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Abstract. We establish limits for Christo¤el functions associated with
orthogonal rational functions, whose poles remain a �xed distance away
from the interval of orthogonality [�1; 1], and admit a suitable asymp-
totic distribution. The measure of orthogonality � is assumed to be
regular on [�1; 1], and to satisfy a local condition such as continuity
of �0. As a consequence, we deduce universality limits in the bulk for
reproducing kernels associated with orthogonal rational functions.
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1. Introduction

Let � be a �nite positive Borel measure on [�1; 1], with in�nitely many
points in its support. Then we can de�ne orthonormal polynomials pn (x) =
pn (d�; x) = nx

n + :::; n � 0, satisfyingZ 1

�1
pnpmd� = �mn:

We say the measure � is regular on [�1; 1] in the sense of Stahl, Totik, and
Ullmann, or just regular [17], if

lim
n!1

1=nn = 2:

An equivalent de�nition involves norms of polynomials of degree � n :

(1.1) lim
n!1

"
sup

deg(P )�n

kPk2L1[�1;1]R 1
�1 jP j

2 d�

#1=n
= 1:

Regularity of a measure is useful in studying asymptotics of orthogonal
polynomials. One simple criterion for regularity is that �0 > 0 a.e. on
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[�1; 1], the so-called Erd½os-Turán condition. However, there are pure jump
measures, and pure singularly continuous measures that are regular.
We denote the nth reproducing kernel by

(1.2) Kn (d�; x; y) =

n�1X
j=0

pj (d�; x) pj (d�; y) ;

and its normalized cousin by

(1.3) ~Kn (d�; x; y) = �
0 (x)1=2 �0 (y)1=2Kn (d�; x; y) :

When y = x, we obtain the Christo¤el function

�n (d�; x) = 1=Kn (d�; x; x) ;

which satis�es the extremal property

(1.4) �n (d�; x) = inf
deg(P )�n�1

R
jP j2 d�
jP (x)j2

:

A classical result of Maté, Nevai, and Totik [13] (see also [18]) asserts that
if � is regular on [�1; 1], and in some subinterval [a; b]

(1.5)
Z b

a
log�0 > �1;

then for a.e. x 2 [a; b] ;

(1.6) lim
n!1

n�n (d�; x) = ��
0 (x)

p
1� x2:

If instead we assume that � is regular in [�1; 1], while � is absolutely con-
tinuous in a neighborhood of some x 2 (�1; 1), and �0 is continuous at x,
then this last limit holds at x.
In the theory of random matrices [8], [14], universality limits describe

local spacing of eigenvalues of random matrices. It is a remarkable fact that
the universality limit in the bulk at a given point � 2 (�1; 1) reduces to the
technical assertion

(1.7) lim
n!1

~Kn

�
d�; � + a

~Kn(d�;�;�)
; � + b

~Kn(d�n;�;�)

�
~Kn (d�; �; �)

=
sin� (a� b)
� (a� b) ;

uniformly for a; b in compact subsets of the real line. Sometimes, ~Kn is
replaced by Kn, and we can then allow a; b to be complex. There is a
substantial literature on this limit. Amongst recent results, we note Totik�s
[9], [19] that if � is compactly supported and regular, and (1.5) holds, then
the universality limit (1.7) holds for a.e. � 2 (a; b). Barry Simon had
a similar result for �nitely many intervals [16]. It has also recently been
shown [12] that without any local or global conditions on �, universality
holds in measure in fx : �0 (x) > 0g :
The aim of this paper is to establish limits for Christo¤el functions, and

universality limits associated with orthogonal rational functions. The latter
have been studied and applied extensively for over thirty years, with many
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of the key results collected in the monograph [2]. Some other aspects of
orthogonal rational functions, including asymptotics, are given in [1], [3],
[4], [5], [6], [7], [20], [21].
We shall assume that we are given a sequence of extended complex num-

bers that will serve as our poles

A = f�1; �2; �3; ::::g � �Cn [�1; 1] :

Thus we are allowing some (or even all) of the �j =1. We let � > 0 and

A� =
�
z 2 �C : dist (z; [�1; 1]) � �

	
and assume that all �j 2 A�, so that for j � 1;

(1.8) dist (�j ; [�1; 1]) � �:

We let �0 (x) = 1, and for k � 1;

(1.9) �k (x) =
kY
j=1

(1� x=�j) :

We let Pk denote the polynomials of degree � k, and de�ne nested spaces
of rational functions by L�1 = f0g ;L0 = C; and for k � 1;

Lk = Lk f�1; �2; :::; �kg =
�
P

�k
: deg (P ) � k

�
:

Note that if all �j =1, then Lk = Pk. Moreover, Lk�1 � Lk for k � 1. We
shall assume that the poles have an asymptotic distribution � with support
in �Cn [�1; 1], so that

(1.10) lim
k!1

log j�k�1 (x)j1=k =
Z
log j1� x=tj d� (t) ;

uniformly for x 2 [�1; 1]. An alternative formulation is that the pole count-
ing measures

(1.11) �n =
1

n

0@�1 + n�1X
j=1

��j

1A ;
converge weakly to � as n ! 1. Here �� denotes a point mass at �. The
uniform convergence in (1.10) follows simply from weak convergence because
of the fact that the poles are a distance at least � from [�1; 1].
We de�ne orthogonal rational functions '0, '1; '2, ... corresponding to

the measure �, such that 'k 2 LknLk�1, and

(1.12)
Z 1

�1
'j 'k d� = �jk:
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These may be generated by applying the Gram-Schmidt process to
�
xk=�k (x)

	1
k=0
.

