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Abstract. We show that uniform asymptotics of orthogonal polynomials on
the real line imply uniform asymptotics for all their derivatives. This is more
technically challenging than the corresponding problem on the unit circle. We
also examine asymptotics in the L2 norm.

1. Results

Let µ be a �nite positive Borel measure on [−1, 1] and let {pn}∞n=0 denote
the corresponding orthonormal polynomials, so that

∫ 1

−1
pnpm dµ = δmn.

Asymptotics for derivatives of pn have been established under various hy-
potheses [1], [2], [9], [10], [13]. Many of these results deal with orthogonal
polynomials on the unit circle. Recall that corresponding to µ, we may de�ne
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116 E. LEVIN and D. S. LUBINSKY

a measure σ on the unit circle by

dσ(θ) = d
(
µ(cos θ)

)
, θ ∈ [−π, π].

The absolutely continuous components of the two measures are connected by

(1.1) σ′(θ) = µ′(cos θ)| sin θ|.
Let {ϕn} denote the orthonormal polynomials for σ, so that

1
2π

∫ 2π

0
ϕn(eiθ)ϕm(eiθ) dσ(θ) = δmn.

The positive leading coe�cient of ϕn is denoted κn. In analysing {ϕn}, their
reversed cousins ϕ∗n play a useful role:

ϕ∗n(z) = znϕn(1/z).

We also need the monic orthogonal polynomials

Φn(z) = ϕn(z)/κn = zn + · · · .

In a recent paper [6], the second author proved that uniform asymptotics
for ϕn imply uniform asymptotics for the derivatives of ϕn. More precisely,
the following was proved, for general measures on the unit circle, that are not
necessarily linked with some orthogonal polynomials on the real line:

Theorem 1. Let J be a subinterval of [0, 2π], and assume that

lim
n→∞ϕ∗n(eiθ) = g(θ),

uniformly for θ ∈ J , where g(θ) 6= 0 for θ ∈ J . Let m = 1 and I ⊂ J0 be a
closed interval. Then uniformly for z = eiθ, θ ∈ I,

lim
n→∞ zmϕ(m)

n (z)/
(
nmϕn(z)

)
= 1.

The proof of this involves reworking ideas from a 1979 paper of Paul
Nevai [10]. It was also proved that ratio asymptotics for {Φn} imply ratio
asymptotics for their derivatives.

In this paper, we prove analogous results for orthogonal polynomials on
the real line. However, the formulation is more complex, because of the more
complicated form of the asymptotics. Assuming Szeg®'s condition on the real
line

(1.2)
∫ 1

−1

log µ′(x)√
1− x2

dx > −∞,
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one can form the Szeg® function

(1.3) D(z) = exp
(
− 1

4π

∫ π

−π
log σ′(θ)

z + eiθ

z − eiθ
dθ

)
,

where σ′ is given by (1.1). The standard Szeg® asymptotic for pn has the
form

(1.4) pn(x) =

√
2
π

Re
(
zn/D(z−1)

)
+ o(1),

as n →∞. Here and throughout, x, θ and z are connected by the relation

(1.5) x = cos θ; z = eiθ.

The Szeg® condition guarantees that (1.4) holds in an L2 sense, but not nec-
essarily pointwise. For pointwise or uniform asymptotics, one typically needs
some smoothness on w, such as a local L2 Lipschitz condition [4].

The relation (1.4) helps to explain the form of the hypothesis in the fol-
lowing theorem. In its formulation, and throughout the paper, we use the
notation

(1.6) Irf(z) =

{
Re f(z), if r is even
Im f(z), if r is odd.

We assume in the sequel that {pn} are the orthonormal polynomials corre-
sponding to the measure µ, and that σ is the corresponding measure on the
unit circle, with orthonormal polynomials {ϕn} and monic orthogonal poly-
nomials {Φn}. We also let [x] denote the greatest integer 5 x. Thus for a
positive integer r, we have

(−1)[r/2] =

{
(−1)r/2, if r is even
(−1)(r−1)/2, if r is odd.

We use D = d
dθ , which should not be confused with the Szeg® function D(z).

Finally, if I is a subinterval of [−1, 1], then Ĩ =
{

θ ∈ [0, π] : cos θ ∈ I
}

is the
image of I under the function arc cos, while Î =

{
eiθ : θ ∈ Ĩ

}
is the projec-

tion of I onto the unit circle.
Theorem 2. Let µ be a positive Borel measure on [−1, 1]. Assume that

I is a closed subinterval of (−1, 1), and uniformly for x = cos θ ∈ I, we have
as n →∞,

(1.7) pn(x) = Re
(
znf(z)

)
+ o(1),
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118 E. LEVIN and D. S. LUBINSKY

where f is bounded in Î. Assume moreover, that

(1.8) lim
n→∞Φn(0) = 0.

