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Abstract

Let {λj}∞j=1 be a sequence of distinct positive numbers. We find explicit
formulae for the orthogonal Dirichlet polynomials {ψn} formed from linear

combinations of
{
λ−itj

}n
j=1
, associated with the Laguerre weight. Thus

∫ ∞
0

ψn (t)ψm (t)e−tdt = δmn.

In addition, we estimate Christoffel functions and establish Markov-Bernstein
inequalities.
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1. Introduction

Throughout, let

{λj}∞j=1 be a sequence of distinct positive numbers. (1.1)

Given m ≥ 1, a Dirichlet polynomial of degree ≤ n [7], [9] associated with
this sequence of exponents has the form

m∑
n=1

anλ
−it
n =

m∑
n=1

ane
−i(log λn)t,

where {an} ⊂ C. We denote the set of all such polynomials by Ln.
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The traditional orthogonal Dirichlet polynomials are just the “monomi-
als"

{
λ−itn

}
themselves. Indeed, in the theory of almost-periodic functions

[1], [2], heavy use is made of orthogonality in the mean:

lim
T→∞

1

T

∫ T

0
λ−itj λ−itk dt = δjk.

In the hope that a more standard orthogonality relation might have some
advantages, the author [5], investigated Dirichlet orthogonal polynomials
associated with the arctangent density. Thus φn ∈ Ln has positive leading
coeffi cient, and∫ ∞

−∞
φn (t)φm (t)

dt

π (1 + t2)
= δmn, m, n ≥ 1.

These Dirichlet orthogonal polynomials admit a very simple explicit expres-
sion, at least when 1 = λ1 < λ2 < · · · :

Theorem A. For n = 1, φ1 = 1, and for n ≥ 2,

φn (t) =
λ1−it
n − λ1−it

n−1√
λ2
n − λ2

n−1

.

In that paper, we also analyzed the associated Christoffel functions, es-
tablished universality limits, and proved Markov—Bernstein inequalities. We
note that Krein systems [4], which involve “continuous orthogonal polyno-
mials", have been intensively studied, but do not seem to have much contact
with the type of Dirichlet orthogonal polynomials considered in [5] or here.

In this paper, we study the Dirichlet orthogonal polynomials for the
Laguerre weight. Thus ψn ∈ Ln, has positive leading coeffi cient, and

(ψn, ψm) =

∫ ∞
0

ψn (t)ψm (t)e−tdt = δmn. (1.2)

We present explicit representations for ψn in Section 2, as well as related
identities. In Section 3, we present estimates for Christoffel functions, and
Markov-Bernstein inequalities. The results of Section 2 are proved in Sec-
tion 4, and those of Section 3 in Section 5.

As far as we know, the results are new. There is a vast literature dealing
with density of complex exponentials on a finite interval, and also on non-
harmonic Fourier series (see e.g. [10]), but this does not seem to overlap the
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topic of this paper. We expect that a theory of orthogonal Dirichlet poly-
nomials for various weights, will give new insight into properties of general
Dirichlet polynomials.

Throughout, in addition to the inner product in (1.2), we use the induced
norm

‖f‖ =

(∫ ∞
0
|f (t)|2 e−tdt

)1/2

.

2. Identities

For n ≥ 1, we let

Rn (z) =
1

z − i log λn

n−1∏
j=1

(
1 +

1

z − i log λj

)
; (2.1)

Dn =

n−1∏
k=1

(
1 + [i log (λk/λn)]−1

)
; (2.2)

and
∆n = Dn/ |Dn| . (2.3)

We begin with explicit representations for ψn:

Theorem 2.1. Let {λj}∞j=1 be a distinct sequence of positive numbers. Let
n ≥ 1.
(a) Let Γ be a simple closed positively oriented contour in the half-plane
Re z > −1 that encloses i log λj, 1 ≤ j ≤ n. For t ∈ C,

ψn (t) =
∆n

2πi

∫
Γ
e−tzRn (z) dz. (2.4)

(b)