We also de�ne the corresponding rational kernel functions

(1.13) Kr
n (d�; x; y) =

n�1X
j=0

'j (x) 'j (y):

The normalized form is
~Kr
n (d�; x; y) = �

0 (x)1=2 �0 (y)1=2Kr
n (d�; x; y) ;

and when clear from the context, we shall just write Kr
n (x; y) and ~K

r
n (x; y).

Observe that for R 2 Ln�1;

R (x) =

Z 1

�1
R (t)Kr

n (d�; x; t) d� (t) :

This and Cauchy-Schwarz�inequality, easily yield an extremal property for
the rational Christo¤el functions

(1.14) �rn (d�; x) = 1=K
r
n (d�; x; x) =

n�1X
j=0

��'j (x)��2 ;
analogous to (1.4), namely

(1.15) �rn (d�; x) = inf
R2Ln�1

R 1
�1 jRj

2 d�

jR (x)j2
:

We shall often use the abbreviation �rn (x), when it is clear that the measure
involved is �.
Our main result deals with asymptotics of rational Christo¤el functions:

Theorem 1.1
Let � be a regular measure on [�1; 1]. Let I be an open subinterval of
(�1; 1) in which � is absolutely continuous. Assume that �0 is positive and
continuous at a given x 2 I. Assume that the poles f�jg satisfy the distance
restriction (1.8) and have the asymptotic distribution speci�ed by (1.10). Let
r > 0. Then uniformly for s 2 [�r; r] ;

(1.16) lim
n!1

n�rn

�
x+

s

n

�
= �0 (x)�

p
1� x2=

Z
Re

(p
t2 � 1
t� x

)
d�(t):

Here the branch of the square root is chosen so that
p
t2 � 1 > 0 for t 2

(1;1). If �0 is positive and continuous in I, then this last limit also holds
uniformly for x in compact subsets of I.
Remarks
(a) Observe that if all poles are at1, then

R
Re
np

t2�1
t�x

o
d�(t) = 1, and the

theorem reduces to the familiar limit (1.6) for Christo¤el functions associ-
ated with polynomials.
(b) Up to now this theorem has been known only when �0 is a Chebyshev
weight such as in Theorem 3.1 below, but under additional restrictions on the
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poles. Our proof heavily relies on a classical explicit formula for Christo¤el
functions for Szeg½o-Bernstein weights, and a comparison technique essen-
tially due to Totik.

As a consequence, we can prove universality limits for rational reproduc-
ing kernels. In its formulation, we use the notation

ei arg(z) =
z

jzj , z 6= 0:

Theorem 1.2
Assume the hypotheses of Theorem 1.1 in the stronger form that �0 is positive
and continuous in I. Then for x 2 I and uniformly for a; b in compact
subsets of the real line,

lim
n!1

Kr
n

�
x+ a

~Kr
n(x;x)

; x+ b
~Kr
n(x;x)

�
Kr
n (x; x)

e
i
h
arg
�
�n�1

�
x+ a

~Krn(x;x)

��
�arg

�
�n�1

�
x+ b

~Krn(x;x)

��i

=
sin� (a� b)
� (a� b) :

(1.17)

This paper is organized as follows. We present three elementary lemmas in
Section 2. These are used to relate properties of orthogonal rational func-
tions to orthogonal polynomials, and to extend to rational functions, some
well known estimates for polynomials. In Section 3, we establish asymptotics
of rational Christo¤el functions for the Chebyshev weight of the second kind.
In Section 4, we prove Theorem 1.1, and in Section 5, we prove Theorem
1.2.

2. Three Elementary Lemmas

In this section, we establish three elementary lemmas, which in some way
relate properties of orthogonal rational functions to analogous properties for
polynomials. The �rst lemma of this section relates rational and polynomial
reproducing kernels. In its formulation, we let

(2.1) d�n (t) = d� (t) = j�n�1 (t)j2

and fpn;jgj�0 denote the corresponding orthonormal polynomials, so thatZ
pn;jpn;kd�n = �jk:

We also let

Kn (d�n; x; t) =

n�1X
j=0

pn;j (x) pn;j (t) ;

and

(2.2) ~Kn (d�n; x; t) = �
0
n (x)

1=2 �0n (t)
1=2Kn (d�n; x; t) :
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Recall that Kr
n is given by (1.13).

Lemma 2.1

(2.3) Kr
n (x; t) = Kn (d�n; x; t) =

�
�n�1 (x)�n�1 (t)

�
:

In particular, for real x;

(2.4) �rn (x) = �n (d�n; x) j�n�1 (x)j
2 :

Proof
Recall our notation (1.12). For j � 0, write

'j (x) =
sj (t)

�j (t)
;

where sj 2 Pj . Let

	n (x; t) = �n�1 (x)�n�1 (t)K
r
n (x; t) :

Then we see that for �xed complex x;

	n (x; t) = �n�1 (x)
n�1X
j=0

�
sj (x)

�j (x)

�
sj (t)�n�1 (t)

�j (t)

is a polynomial of degree � n� 1 in t. The reproducing kernel relation for
Kr
n gives, for polynomials P of degree � n� 1;

P (x)

�n�1 (x)
=

Z
Kr
n (x; t)

P (t)

�n�1 (t)
d� (t)

=
1

�n�1 (x)

Z
	n (x; t)P (t) d�n (t) :

That is,

P (x) =

Z
	n (x; t)P (t) d�n (t) :

Since also

P (x) =

Z
Kn (d�n; x; t)P (t) d�n (t) ;

we obtain for all such P;

0 =

Z
P (t) [	n (x; t)�Kn (d�n; x; t)] d�n (t) :

Let
P (t) = 	n (x; t)�Kn (d�n; �x; t) ;

a polynomial of degree � n� 1 in t. Since Kn (d�n; x; t) has real coe¢ cients
in x; t, we also have for real t,