Let r = 1 and I1 be a closed subinterval of I0. Then uniformly for x ∈ I1,

(1.9) n−r(1− x2)
r
2 (−1)[

r
2 ]p(r)

n (x) = Ir

(
znf(z)

)
+ o(1).

Note that if µ′ is positive a.e. in (−1, 1), then (1.8) is true [11, p. 467], so
we have:

Corollary 3. Assume the hypotheses of Theorem 2, except that instead
of (1.8), we assume that µ′ is positive a.e. in (−1, 1). Then the conclusion
of Theorem 2 is true.

Thus Theorem 2 asserts that once we have uniform asymptotics for or-
thogonal polynomials, we also obtain uniform asymptotics for their deriva-
tives.

We shall also study mean asymptotics of derivatives of orthogonal poly-
nomials. As far as the authors are aware, this has not been studied in general.

Theorem 4. Let µ be a positive absolutely continuous Borel measure on
[−1, 1] satisfying Szeg®'s condition (1.2). Assume, moreover, that σ admits
the following Markov�Bernstein inequality: for n = 1, and all trigonometric
polynomials R of degree 5 n,

(1.10)
[ ∫ π

−π
|R′|2 dσ

]1/2

5 Cn

[ ∫ π

−π
|R|2 dσ

]1/2

.

Let r = 1. Let D be the Szeg® function de�ned by (1.3). Then

lim
n→∞

∫ π

0

∣∣∣∣∣n
−r(−1)[

r
2 ]

(
d

dθ

)r [
pn(cos θ)

] −
√

2
π
Ir

(
zn/D(z−1)

)
∣∣∣∣∣
2

dσ(θ) = 0

(1.11)

and for each compact subinterval I of (−1, 1),

lim
n→∞

∫

I

∣∣∣∣∣n
−r(1− x2)

r
2 (−1)[

r
2 ]p(r)

n (x)−
√

2
π
Ir

(
zn/D(z−1)

)
∣∣∣∣∣
2

dµ(x) = 0.

(1.12)

Corollary 5. Under the hypotheses of Theorem 4,

(1.13) lim
n→∞

∫ 1

−1

∣∣∣∣∣n
−1(1− x2)

1
2 p′n(x)−

√
2
π

Im
(
zn/D(z−1)

)
∣∣∣∣∣
2

dµ(x) = 0.
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DERIVATIVES OF ORTHOGONAL POLYNOMIALS ON THE REAL LINE 119

It is not clear that (1.12) holds with I = (−1, 1) and r = 2 without addi-
tional assumptions on w, such as further Markov�Bernstein or Schur inequal-
ities. One can already observe some of the di�culties for r = 2:

D2
[
pn(cos θ)

] − p′′n(cos θ)(sin θ)2 = −p′n(cos θ) cos θ = cot θ D[
pn(cos θ)

]
,

and the term cot θ becomes unbounded near the endpoints of [0, π]. For
Jacobi weights, one can verify that the requisite estimates hold.

The hypothesis (1.10) holds for Jacobi weights, generalized Jacobi
weights, and still more generally, the doubling weights of Mastroianni and
Totik [7]. It is likely that there are Szeg® weights violating (1.10), but we do
not have an explicit example.

We shall also state a local version of Theorem 4:
Theorem 6. Let µ be a positive absolutely continuous Borel measure on

[−1, 1] satisfying Szeg®'s condition (1.2). Assume that L is a closed subinter-
val of [−1, 1] in which σ admits the following Markov�Bernstein inequality:
for n = 1, and all trigonometric polynomials R of degree 5 n,

(1.14)
[ ∫

L̃
|R′|2 dσ

]1/2

5 Cn

[ ∫ π

−π
|R|2 dσ

]1/2

.

Then the conclusion (1.11) holds if (0, π) is replaced by L̃, while (1.12) holds
for any closed subinterval I of L0.

In particular, if σ′ is bounded above and below by positive constants in
some closed interval L1, then the hypothesis (1.14) of Theorem 6 is satis�ed
with L taken as any compact subinterval of the interior of L1. In the sequel
C, C1, C2, . . . denote constants independent of n, x, θ. The same symbol
does not necessarily denote the same constant in di�erent occurrences. We
shall write C = C(α) or C 6= C(α) to denote dependence on, or independence
of, α, respectively.

