξn, ξn)
= ξn +

t

Kn (ξn, ξn)µ′ (ξn)

and recall (2.7), (2.9). By dropping the singular part of µ, we obtain for,
large enough n,

∫ r

−r

∣∣∣∣∣∣

∑

|j|≤ℓ

g (ρj)
fn (ρjn, t)

fn (ρjn, ρjn)

∣∣∣∣∣∣

2
µ′
(
ξn + t

K̃n(ξn,ξn)

)

µ′ (ξn)
dt ≤

∑

|j|≤ℓ

|g (ρj)|2
fn (ρjn, ρjn)

.

(5.39)
As n → ∞ through S, the right-hand side converges to

∑

|j|≤ℓ

|g (ρj)|2
f (ρj , ρj)

≤
∞∑

j=−∞

|g (ρj)|2
f (ρj , ρj)

.

Recall from Theorem 5.3(b) that this series converges. Next, as n → ∞
through S, uniformly for t in compact sets,

∑

|j|≤ℓ

g (ρj)
fn (ρjn, t)

fn (ρjn, ρjn)
→
∑

|j|≤ℓ

g (ρj)
f (ρj , t)

f (ρj, ρj)
=: Gℓ (t)

and we have also used the uniform convergence of fn (0, z) to f (0, z), which
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forces the zeros {ρjn} of fn to converge to those of f . By Fatou’s Lemma,

lim inf
n→∞,n∈S

∫ r

−r

∣∣∣∣∣∣

∑

|j|≤ℓ

g (ρj)
fn (ρjn, t)

fn (ρjn, ρjn)

∣∣∣∣∣∣

2
µ′
(
ξn + t

K̃n(ξn,ξn)

)

µ′ (ξn)
dt

≥
∫ r

−r

|Gℓ (t)|2 lim inf
n→∞,n∈S

µ′
(
ξn + t

K̃n(ξn,ξn)

)

µ′ (ξn)
dt

≥ C0

∫ r

−r

|Gℓ (t)|2 dt,

under our hypothesis (5.19). Alternatively, if we assume our Lebesgue point
type condition (5.20), we write the left-hand side of (5.39) as

∫ r

−r

∣∣∣∣∣∣

∑

|j|≤ℓ

g (ρj)
fn (ρjn, t)

fn (ρjn, ρjn)

∣∣∣∣∣∣

2

dt

+

∫ r

−r

∣∣∣∣∣∣

∑

|j|≤ℓ

g (ρj)
fn (ρjn, t)

fn (ρjn, ρjn)

∣∣∣∣∣∣

2


µ′
(
ξn + t

K̃n(ξn,ξn)

)

µ′ (ξn)
− 1



 dt

=

∫ r

−r

|Gℓ (t)|2 dt + o (1) + O



∫ r

−r

∣∣∣∣∣∣

µ′
(
ξn + t

K̃n(ξn,ξn)

)

µ′ (ξn)
− 1

∣∣∣∣∣∣
dt




=

∫ r

−r

|Gℓ (t)|2 dt + o (1) .

Thus

C0

∫ r

−r

|Gℓ (t)|2 dt ≤
∞∑

j=−∞

|g (ρj)|2
f (ρj , ρj)

,

where C0 = 1 if we have the Lebesgue point type condition. As in the proof
of Theorem 5.4(b),

∫ r

−r
|g − Gℓ|2 → 0 as ℓ → ∞, so we obtain

C0

∫ r

−r

|g (t)|2 dt ≤
∞∑

j=−∞

|g (ρj)|2
f (ρj , ρj)

.

Letting r → ∞ gives

C0

∫ ∞

−∞

|g|2 ≤
∞∑

j=−∞

|g (ρj)|2
f (ρj , ρj)

. (5.40)
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Thus g ∈ L2 (R), and g is of exponential type at most σ, so also g ∈ PWσ.
We have shown that H (Ea) ⊂ PWσ, and hence H (Ea) = PWσ. It remains
to prove equivalence of the norms. First observe that F /∈ H (Ea) . Indeed,
if F ∈ H (Ea), as F (ρj) = 0 for all j, Theorem 5.4(b) shows that identically

F = G [F ] = 0,

a contradiction. Then (5.15) shows that

‖g‖2
Ea

=

∫ ∞

−∞

∣∣∣∣
g

Ea

∣∣∣∣
2

=

∞∑

j=−∞

|g (ρj)|2
f (ρj , ρj)

≥ C0 ‖g‖2
L2(R)

by (5.40). In the other direction, as f (ρj, ρj) ∼ 1 uniformly in j, (5.35)
shows that

‖g‖2
Ea

=
∞∑

j=−∞

|g (ρj)|2
f (ρj , ρj)

≤ C2 ‖g‖2
L2(R) . �

An alternative proof of the norm equivalence uses the closed graph the-
orem. Let I denote the identity operator from H (Ea) to PWσ. Its graph
{(f, If) : f ∈ H (Ea)} is all of H (Ea)×PWσ, so is closed. Then the operator
I is a continuous linear operator, and so is bounded.