P (t) = 	n (x; t)�Kn (d�n; x; t):
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Thus,

0 =

Z
j	n (x; t)�Kn (d�n; x; t)j2 d�n (t) ;

so for real t;

Kn (d�n; x; t) = 	n (x; t) = �n�1 (x)�n�1 (t)K
r
n (x; t) :

This extends to complex t, as both sides are polynomials in x; �t. �

Our next lemma shows that a relationship similar to (1.1), holds for ra-
tional functions with poles in the f�kg :

Lemma 2.2
Assume that the poles f�jg have asymptotic distribution �, as in (1.10).
Assume that the measure � is regular on [�1; 1]. Then

(2.5) lim
n!1

"
sup

R2Ln�1

kRk2L1[�1;1]R 1
�1 jRj

2 d�

#1=n
= 1:

Proof
Each R 2 Ln�1 has the form R (x) = P (x) =�n�1 (x). Let

gn (x) = 1= j�n�1 (x)j2 :
By our hypothesis (1.10), we have

lim
n!1

gn (x)
1=n = exp

�
�2
Z
log j1� x=tj d� (t)

�
=: g (x) ;

uniformly for x 2 [�1; 1]. Here g is positive and continuous on [�1; 1]. Then

lim
n!1

"
sup

R2Ln�1

kRk2L1[�1;1]R 1
�1 jRj

2 d�

#1=n
= lim
n!1

"
sup

P2Pn�1

P 2gnL1[�1;1]R 1
�1 jP j

2 gnd�

#1=n
= 1;

by a result of Stahl and Totik [17, Thm. 3.2.3 (vi), p. 68]. �

Our �nal lemma shows that we can construct rational functions with any
given poles a distance at least � from [�1; 1], that decay as we recede from
a given point x 2 [�1; 1] :

Lemma 2.3
Let � 2 (0; 1) and A� = fz : dist (z; [�1; 1]) � �g. There exists � > 0 with
the following property: given any x 2 [�1; 1] and any 3 points �; �;� 2 A�,
there exists a rational function R 2 L3 (�; �;�) such that R (x) = 1 and

(2.6) jR (t)j2 � 1� � (t� x)2 , t 2 [�1; 1] :
Remark
We emphasize that � is independent of x and �; �;�, depending only on �.
R will have numerator and denominator degree at most 2.
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Proof
Choose �1 2 (0; 1) so small that if z 2 A�;

jzj � �1;(2.7) ����1� t

z

���� � �1 for t 2 [�1; 1] ;(2.8)

We shall consider three con�gurations of poles:
(I) At least one pole � satis�es j�j � 4 and jIm�j � �31=4:
If none of the given three poles satis�es this, then either
(II) At least two of the poles � satisfy j�j > 4:
or
(III) Two poles � satisfy both j�j � 4 and jIm�j < �31=4:
We turn to
Case (I)
Let � have the speci�ed property, and

R (t) =
1

2

�
1 +

t� ��
t� �=

x� ��
x� �

�
:

Clearly R (x) = 1, R is a rational function of denominator degree 1, with
pole at �, and straightforward calculations show that

jR (t)j2 = 1

2

�
1 + Re

�
t� �
t� ��

x� ��
x� �

��
and hence

1� jR (t)j2 =
1

2

�
1� Re

�
t� �
t� ��

x� ��
x� �

��
=

(Im�)2 (x� t)2

j(x� �) (t� ��)j2
:

�
�
�61=16

�
(t� x)2

52
;

for t 2 [�1; 1], and by our assumptions on j�j and jIm�j, namely j�j � 4
and jIm�j � �31=4. Thus for t 2 [�1; 1] ;

(2.9) jR (t)j2 � 1� �61
400

(t� x)2 :

Case II
Here we choose �; � with j�j ; j�j � 4, and let

(2.10) R (t) = 1� � (t� x)2

(1� t=�) (1� t=�) ;

where

� =
1

16
:
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Now

jR (t)j2 = 1 + �2 (t� x)4

j(1� t=�) (1� t=�)j2
� 2Re

 
�

(t� x)2

(1� t=�) (1� t=�)

!
;

so

1� jR (t)j2

=
� (t� x)2

j(1� t=�) (1� t=�)j2
�
2Re

�
(1� t=��)

�
1� t=��

��
� � (t� x)2

�
:

(2.11)

Here

Re
�
(1� t=��)

�
1� t=��

��
= 1� tRe

�
1

��
+
1
��

�
+ t2Re

�
1

��

�
� 1� 1

4
� 1
4
� 1

16
� 1

4
;

so

1� jR (t)j2

� � (t� x)2

j(1� t=�) (1� t=�)j2

�
1

2
� 4�

�
� (t� x)2

16 (5=4)2 4
;

recall � = 1
16 . Thus for t 2 [�1; 1] ;

(2.12) jR (t)j2 � 1� 1

100
(t� x)2 :

Case III
Here we again choose R by (2.10), but with

(2.13) � = ��21=32;

and with �; � having the properties speci�ed in Case III. The sign of � is
chosen to be the same as the sign of Re

�
(1� t=��)

�
1� t=��

��
, which we shall

show is constant in [�1; 1]. Indeed, for t 2 [�1; 1] ;

jIm (1� t=��)j = jtj jIm�j
j�j2

� �31=4

�21
= �1=4;

by (2.7). Then inasmuch as j1� t=��j � �1, we have

jRe (1� t=��)j � �1 � �1=4 � �1=2;
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with similar inequalities for �. Then��Re �(1� t=��) �1� t=������
=

��Re (1� t=��)Re �1� t=���� Im (1� t=��) Im �1� t=�����
� (�1=2)