2. Proof of Theorem 2

In the proof of Theorem 2, we need the polynomials {qn}, orthonormal
with respect to the weight (1− x2)w(x):

∫ 1

−1
qn(x)qm(x)(1− x2)w(x) dx = δmn.

We also set

βm =
1√
2π

(
1 + Φm(0)

)−1/2; λm =
1√
2π

(
1− Φm(0)

)−1/2
.
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120 E. LEVIN and D. S. LUBINSKY

The most important idea is to represent ϕ∗n in terms of pn alone. The ideas
to do this are contained in a paper of Máté, Nevai and Totik [8, p. 262 �.],
although the identity in (b) below is not stated in the form there.

Lemma. (a)

pn(x) = β2n

{
z−nϕ2n(z) + znϕ2n

(
1
z

)}
;(2.1)

qn(x) = 2λ2n+2
z−n−1ϕ2n+2(z)− zn+1ϕ2n+2

(
1
z

)

z − z−1
.(2.2)

(b)

2znϕ∗2n

(
1
z

)
=

i√
1− x2

[
z−1pn(x)

β2n
− pn+1(x)

β2n+2
+ Re

(
ηn(z)

)]
,(2.3)

where

(2.4) ηn(z) = 2z−n−1ϕ2n(z)
[
ϕ2n+2(z)
ϕ2n(z)

− z2

]
.

Proof. (a) See [12, p. 294].
(b) Since z − z−1 = 2i

√
1− x2, we can rewrite the identities of (a) as

pn(x)
β2n

= z−nϕ2n(z) + znϕ2n

(
1
z

)
;

i
qn−1(x)

λ2n

√
1− x2 = z−nϕ2n(z)− znϕ2n

(
1
z

)
.

We add these to obtain

(2.5) pn(x)
β2n

+ i
qn−1(x)

λ2n

√
1− x2 = 2z−nϕ2n(z)

and hence
pn+1(x)
β2n+2

+ i
qn(x)
λ2n+2

√
1− x2 = 2z−n−1ϕ2n+2(z).

We multiply the second last equation by z and subtract it from the last equa-
tion, to obtain

[
pn+1(x)
β2n+2

− z
pn(x)
β2n

]
+ i

√
1− x2

[
qn(x)
λ2n+2

− z
qn−1(x)

λ2n

]
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DERIVATIVES OF ORTHOGONAL POLYNOMIALS ON THE REAL LINE 121

= 2z−n−1ϕ2n+2(z)− 2z−n+1ϕ2n(z) = ηn(z).

Now take real parts:
[
pn+1(x)
β2n+2

− x
pn(x)
β2n

]
+ (1− x2)

qn−1(x)
λ2n

= Re
(
ηn(z)

)

and hence

(1− x2)
qn−1(x)

λ2n
= Re

(
ηn(z)

) −
[
pn+1(x)
β2n+2

− x
pn(x)
β2n

]
.

Then (2.5) gives

2z−nϕ2n(z) =
pn(x)
β2n

+
i√

1− x2

[
Re

(
ηn(z)

) −
[
pn+1(x)
β2n+2

− x
pn(x)
β2n

]](2.6)

=
i√

1− x2

[
pn(x)
β2n

z−1 − pn+1(x)
β2n+2

+ Re
(
ηn(z)

)]
.

As ϕ2n has real coe�cients, we see that

z−nϕ2n(z) = znϕ∗2n

(
1
z

)
,

and then the result follows (cf. [4], p. 189, Lemma 1.3).
Proof of Theorem 2. We have by our hypothesis (1.8),

lim
n→∞βn =

1√
2π

= lim
n→∞λn.

By standard results [11, pp. 91�92], (1.8) also ensures that

lim
n→∞

ϕn+1(z)
zϕn(z)

= 1,

uniformly in
{

z : |z| = 1
}
, and hence uniformly in the same region,

lim
n→∞

ϕ2n+2(z)
z2ϕ2n(z)

= 1.

Then uniformly for z ∈ Î, ηn(z) = o(
∣∣ϕ2n(z)

∣∣).
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122 E. LEVIN and D. S. LUBINSKY

Next, the boundedness of f , and our assumed asymptotic (1.7) for {pn}
give for n = 1, ∣∣pn(x)

∣∣ 5 C
∣∣f(z)

∣∣ + C 5 C1.