6. Proof of Theorems 1.3, 1.4, 1.5

Lemma 6.1 Assume the hypotheses of Theorem 1.3.

(a) {fn (u, v)}∞n=1 is uniformly bounded for u, v in compact subsets of the
plane.

(b) Let f (u, v) denote the locally uniform limit of some subsequence {fn (u, v)}n∈S

of {fn (u, v)}∞n=1. Then for each fixed u ∈ C, f (u, ·) is an entire func-
tion of exponential type. Moreover, for some C1 and C2 independent of
u, v, and the subsequence S,

|f (u, v)| ≤ C1e
C2(|Im u|+|Im v|). (6.1)

Proof. This is exactly the same as that of Lemma 5.2 in [22], but we
provide some details. We assumed that µ′ ∼ 1 in some open set O containing
compact J . It follows that J is covered by finitely many open intervals in O.
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By increasing the size of J , we may assume that J consists of finitely many
compact intervals. It then suffices to consider the case where J is just one
interval, and we now assume this. Since µ is absolutely continuous in the
larger open set O, and µ′ is bounded above and below there, we have the
well known bound [28, Theorem 20, p. 116]

Kn (x, x)−1 = λn (x) ∼ 1

n
, (6.2)

uniformly in n and in each compact subset of O. By reducing O, we can
assume this holds in O. By Cauchy-Schwarz, we have

1

n
|Kn (ξ, t)| ≤

(
1

n
Kn (ξ, ξ)

)1/2(
1

n
Kn (t, t)

)1/2

≤ C

for ξ, t ∈ O. By Bernstein’s growth lemma in the plane, [22, Lemma 5.1],
applied separately in each variable, we then have for ξ, t ∈ O, |a| , |b| ≤ A
and n ≥ n0 (A),

1

n

∣∣∣∣Kn

(
ξ + i

a

n
, t + i

b

n

)∣∣∣∣ ≤ CeC2(|a|+|b|). (6.3)

(Strictly speaking, we have to take a slightly smaller set than O, but can
relabel.) C and C2 are independent of A, ξ, t, a, b. Of course if u, v lie in a
bounded subset of the plane, and ξ ∈ O, then for n large enough, we may

write ξ + u
n

= ξ + Re(u)
n

+ iIm(u)
n

, where ξ + Re(u)
n

is contained in a slightly
large open set than O. By relabelling, we may assume it lies in O. Then we
may recast (6.3) in the form

1

n

∣∣∣Kn

(
ξ +

u

n
, ξ +

v

n

)∣∣∣ ≤ CeC2(|Im u|+|Im v|). (6.4)

Since
K̃n (ξn, ξn) ∼ n,

we see also that for |u| , |v| ≤ A and n ≥ n0 (A)

|fn (u, v)| ≤ C1e
C2(|Im u|+|Im v|),

where C1, C2 are independent of n, u, v, A. The stated uniform boundedness
follows.
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(b) Now {fn (u, v)}∞n=1 is a normal family of two variables u, v. If f (u, v) is
the locally uniform limit through the subsequence S of integers, we see that
f (u, v) is an entire function in u, v satisfying for all complex u, v,

|f (u, v)| ≤ C1e
C2(|Im u|+|Im v|). (6.5)

In particular, f (u, v) is bounded for u, v ∈ R, and is an entire function of
exponential type in each variable. �

Proof of Theorem 1.3. (a) This follows directly from Lemma 6.1.

(b) This follows from Lemma 6.1(b) and Theorem 5.4. Note that the hy-
pothesis f (t, t) ∼ 1 there is an easy consequence of (6.2) and the fact
the values of f are limits of ratios of Kn taken over smaller and smaller
neighborhoods of ξn.

(c) This follows from Theorem 5.2.