2 � (�1=4)2 � �21=8:

Inasmuch as Re
�
(1� t=��)

�
1� t=��

��
is continuous, it will have a constant

sign for t in [�1; 1], and it is that that we choose as the sign of �. Then
(2.11) gives

1� jR (t)j2

� j�j (t� x)2

j(1� t=�) (1� t=�)j2
�
�21=4� 4 j�j

�
� j�j (t� x)2

(1 + 1=�1)
4

�
�21=8

�
=

1

256

�81
(1 + �1)

4 (t� x)
2 ;

recall (2.13) and (2.7). Considering this, (2.9), and (2.12), in the statement
of the lemma, we can choose

� = min

�
�61
400

;
1

256

�81
(1 + �1)

4

�
:

�

3. Christoffel Functions for Chebyshev Weights

In this section, we state a special case of Theorem 1.1 for the Chebyshev
weight of the second kind:

Theorem 3.1
Assume that � is the Chebyshev measure of the second kind, so that

(3.1) �0 (x) =
p
1� x2; x 2 (�1; 1) :

Assume that the sequence of poles A = f�1; �2; : : :g satis�es the hypotheses
of Theorem 1.1. Then uniformly for x in compact subsets of (�1; 1) ;

(3.2) lim
n!1

n�rn (x) = �
0 (x)�

p
1� x2=

Z
Re

(p
t2 � 1
t� x

)
d�(t):

We note that with purely notational adjustments to the proof, we can
allow varying poles in Theorem 3.1. That is, we can consider at the nth
stage poles f�n;jgn�1j=1 in A�. We would need to assume that

1

n

8<:�1 +
n�1X
j=1

��n;j

9=;
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converges weakly to � as n!1. However, we cannot prove such an exten-
sion in Theorem 1.1 because of the di¢ culty of establishing (4.1) below for
varying weights.
We shall use a classical representation for the Christo¤el function for

Bernstein-Szeg½o weights:

Lemma 3.2
Let

d�n (t) =

p
1� t2

j�n�1 (t)j2
dt, t 2 (�1; 1) ;

where �n is given by (1.9). Let x = cos �, where � 2 [0; �]. Then

���1n (d�n; x)�
0
n (x)

p
1� x2

= n� 1
2
+ �0n (�) +

1

2
p
1� x2

sin ((2n� 1) � + 2�n (�)) ;(3.3)

where

(3.4) �n (�) =

p
1� x2
2�

PV

Z 1

�1

log gn (t)

t� x
dtp
1� t2

;

and

(3.5) �0n (�) = �
1

2�
PV

Z 1

�1

g0n (t)

gn (t)

p
1� t2
t� x dt;

and PV stands for Cauchy Principal Value Integral, while

(3.6) gn (t) =
1� t2

j�n�1 (t)j2
:

Proof
This is the special case of Theorem B.4(b) in [10, p. 440], where S (t) =
j�n�1 (t)j2, and q = n� 1. There �n (�) is denoted � (f ; �), with

f (�) =
sin2 �

j�n�1 (cos �)j2
=

1� x2

j�n�1 (x)j2
= gn (x) :

The representations (3.4) and (3.5) for �n and �0n are given in Lemma B.5
of [10, pp.440-441]. �
We can now deduce:

Lemma 3.3
Assume the hypotheses of Lemma 3.2. Let �n denote the pole counting mea-
sure as in (1.11). Let [a; b] � (�1; 1). Then uniformly for x in [a; b] ; as
n!1;

(3.7)
�

n
��1n (d�n; x)�

0
n (x)

p
1� x2 =

Z
Re

(p
t2 � 1
t� x

)
d�n (t) +O

�
1

n

�
:
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Remark
We note that this lemma does not require the poles to be a �xed distance
away from [�1; 1], nor does it require weak convergence of f�ng. Moreover,
the order term does not depend on the particular choice of f�ng. It depends
only on the size of 1p

1�x2 .
Proof
We �rst recall some standard integrals [15, Example I.3.5, pp.45-46 and p.
225]:

(3.8)
1

�
PV

Z 1

�1

1

s� x
dsp
1� s2

= 0; x 2 (�1; 1) ;

(3.9)
1

�

Z 1

�1

1

s� u
dsp
1� s2

= � 1p
u2 � 1

; u 2 Cn [�1; 1] :

From these, we readily derive (by writing
p
1� s2 = 1�x2+x2�s2p

1�s2 , etc.)

(3.10)
1

�
PV

Z 1

�1

p
1� s2
s� x ds = �x; x 2 (�1; 1) ;

(3.11)
1

�

Z 1

�1

p
1� s2
s� u ds =

p
u2 � 1� u; u 2 Cn [�1; 1] :

Then we see that for x 2 (�1; 1) and u 2 Cn [�1; 1],

1

�
PV

Z 1

�1

1

u� s

p
1� s2
s� x ds

=
1

u� x

"
1

�

Z 1

�1

p
1� s2
u� s ds+

1

�
PV

Z 1

�1

p
1� s2
s� x ds

#

= 1�
p
u2 � 1
u� x :(3.12)

We now apply this to evaluate 1+ 1
n�

0
n (�). Observe that gn of (3.6) satis�es

log gn (t) = log
�
1� t2

�
� 2

n�1X
j=1

log

����1� t

�j

���� ;
so

g0n (t)

gn (t)
=

�2t
1� t2 + 2

n�1X
j=1

Re

�
1

�j � t

�
:



ORTHOGONAL RATIONAL FUNCTIONS 13

Thus, recalling (3.5),

1 +
1

n
�0n (�)