Then (2.6) implies also that
∣∣ϕ2n(z)

∣∣ 5 C[1 +
∣∣ηn(z)

∣∣ ] 5 C[1 + o(
∣∣ϕ2n(z)

∣∣)].

Then {ϕ2n}n must be uniformly bounded in Î, and so limn→∞ ηn(z) = 0,
uniformly in Î. From (2.3), we now deduce that uniformly in Î,

2znϕ∗2n

(
1
z

)
=

i√
1− x2

[
z−1pn(x)

β2n
− pn+1(x)

β2n+2
+ o(1)

]
(2.7)

=
√

2π
i√

1− x2

[
pn(x)z−1 − pn+1(x)

]
+ o(1).

Now write, for a given x, and n, znf(z) = a + ib. Then

Re
(
zn+1f(z)

)
= Re

(
z(a + ib)

)
= ax− b

√
1− x2,

Substituting our assumed asymptotics for pn into (2.7), and using these last
observations,

√
2
π

(1− x2)znϕ∗2n

(
1
z

)
= i[az−1 − ax + b

√
1− x2] + o(1)

=
√

1− x2[a + ib] + o(1) =
√

1− x2znf(z) + o(1).

Thus uniformly for z ∈ Î,

(2.8) ϕ∗2n

(
1
z

)
=

√
π

2
f(z) + o(1)

and hence uniformly for z such that z̄ ∈ Î,

(2.9) ϕ∗2n(z) =
√

π

2
f

(
1
z

)
+ o(1).

From this, we deduce that uniformly for z such that z̄ ∈ Î,

ϕ∗2n(z)− ϕ∗2[
√

n ](z) = o(1).
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Since ϕn has real coe�cients, this also implies that uniformly for z ∈ Î,

ϕ∗2n(z)− ϕ∗2[
√

n ](z) = o(1).

Now let I1 be a closed subinterval of I0. Recall our notation D = d
dθ . Local

Markov�Bernstein inequalities [3, pp. 242�243] give in Î1,
∥∥∥D`(ϕ∗2n − ϕ∗2[

√
n ])

∥∥∥
L∞(Î1)

= o(n`)

and also ∥∥∥D`ϕ∗2[
√

n ]

∥∥∥
L∞(Î1)

= O(
√

n )
`
.

Combining these gives
∥∥∥D`ϕ∗2n

∥∥∥
L∞(Î1)

= o(n`), ` = 1.

Di�erentiating the relation

pn(cos θ) = 2β2n Re
[
e−inθϕ∗2n(eiθ)

]

which follows from (2.1), and using Leibniz's formula, we obtain, uniformly
for θ ∈ Ĩ1,

Dr
[
pn(cos θ)

]
= 2β2n

r∑

j=0

(
r

j

)
Re [(−in)r−je−inθDj

[
ϕ∗2n(eiθ)

]
](2.10)

= 2β2n Re
[
(−in)re−inθϕ∗2n(eiθ)

]
+ o(nr).

In particular then,

(2.11) sup
θ∈Ĩ1

|Dr
[
pn(cos θ)

]| 5 Cnr.

Next, Faa di Bruno's formula for derivatives of a composition of functions [5,
p. 19], gives

Dr
[
pn(cos θ)

]
(2.12)

=
∑ r!

j1!j2! . . . jm!
p(`)

n (cos θ)
(− sin θ

1!

)j1 (− cos θ

2!

)j2

. . .

(Dm cos θ

m!

)jm

,
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where the sum is over all m = 1 and m-tuples (j1, j2, . . . , jm) of positive in-
tegers with j1 + 2j2 + · · ·+ mjm = r, while ` = j1 + j2 + · · ·+ jm. From this,
we see that p

(r)
n arises only when m = 1, j1 = r. Thus

Dr
[
pn(cos θ)

]
= p(r)

n (cos θ)(− sin θ)r + Σ,

where Σ is a linear combination of p
(k)
n (cos θ), 0 5 k 5 r − 1, multiplied by

powers of sin and cos. We then see that

n−r|Dr
[
pn(cos θ)

] − p(r)
n (cos θ)(− sin θ)r| 5 C2 max

05k5r−1
n−r|p(k)

n (cos θ)|.
(2.13)

Applying (2.11), this last inequality, and using induction on r, we see that

sup
x∈I1
|p(r)

n (x)| 5 Cnr,

and hence

sup
x∈I1
|Dr

[
pn(cos θ)

] − p(r)
n (cos θ)(− sin θ)r| 5 Cnr−1.