(d) This follows from Theorem 5.4. The hypothesis (5.19) follows easily
from our hypothesis µ′ ∼ 1 in an open set containing J . �

Proof of Theorem 1.4. (a) The functional relation (1.18) is (5.4) in
Theorem 5.1. Next, once we know f (a, z) for all z, we also know
f (ā, z) = f (a, z̄) for all z. Moreover, as shown after Theorem 5.1,
f (iy,−iy) ≥ 1 for all real y, and then (5.7) shows that L (a, ā) 6= 0.
Then for all z, v,

L (z, v) =
1

L (a, ā)
{L (a, z) L (ā, v) − L (ā, z) L (a, v)} .

So L (z, v) and hence f (z, v) is uniquely determined.

(b) This follows from Theorem 5.3.

(c) The expansions were established in Theorem 5.3(c) and 5.4(b). �

Proof of Theorem 1.5. The expansion (1.20) ensures that {ρj} is a com-
plete interpolating sequence for PWσ, as defined in Section 3. Indeed (1.20)
shows that each g ∈ PWσ is uniquely determined by its values on {ρj}, and
we cannot drop a single ρk, since f (ρk, z) vanishes at all ρj with j 6= k. By
a Theorem of Hruscev, Nikolskii, and Pavlov [10, p. 286], [30, p. 791], the

41



function h (t) = ν (t) − σ
π
t belongs to BMO. By (3.17), this ensures that for

each p > 0,

sup
I

1

|I|

∫

I

|h − hI |p < ∞. (6.6)

Next, we apply a well known inequality [9, p. 223, Lemma 1.1]: if I and J
are intervals with |J | > 2 |I|, then

|hI − hJ | ≤ C log (|J | / |I|) ,

where C is independent of I and J . This leads easily to the estimate
∣∣h[−r,r]

∣∣ ≤ C log r, r ≥ 2.

Together with (6.6), this yields for j ≥ 1,

∫ 2j+1

2j

|h| (t)p dt ≤ C2jjp

and hence ∫ 2j+1

2j

|h (t)|p

(1 + |t|) (log (2 + |t|))p+τ dt ≤ Cj−τ .

Adding over j ≥ 1, gives
∫ ∞

2

|h (t)|p

(1 + |t|) (log (2 + |t|))p+τ dt < ∞.

The range (−∞,−2) can be treated similarly. �

7. Proof of Theorems 1.6 and 1.7

Proof of Theorem 1.6. The assumption (1.26) implies that {fn (a, ·)}∞n=1

is uniformly bounded in compact subsets of the plane. Using the functional
relation (5.23), we deduce that the same is true of {fn (·, ·)}∞n=1. Note too
that if z = x + iy, the fact that each pn has real zeros, ensures that,

fn (z, z̄) ≥ fn (x, x) .

Our hypothesis (1.27) ensures that if we fix a non-real a, {fn (a, ā)}∞n=1 is
bounded below. Next, let A > 0. The exponential bound (1.26) together with
the functional relation (5.22) ensures that for n ≥ n0 (A) and |z| , |v| ≤ A,

|fn (z, v)| ≤ C1e
C1(|Im z|+|Im v|).
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Here C1 and C2 are independent of n, A, z, v. If we take some subsequential
limit f , then it follows that the hypotheses of Theorems 5.1 and 5.4 are
fulfilled. Indeed, the hypothesis (5.17) in Theorem 5.4 follows from (1.27),
while (1.28) is the requisite modification of (5.19). The proofs of Theorems
5.1 to 5.4 then go through without change. �

Proof of Theorem 1.7. Step 1: The functions f and E: We assume
that f

(
z, ζ̄
)

= K (ζ, z), the reproducing kernel for H (E) = PWσ and that
f (0, 0) = 1. Recall that equality of the spaces implies norm equivalence, and
in turn this implies from (3.18),

f (x, x) = K (x, x) ∼ 1 in R. (7.1)

We know from the de Branges theory (cf. (1.11)) that if z 6= v,

f (z, v) =
i

2π

E (z) E∗ (v) − E∗ (z) E (v)

z − v
, (7.2)

while

f (z, z) =
i

2π
(E ′ (z) E∗ (z) − E∗′ (z) E (z)) . (7.3)

By definition of a de Branges space, E has no zeros in {z : Im z > 0}. It
follows from (7.1) and (7.3) that it also has no real zeros. For if E (x) = 0,
then also E∗ (x) = 0, and (7.3) gives f (x, x) = 0, contradicting (7.1).

Next, as f is a reproducing kernel for H (E), for each fixed u, f (u, ·) ∈
H (E) = PWσ. Thus f (u, ·) is of exponential type at most σ. We use this
to show that E is of exponential type at most σ. As usual, define

L (z, v) = (z − v) f (z, v) =
i

2π
(E (z) E∗ (v) − E∗ (z) E (v)) .