= 1� 1

2n�
PV

Z 1

�1

8<: �2t
1� t2 + 2

n�1X
j=1

Re

�
1

�j � t

�9=;
p
1� t2
t� x dt

= 1 +
1

n�
PV

Z 1

�1

t

t� x
dtp
1� t2

� 1

n

n�1X
j=1

0@1�
q
�2j � 1
�j � x

1A
=

1

n
+

Z
Re

(p
t2 � 1
t� x

)
d�n (t) ;

where we have used (3.12) and (3.8), and the fact that �n has a point mass
of size 1

n at in�nity. We now substitute this into (3.3), and observe that the

remaining terms are O
�
1=
p
1� x2

�
, independently of n and the choice of

f�ng. �

We can now give the

Proof of Theorem 3.1
By hypothesis, �n converges weakly to � as n!1. Moreover, the function
Re
np

t2�1
t�x

o
is uniformly continuous for t in A�, including at 1, and for

x 2 [�1; 1]. Thus for �xed x 2 (�1; 1) ;

lim
n!1

Z
Re

(p
t2 � 1
t� x

)
d�n (t) =

Z
Re

(p
t2 � 1
t� x

)
d� (t) :

The previous lemma now gives pointwise convergence of the Christo¤el func-
tions. Indeed, we have shown

�

n
��1n (d�n; x)

�0 (x)

j�n�1 (x)j2
p
1� x2 =

Z
Re

(p
t2 � 1
t� x

)
d� (t) + o (1) ;

which in view of Lemma 2.1 can be restated as

(3.13)
�

n
�rn (x)

�1 �0 (x)
p
1� x2 =

Z
Re

(p
t2 � 1
t� x

)
d� (t) + o (1) :

To prove the uniform convergence for x in a compact subset of (�1; 1), we
use the just stated uniform continuity of Re

np
t2�1
t�x

o
. Let " > 0. Then we

can �nd L � 1 and fxjgLj=1, such that for all x 2 [�1; 1],

min
1�j�L

sup
t2A�

�����Re
(p

t2 � 1
t� x

)
� Re

(p
t2 � 1
t� xj

)����� � ":
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Note that L and fxjg are independent of n. Then for all x 2 [�1; 1] ; and
appropriate 1 � j � L;�����

Z
Re

(p
t2 � 1
t� x

)
d�n (t)�

Z
Re

(p
t2 � 1
t� x

)
d� (t)

�����
�

Z �����Re
(p

t2 � 1
t� x

)
� Re

(p
t2 � 1
t� xj

)����� (d�n (t) + d� (t))
+

�����
Z
Re

(p
t2 � 1
t� xj

)
d�n (t)�

Z
Re

(p
t2 � 1
t� xj

)
d� (t)

�����
� 2"+ max

1�j�L

�����
Z
Re

(p
t2 � 1
t� xj

)
d�n (t)�

Z
Re

(p
t2 � 1
t� xj

)
d� (t)

����� :
The right-hand side is independent of x 2 [�1; 1], and approaches 2" as
n ! 1. This easily yields the stated uniform convergence. Of course the
1=
p
1� x2 term implicit in the order term in (3.7) prevents proving uniform

convergence throughout [�1; 1]. �

4. Proof of Theorem 1.1

We �rst prove a comparison result for Christo¤el functions:

Lemma 4.1
Let �; ! be regular measures on [�1; 1], and J = [a; b] be a subinterval of
(�1; 1) such that for some positive constant c, � = c! in J . Assume that
the sequence of poles A = f�1; �2; : : :g satis�es the hypotheses of Theorem
1.1. Assume that for x 2 (a; b) ;

(4.1) lim
"!0+

 
lim sup
n!1

����� �rn (d�; x)

�rn�["n] (d�; x)
� 1
�����
!
= 0:

Then for x 2 (a; b) ;

(4.2) lim
n!1

�rn (d!; x)

�rn (d�; x)
= c:

If (4.1) holds uniformly in (a; b), then (4.2) holds uniformly for x in compact
subsets of (a; b).
Proof
Let " > 0 and x 2 (a; b). By hypothesis, there exists � > 0 such that all our
poles lie in the set A� of Lemma 2.3. Let � be the number from that lemma.
From the ["n] poles �n�["n]; �n�["n]+1; :::; �n�1, we can construct at least
[["n] =3] rational functions with denominator degree at most 2 and with the
properties speci�ed in the Lemma 2.3. By multiplying these together, we
obtain a rational function S["n] 2 L["n]

�
�n�["n]; �n�["n]+1; :::; �n�1

	
, such
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that S["n] (x) = 1 and��S["n] (t)��2 � �1� � (t� x)2�[["n]=3] , t 2 [�1; 1] :
Then there exists � 2 (0; 1), depending only on the distance from x to
[�1; 1] n (a; b), such that for t 2 [�1; 1] nJ ,��S["n] (t)�� � �n:
(In addition, if we restrict x to a compact subinterval of (a; b), then we may
choose � independent of x.) Then with Ln�1 = Ln�1 f�1; �2; :::; �n�1g, and
Ln�["n]�1 = Ln�["n]�1

�
�1; �2; :::; �n�["n]�1

	
;

�rn (d!; x) = inf
R2Ln�1

R
jRj2 d!
jR (x)j2

� inf
R12Ln�["n]�1

R
jR1j2

��S["n]��2 d!
jR1 (x)j2

��S["n] (x)��2
� inf

R12Ln�["n]�1

 
c

R
J jR1j

2 d�

jR1 (x)j2
+ �2n

kR1k2L1[�1;1]
jR1 (x)j2

Z
[�1;1]nJ

d!