Finally (2.10) gives

p(r)
n (cos θ)(− sin θ)r = 2β2n Re

[
(−in)re−inθϕ∗2n(eiθ)

]
+ o(nr)

and hence from (2.9),

n−rp(r)
n (x)(1− x2)r/2 = Re

[
ire−inθf(e−iθ)

]
+ o(1).

Since (2.9) implies f(e−iθ) = f(eiθ) and since for any complex number u,

Re[iru] =

{
(−1)r/2 Re u, if r is even,
(−1)(r−1)/2 Imu, if r is odd

= (−1)[r/2]Ir(u),

the result follows. ¤
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3. Proof of Theorems 4 and 6

From (2.10),
[ ∫ π

0
|Dr

[
pn(cos θ)

] − 2β2n Re
[
(−in)re−inθϕ∗2n(eiθ)

]|2 dσ(θ)
]1/2

(3.1)

5 2|β2n|
r∑

j=1

(
r

j

)
nr−j

[ ∫ π

0
|Dj

[
ϕ∗2n(eiθ)

]|2 dσ(θ)
]1/2

5 Cnr−1

[ ∫ π

0

∣∣Dϕ∗2n(eiθ)
∣∣2

dσ(θ)
]1/2

,

by repeated application of our Markov inequality (1.10). Next,
[ ∫ π

0

∣∣Dϕ∗2n(eiθ)
∣∣2

dσ(θ)
]1/2

5
[ ∫ π

0
|D(ϕ∗2n − ϕ∗[√n ])(e

iθ)|2 dσ(θ)
]1/2

+
[ ∫ π

0
|Dϕ∗[√n ](e

iθ)|2 dσ(θ)
]1/2

5 Cn

[ ∫ π

0
|(ϕ∗2n − ϕ∗[√n ])(e

iθ)
2| dσ(θ)

]1/2

+ C
√

n

[ ∫ π

0
|ϕ∗[√n ](e

iθ)|2 dσ(θ)
]1/2

= o(n),

because of the classical Szeg® asymptotics [11, p. 144] and (2.9)

(3.2) lim
m→∞

∫ π

−π

∣∣ϕ∗m(eiθ)−D−1(eiθ)
∣∣2

dσ(θ) = 0.

Recall here that D(z) is the Szeg® function, given by (1.3). Thus, from (3.1),
[ ∫ π

0
|n−rDr

[
pn(cos θ)

] − 2β2n Re
[
(−i)re−inθϕ∗2n(eiθ)

]|2 dσ(θ)
]1/2

= o(1).

Using the just stated Szeg® asymptotics (3.2), and the fact that β2n → 1/
√

2π,
we can restate this as

[ ∫ π

0
|n−rDr

[
pn(cos θ)

] −
√

2
π

Re
[
(−i)re−inθD−1(eiθ)

]|2 dσ(θ)
]1/2

= o(1).

(3.3)
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126 E. LEVIN and D. S. LUBINSKY

The �rst part (1.11) of the theorem now follows. Next, let I be a compact
subinterval of (−1, 1). For each r, and all n = 1,

(3.4)
∫ π

0
|n−rDr

[
pn(cos θ)

]|2 dσ(θ) 5 C.

This implies that for each r,

(3.5) sup
n=1

∫

Ĩ
|n−rp(r)

n (cos θ)|2 dσ(θ) 5 C.

This follows by an easy induction on r, using the identity (2.12), and the fact
that sin θ =

√
1− x2 is bounded below in I. Next, as at (2.13),

[ ∫

Ĩ

∣∣∣n−r|Dr
[
pn(cos θ)

] − p(r)
n (cos θ)(− sin θ)r|

∣∣∣
2
dσ(θ)

]1/2

5 C
r−1∑

`=0

[ ∫

Ĩ
|n−rp(`)

n (cos θ)|2 dσ(θ)
]1/2

= O(n−1),

by (3.5). This and (3.3) give
∫

Ĩ

∣∣∣∣n−rp(r)
n (cos θ)(− sin θ)r −

√
2
π

Re
[
(−i)re−inθD−1(eiθ)

]∣∣∣∣
2

dσ(θ) = o(1).

Transferring this to the interval I and taking account of whether r is even or
odd, gives (1.12). ¤

Proof of Corollary 5. This is the case r = 1 of (1.11), after a sub-
stitution. ¤

Proof of Theorem 6. This is the same as that of Theorem 4, with
obvious modi�cations. ¤
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