A little manipulation shows that for complex u, v, z,

E (z) L (u, v) = L (z, v)E (u) − L (z, u) E (v) . (7.4)

Choose u, v with L (u, v) 6= 0. Such a choice is possible, for otherwise
f (u, v) = 0 for all u 6= v, and continuity yields a contradiction to (7.1).
Since L (·, u) and L (·, v) are of exponential type at most σ, it follows from
(7.4) that E (·) is of exponential type ≤ σ.
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Step 2: The construction of En: Next, as E belongs to the Hermite-
Biehler class, for Im z > 0, ∣∣∣∣

E∗ (z)

E (z)

∣∣∣∣ ≤ 1,

recall (1.8). This implies that the function E∗ belongs to the class P , studied
in detail in [13, p. 217 ff.]. See Corollary 3 in [13, p. 218]. As a consequence,
[13, Corollary 6, p. 219] there is a sequence of polynomials {Pn} without zeros
in the (closed) lower-half plane, that converges to E∗, uniformly in compact
sets. Define

En (z) = P ∗
n (z) = Pn (z̄),

a polynomial with zeros only in the open lower-half plane. Then for Imz > 0,
|En (z)| ≥ |En (z̄)|, so En ∈ HB. We see that uniformly in compact subsets
of the plane,

lim
n→∞

En (z) = E (z) . (7.5)

We may assume that En has degree n. Indeed, it is obvious that we can
assume En has degree at most n, and we can multiply by factors 1− z

n2−i
to

make it up to full degree. Next, for n ≥ 1,let

Ωn (t) =
1

|En (t)|2
, t ∈ (−∞,∞) .

The measure Ωn (t) dt has the first 2n − 1 finite power moments, and so
we can define corresponding orthonormal polynomials {pj (Ωn, ·)}n−1

j=0 . Let
Kn (Ωn, ·, ·) denote the nth reproducing kernel formed from these orthogonal
polynomials. Then

Kn (Ωn, z, v) =
i

2π

En (z) E∗
n (v) − E∗

n (z) En (v)

z − v
. (7.6)

This was proved in [23], but also follows easily from the theory of de Branges
spaces. Indeed, as En is a polynomial of degree n, so H (En) is the set of
polynomials of degree ≤ n− 1. The right-hand side of (7.6) is the reproduc-
ing kernel for H (En) (apart from notational conventions such as conjugate
variables). By uniqueness of reproducing kernels, it equals the left-hand side.

Next, by (7.5) and (7.2), uniformly for z, v in compact sets,

lim
n→∞

Kn (Ωn, z, v) = f (z, v) . (7.7)
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In particular,
lim

n→∞
Kn (Ωn, 0, 0) = f (0, 0) = 1, (7.8)

and hence

lim
n→∞

K̃n (Ωn, 0, 0) = lim
n→∞

Kn (Ωn, 0, 0)

|En (0)|2
=

1

|E (0)|2
.

Then

lim
n→∞

Kn

(
Ωn, 0 + z

K̃n(Ωn,0,0)
, 0 + v

K̃n(Ωn,0,0)

)

Kn (Ωn, 0, 0)
= f

(
|E (0)|2 z, |E (0)|2 v

)
. (7.9)

Step 3: Truncate the support of Ωn: Choose an > 0 such that

∫

|t|≥an

Kn (Ωn, t, t) Ωn (t) dt ≤ 1

n
.

Let P be a polynomial of degree ≤ n− 1, possibly with complex coefficients.
Using the Christoffel function inequality,

|P (t)|2 ≤ Kn (Ωn, t, t)

∫ ∞

−∞

|P |2 Ωn, t ∈ R,

we see then that ∫

|t|≥an

|P |2 Ωn ≤ 1

n

∫ ∞

−∞

|P |2 Ωn.

Let
Jn = [−an, an] .