!
:

Here we have used the hypothesis that � = c! in J . Now because of the
regularity of the measure �, Lemma 2.2 gives

kR1k2L1[�1;1] � (1 + o (1))
n�["n]�1

Z
jR1j2 d�;

where the o (1) term is independent of R1, and decays to 0 as n!1. Thus

�rn (d!; x) �
�
c+ �2n (1 + o (1))n

�
inf

R12Ln�["n]�1

 R
jR1j2 d�
jR1 (x)j2

!
=

�
c+ �2n (1 + o (1))n

�
�rn�["n] (d�; x) :

Inasmuch as � < 1, this gives

(4.3) lim sup
n!1

�rn (d!; x)

�rn�["n] (d�; x)
� c:

Note that if we restrict x to a compact subinterval of (a; b), then this holds
uniformly for x in that compact subinterval, since � and the o (1) term are
independent of x. The other direction is similar. Using the regularity of !,
we obtain as above

�rn+["n] (d�; x) �
�
c�1 + �2n (1 + o (1))n

�
inf

R12Ln�1

 R
jR1j2 d!
jR1 (x)j2

!
=

�
c�1 + �2n (1 + o (1))n

�
�n (d!; x) ;

and so

lim sup
n!1

�rn+["n] (d�; x)

�rn (d!; x)
� c�1:
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This, (4.3), and our hypothesis (4.1), easily yield the result. �

Now we deduce:

Theorem 4.2
Let � and ! be regular measures on [�1; 1]. Let I be an open subinterval
of (�1; 1) in which ! is absolutely continuous with respect to �. Assume
that x 2 I is such that the Radon-Nikodym derivative d!

d� is positive and
continuous at x. Assume, moreover, that (4.1) holds uniformly in some
neighborhood of x. Let r > 0. Then uniformly for s 2 [�r; r] ;

(4.4) lim
n!1

�rn
�
d!; x+ s

n

�
�rn
�
d�; x+ s

n

� = d!

d�
(x) :

If d!
d� is positive and continuous in I and (4.1) holds uniformly in I, then

this last limit is also uniform for x in any compact subset of I.
Proof
Let " > 0 and

A =
d!

d�
(x) + ":

Choose an interval J � I containing x in its interior, such that
d!

d�
(t) � A; t 2 J:

Let !1 be the measure such that d!1 = d! in [�1; 1] nJ , and d!1 = A d� in
J . Then in [�1; 1] ;

d! � d!1
so for all t;

(4.5) �rn (d!; t) � �rn (d!1; t) .
Next, !1 is regular on [�1; 1] by a localization Theorem of Stahl and Totik
[17, Thm. 5.3.3, p. 148]. Indeed, !1 is regular when restricted to J (where it
is a positive multiple of a regular measure) and is the restiction of a regular
measure in [�1; 1] nJ , so is regular. Thus !1 and � are regular, and d!1 = A
d� in J , so Lemma 4.1 gives uniformly for s 2 [�r; r] ;

lim
n!1

�rn
�
d!1; x+

s
n

�
�rn
�
d�; x+ s

n

� = A:
Combining this and (4.5) gives, uniformly for s 2 [�r; r] ;

lim sup
n!1

�rn
�
d!; x+ s

n

�
�rn
�
d�; x+ s

n

� � A = d!

d�
(x) + ":

Here the left-hand side is independent of ", and " is arbitrary, so uniformly
for s 2 [�r; r] ;

(4.6) lim sup
n!1

�rn
�
d!; x+ s

n

�
�rn
�
d�; x+ s

n

� � d!

d�
(x) :
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In exactly the same way, given " 2
�
0; d!d� (x)

�
, we can let B = d!

d� (x) � ",
and choose an interval J containing x in its interior, such that

d!

d�
(t) � B; t 2 J:

Let !2 be the measure such that d!2 = d! in [�1; 1] nJ , and d!2 = B d�
in J . Then in [�1; 1] ;

d!2 � d!
so

(4.7) �rn (d!2; x) � �rn (d!; x) .
But !2 and � are regular, and d!2 = B d� in J , so Lemma 4.1 gives
uniformly for s 2 [�r; r] ;

lim
n!1

�rn
�
d!2; x+

s
n

�
�rn
�
d�; x+ s

n

� = B:
Combining this and (4.7) gives

lim inf
n!1

�rn
�
d!; x+ s

n

�
�rn
�
d�; x+ s

n

� � B = d!

d�
(x)� ":

Here the left-hand side is independent of ", and " is arbitrary, so

lim inf
n!1

�rn
�
d!; x+ s

n

�
�rn
�
d�; x+ s

n

� � d!

d�
(x) :

Together with (4.6), this gives the result at x. The uniformity in x follows
easily with simple adjustments, when d!

d� is positive and continuous in I. �
We can now turn to the

Proof of Theorem 1.1
We swap the roles of � and ! in Theorem 4.2. Let ! denote the Chebyshev
measure of the second kind on [�1; 1], so that ! is absolutely continuous,
and

!0 (x) =
p
1� x2, x 2 (�1; 1) :

Let r > 0. It follows from Theorem 3.1 that uniformly for x in compact
subsets of (�1; 1) and s 2 [�r; r] ;

(4.8) lim
n!1

n�rn

�
d!; x+

s

n

�
= �!0 (x)

p
1� x2=

Z
Re

(p
t2 � 1
t� x

)
d�(t):

Moreover, ! will satisfy (4.1) with ! replacing �. Our given measure � will
have Radon-Nikodym derivative

d�

d!
(x) =

�0 (x)

!0 (x)
=

�0 (x)p
1� x2

that exists a.e. in I. We now just apply Theorem 4.2 and (4.8) to deduce
the result. �
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5. Universality Limits

We shall base our universality result on one from [11], but �rst need some
concepts from potential theory for external �elds [15]. Let � be a closed set
on the real line, and

W (x) = exp (�Q (x))
be a continuous function on �. If � is unbounded, we assume that

lim
jxj!1;x2�

W (x) jxj = 0:

Associated with � and Q, we may consider the extremal problem

inf
!

�Z Z
log

1

jx� tjd! (x) d! (t) + 2
Z
Q d!

�
;

where the inf is taken over all positive Borel measures ! with support in �
and ! (�) = 1. The inf is attained by a unique equilibrium measure !Q,
characterized by the following conditions: let

V !Q (z) =

Z
log

1

jz � tjd!Q (t)

denote the potential for !Q. Then

V !Q +Q � FW on �;

V !Q +Q = FW in supp [!Q] :

Here the number FW is a constant. Usually !Q is denoted by �W ; �W ; �Q,
or �Q, but we use a di¤erent symbol to avoid confusion with our measures of
orthogonality � and f�ng, and the measure � that describes our distribution
of poles. Following is one of the main results from [11]. We emphasize that

the measures
n
�#n
o
in its statement are not initially the same as f�ng in

(2.1).

Lemma 5.1
For n � 1, let �#n be a positive Borel measure on the real line, with at least
the �rst 2n+ 1 power moments �nite. Let I be a compact interval in which
each �#n is absolutely continuous. Assume moreover that in I,

(5.1) d�#n (x) = h (x)W
2n
n (x) dx;

where

(5.2) Wn = e
�Qn

is continuous on I, and h is a bounded positive continuous function on I.
Let !Qn denote the equilibrium measure for the restriction of Wn to I. Let
J be a compact subinterval of Io. Assume that

(a)
n
!0Qn

o1
n=1

are positive and uniformly bounded in some open interval

containing J ;
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(b) fQ0ng
1
n=1 are equicontinuous and uniformly bounded in some open inter-

val containing J ;
(c) For some C1; C2 > 0, and for n � 1 and � 2 I, the Christo¤el functions
�n

�
d�#n ; �

�
satisfy

(5.3) C1 � ��1n
�
d�#n ; �

�
W 2n
n (�) =n � C2:

(d) Uniformly for � 2 J and a in compact subsets of the real line,

(5.4) lim
n!1

�n

�
d�#n ; � +

a
n

�
�n

�
d�#n ; �

� W 2n
n (�)

W 2n
n

�
� + a

n

� = 1:
Then uniformly for � 2 J , and a; b in compact subsets of the real line, we
have

(5.5) lim
n!1

eKn d�#n ; � + aeKn

�
d�#n ;�;�

� ; � + beKn

�
d�#n ;�;�

�
!

eKn �d�#n ; �; �� =
sin� (a� b)
� (a� b) :

Proof
See Theorem 1.2 in [11, p. 748]. �
We now let

(5.6) d�n (t) = d� (t) = j�n�1 (t)j2

and as in Section 2, let Kn (d�n; x; t) denote the corresponding reproducing
kernel, with normalized cousin

(5.7) ~Kn (d�n; x; t) = �
0
n (x)

1=2 �0n (t)
1=2Kn (d�n; x; t) :

In order to apply Lemma 5.1, we choose

(5.8) Wn (x) = e
�Qn(x) =

1

j�n�1 (x)j1=n
; x 2 [�1; 1] ;

so that

Qn (x) =
1

n
log j�n�1 (x)j =

1

n

n�1X
j=1

log

����1� x

�j

���� :
We shall need the equilibrium density for this external �eld. It is known [7],
but we provide a proof, as there are additional restrictions there.

Lemma 5.2
The equilibrium measure �n for the external �eld Qn on [�1; 1] ; is given by

(5.9) �0n (x) =
1

�
p
1� x2

Z
Re

(p
t2 � 1
t� x

)
d�n (t) , x 2 (�1; 1) ;
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Proof
De�ne �0n by (5.9). We have to prove that there is a constant C such that
for y 2 [�1; 1] ; Z 1

�1
log

1

jy � xj�
0
n (x) dx+Qn (y) = C;

for this property characterizes the equilibrium density [15]. It su¢ ces, in
turn, to establish the di¤erentiated form of this, namely

�PV
Z 1

�1

1

y � x�
0
n (x) dx+Q

0
n (y) = 0;

y 2 (�1; 1), where PV denotes Cauchy principal value. Integration of this
latter relation, with the appropriate justi�cation [15], then yields what we
need. Since

Q0n (y) =
d

dy
log j�n�1 (y)j1=n = �

1

n

n�1X
j=1

Re

�
1

�j � y

�
;

while �0n is also a sum, we see that it actually su¢ ces to prove for � =2 [�1; 1],
(allowing � =1) that

(5.10) �PV
Z 1

�1

1

y � x�
0
� (x) dx� Re

�
1

�j � y

�
= 0; y 2 (�1; 1) ;

where

�0� (x) =
1

�
p
1� x2

Re

(p
�2 � 1
�� x

)
:

When � = 1, then �0� (x) = 1=
�
�
p
1� x2

�
, and this last relation follows

from (3.8). Suppose now that � is �nite. We see that

PV

Z 1

�1

1

y � x�
0
� (x) dx

= Re

�p
�2 � 1 1

�
PV

Z 1

�1

1

y � x
1

�� x
dxp
1� x2

�
= Re

(p
�2 � 1
�� y

1

�
PV

Z 1

�1

�
1

y � x �
1

�� x

�
dxp
1� x2

)

= Re

(p
�2 � 1
�� y [0� 1p

�2 � 1
]