From this last inequality, and the extremal properties of Christoffel functions,
it follows easily that for real x,

1 ≤ λn (Ωn, x) /λn

(
Ωn|Jn

, x
)
≤
(

1 − 1

n

)−1

. (7.10)

More generally, for complex z, the extremal property

Kn (Ωn, z, z̄) = sup
deg(P )≤n−1

|P (z)|2∫
|P |2 Ωn
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gives

1 ≥ Kn (Ωn, z, z̄) /Kn

(
Ωn|Jn

, z, z̄
)
≥ 1 − 1

n
. (7.11)

We use this to derive a complex analogue of an inequality that formed the
basis of [21]. By the reproducing kernel property of Kn,

∫ ∣∣Kn

(
Ωn|Jn

, z, t
)
− Kn (Ωn, z, t)

∣∣2 ωn|Jn
(t) dt

= Kn

(
Ωn|Jn

, z, z̄
)
− 2Kn (Ωn, z, z̄) +

∫
|Kn (Ωn, z, t)|2 Ωn|Jn

(t) dt

≤ Kn

(
Ωn|Jn

, z, z̄
)
− 2Kn (Ωn, z, z̄) +

∫
|Kn (Ωn, z, t)|2 Ωn (t) dt

= Kn

(
Ωn|Jn

, z, z̄
)
− Kn (Ωn, z, z̄) . (7.12)

Using the Christoffel function inequality

|P (v)|2 ≤ Kn

(
Ωn|Jn

, v, v̄
) ∫

|P |2 Ωn|Jn

on the polynomial P (t) = Kn

(
Ωn|Jn

, z, t
)
− Kn (Ωn, z, t), and using (7.12),

we obtain for all complex z, v,
∣∣Kn

(
Ωn|Jn

, z, v
)
− Kn (Ωn, z, v)

∣∣2

≤ Kn

(
Ωn|Jn

, v, v̄
) (

Kn

(
Ωn|Jn

, z, z̄
)
− Kn (Ωn, z, z̄)

)
.

Using (7.11), we continue this as

≤ C

n
Kn (Ωn, v, v̄)Kn (Ωn, z, z̄) .

The constant is independent of z, v, n. From this, (7.9), and (7.11), it follows
easily that uniformly for z, v in compact sets,

lim
n→∞

Kn

(
Ωn|Jn

, 0 + z

K̃n(Ωn|Jn ,0,0)
, 0 + v

K̃n(Ωn|Jn ,0,0)

)

Kn

(
Ωn|Jn

, 0, 0
)

= f
(
|E (0)|2 z, |E (0)|2 v

)
. (7.13)

Step 4: Scale Ωn|Jn
to obtain µn: Define a measure µn on [−1, 1] by

µ′
n (x) =

Ωn (anx)

Ωn (0)
, x ∈ [−1, 1] ,
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and set µ′
n = 0 outside [−1, 1]. As En has no real zeros, Ωn is infinitely differ-

entiable on the real line, so the same is true of µ′
n on (−1, 1). A substitution in

the orthonormality relations shows that pk (µn, x) = pk

(
Ωn|Jn

, anx
)
[anΩn (0)]1/2,

and hence
Kn (µn, z, v) = Kn

(
Ωn|Jn

, anz, anv
)
anΩn (0) ,

and recalling µ′
n (0) = 1,

K̃n (µn, 0, 0) = Kn

(
Ωn|Jn

, 0, 0
)
anΩn (0) = anK̃n

(
Ωn|Jn

, 0, 0
)
.

Then

Kn

(
µn, 0 + a

K̃n(µn,0,0)
, 0 + b

K̃n(µn,0,0)

)

Kn (µn, 0, 0)

=

Kn

(
Ωn|Jn

, 0 + a

K̃n(Ωn|Jn ,0,0)
, 0 + b

K̃n(Ωn|Jn ,0,0)

)

Kn

(
Ωn|Jn

, 0, 0
) ,

so (7.13) gives

lim
n→∞

Kn

(
µn, 0 + a

K̃n(µn,0,0)
, 0 + b

K̃n(µn,0,0)

)

Kn (µn, 0, 0)
= f

(
|E (0)|2 a, |E (0)|2 b

)
.

Then (1.29) follows if we assume |E (0)| = 1. Next, the upper bound (1.26)
follows easily from the uniform convergence and the fact that f (a, ·) is of
exponential type. The lower bound (1.27) follows easily from (7.1) and the
uniform convergence. Finally, for each real t,

µ′
n

(
0 + t

K̃n(µn,0,0)

)

µ′
n (0)

= Ωn

(
t

K̃n

(
Ωn|Jn

, 0, 0
)
)

/Ωn (0)

=

(
|En (0)|∣∣En

(
|E (0)|2 t (1 + o (1))

)∣∣

)2

→
(

|E (0)|∣∣E
(
|E (0)|2 t

)∣∣

)2

,

as n → ∞. The condition (1.28) then follows for t in a given finite interval. Of
course if |E| is bounded above and below in the real line, it holds throughout
the real line. �
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