)
= �Re

�
1

�� y

�
;

by (3.8) and (3.9). So we have (5.10). �

The proof of Theorem 1.2
In the sequel, we let I be a closed subinterval of (�1; 1) in which � is ab-
solutely continuous, and in which �0 is positive and continuous. There is a
slight notational con�ict with the statement of Theorem 1.2 where I is open,
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but we can just take the I here to be a compact subinterval of the I there.
Let us recall that we de�ned �n by (5.6). We choose Wn (x), x 2 [�1; 1] by
(5.8). We let !Qn denote the equilibrium measure for Wn restricted to I.
The reason we work on the interval I, rather than [�1; 1], is that we need
the bound (5.3) on the Christo¤el functions to hold uniformly on I, and we
don�t have that bound throughout [�1; 1]. This complicates issues, as we
have a simple formula for the the equilibrium measure for Wn on [�1; 1],
but not such a simple one on I.
Let �n denote the equilibrium measure for Wn on [�1; 1], as in the lemma

above. It is also known that we can then obtain a representation for !Qn via
balayage of �nj[�1;1]nI onto I [15, Thm. IV.1.6(e), p. 196]. Thus if I = [a; b],
a representation for the balayage measure [15, Corollary II.4.12, p. 122]
gives
(5.11)

!0Qn (x) = �
0
n (x)jI +

1

�

Z
[�1;1]nI

���p(t� a) (t� b)���
jx� tj

p
(x� a) (b� x)

�0n (t) dt, x 2 I:

In order to apply Lemma 5.1, we choose

h(x) = �0 (x) ; x 2 I

and d�#n of Lemma 5.1, by

d�#n (t) = h (t)W
2n
n (t) dt =

1

j�n�1 (t)j2
�0 (t) dt, t 2 I:

We de�ne h = 1 and d�#n (t) = d� (t) = j�n�1 (t)j2 in [�1; 1] nI. Thus, with
�n de�ned by (5.6),

�#n = �n:

We can now show that under our hypotheses on the poles, all the hypotheses
of Lemma 5.1 are satis�ed.
(a) Let J be a compact subinterval of Io. We must show that

n
!0Qn

o1
n=1

are positive and uniformly bounded for t in some open interval containing

J . As all f�ng have support in A�, some � > 0, Re
np

t2�1
t�x

o
is uniformly

bounded for x 2 [�1; 1], and jtj � 2 with t 2
1S
n=1
supp[�n]. For x 2 [�1; 1],

and jtj � 2, we have the trivial bound�����
p
t2 � 1
t� x

����� � 2 jtj
jtj =2 = 4:

It follows that �0n of (5.9) admits the bound

�0n (x) �
Cp
1� x2

, x 2 (�1; 1) ;
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where C is independent of n and x. This and (5.11) easily yield the uniform

boundedness
n
!0Qn (x)

o
n
in a suitable open interval containing J .

(b) We see that

Qn (x) =

Z
log j1� x=tj d�n (t)

so

Q0n (x) = �
Z
Re

�
1

t� x

�
d�n (t) :

Then

��Q0n (y)�Q0n (x)�� �
Z ����Re� 1

t� x �
1

t� y

����� d�n (t)
� jy � xj

Z
1

jt� xj jt� yjd�n (t) �
jy � xj
�2

:

Thus fQ0ng even satisfy a uniform Lipschitz condition in [�1; 1], so are cer-
tainly equicontinuous on an open interval containing J .
(c) Lemma 2.1 gives

��1n (d�n; x) = �
r
n (x)

�1 j�n�1 (x)j2 :

Thus, with our choice (5.8) and as �#n = �n;

��1n

�
d�#n ; x

�
W 2n
n (x) =n = �rn (x)

�1 =n:

We can now apply the uniform convergence in (1.16) in Theorem 1.1, for x

in an open interval containing I, to obtain (5.3). Note that Re
np

t2�1
t�x

o
is bounded above and below by positive constants for x 2 [�1; 1] and
t 2

1S
n=1
supp[�n]. One way to prove this is to note that 1

�
p
1�x2 Re

np
t2�1
t�x

o
is the Poisson kernel for the exterior of [�1; 1] and hence has to be bounded
above and below by positive constants for t in each compact subset of
�Cn [�1; 1], and for x 2 [�1; 1].
(d) This also follows from the previous considerations and Theorem 1.1.

Then, by Lemma 5.1, we have

lim
n!1

~Kn

�
d�n; � +

a
~Kn(d�n;�;�)

; � + b
~Kn(d�n;�;�)

�
~Kn (d�n; �; �)

=
sin� (a� b)
� (a� b) ;
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uniformly for a; b in compact subsets of the real line. Using Lemma 2.1, we
can recast this as

lim
n!1

Kr
n

�
� + a

~Kr
n(�;�)

; � + b
~Kr
n(�;�)

�
Kr
n (�; �)

�n�1
�
� + a

~Kn(d�n;�;�)

�
�n�1

�
� + b

~Kn(d�n;�;�)

�
����n�1 �� + a

~Kn(d�n;�;�)

�
�n�1

�
� + b

~Kn(d�n;�;�)

����
= lim

n!1

Kn

�
d�n; � +

a
~Kn(d�n;�;�)

; � + b
~Kn(d�n;�;�)

�
Kn (d�n; �; �)

j�n�1 (�)j2����n�1 �� + a
~Kn(d�n;�;�)

�
�n�1

�
� + b

~Kn(d�n;�;�)

����
= lim

n!1

~Kn

�
d�n; � +

a
~Kn(d�n;�;�)

; � + b
~Kn(d�n;�;�)

�
~Kn (d�n; �; �)

=
sin� (a� b)
� (a� b) ;

uniformly for a; b in compact subsets of the real line. Here we have used the
continuity of �0 at �. The limit above is easily reformulated as (1.17).�
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