ψn (t) =

n∑
`=1

Bn`λ
−it
` , (2.5)

where for ` < n,

Bn` =
∆n

i log λ`/λn

n−1∏
j=1,j 6=`

(
1 +

1

i log λ`/λj

)
and

Bnn = |Dn| =
(
n−1∏
k=1

(
1 + [log (λn/λk)]

−2
))1/2

. (2.6)
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(c) Let 0 < α < 1 and ∆n be as in (2.3). Then for t ∈ (0,∞),

ψn (t) = −∆n

2π
etα
∫ ∞
−∞

e−itsRn (−α+ is) ds. (2.7)

Remarks. (a) One consequence of the explicit formula for the leading coef-

ficient Bnn is an expression for the distance from λ−itn to Span
{
λ−itj

}n−1

j=1
:

inf
c1,c2,...,cn−1

∥∥∥∥∥∥λ−itn −
n−1∑
j=1

cjλ
−it
j

∥∥∥∥∥∥ = B−1
nn =

(
n−1∏
k=1

(
1 + [log (λn/λk)]

−2
))−1/2

.

Indeed, this follows directly from the minimality properties of “monic" or-
thogonal polynomials.
(b) Theorem 2.1(c) is an analogue of a Bromwich type integral for Müntz
orthogonal polynomials given in [8].

Define the nth reproducing kernel

Kn (u, v) =
n∑
j=1

ψj (u)ψj (v).

Theorem 2.2. (a)
ψn (0) = ∆n. (2.8)

(b)
ψ′n (t) = (−i log λn)ψn (t)− ψn (0)Kn−1 (t, 0) . (2.9)

(c)
ψn (t)

ψn (0)
= λ−itn

{
1 +

∫ t

0
λisnKn−1 (s, 0) ds

}
. (2.10)

(d) ∫ ∞
0

∣∣ψ′n (t)
∣∣2 e−tdt = (log λn)2 + n− 1. (2.11)

(e)
ψ′n (0)

ψn (0)
= − (n− 1 + i log λn) . (2.12)

(f)

ψ′′n (0)

ψn (0)
= − (log λn)2 + i

n−1∑
j=1

log (λjλn) +
(n− 1) (n− 2)

2
. (2.13)

4



Following is the representation of monomials in terms of the orthonormal
polynomials:

Theorem 2.3. For ` ≥ 1,

λ−it` =
∑̀
j=1

c`jψj (t) , (2.14)

where

c`` = B−1
`` =

[
`−1∏
k=1

(
1 +

[
log

λ`
λk

]−2
)]−1/2

(2.15)

and for j < `,
c`j = −∆jRj (1 + i log λ`) , (2.16)

where ∆j and Rj are given respectively by (2.3) and (2.1). Moreover,∑̀
j=1

|c`j |2 = 1. (2.17)

3. Estimates and Inequalities

The nth Christoffel function is

Λn (x) = inf
P∈Ln

∫∞
0 |P (t)|2 e−tdt
|P (x)|2

= 1/
n∑
j=1

∣∣ψj (x)
∣∣2 .

Christoffel functions play an important role in analysing orthogonal polyno-
mials, and in approximation theory [6]. We show that e−xΛn (x), and some
derivative cousins, are decreasing functions.

Theorem 3.1. (a) Let n ≥ 1 and ` ≥ 0. The function

e−x
n∑
j=1

∣∣∣ψ(`)
j (x)

∣∣∣2 (3.1)

is a decreasing function of x ∈ [0,∞).
(b) In particular, for x ∈ [0,∞),

e−x
n∑
j=1

∣∣ψj (x)
∣∣2 ≤ n∑

j=1

∣∣ψj (0)
∣∣2 = n; (3.2)

e−x
n∑
j=1

∣∣ψ′j (x)
∣∣2 ≤ n∑

j=1

∣∣ψ′j (0)
∣∣2 =

n (n− 1) (2n− 1)

6
+

n∑
j=1

(log λj)
2 . (3.3)
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The estimate can be compared to the results in [5], where the factors of
n are absent, and the growth is governed by log λn. The jump discontinuity
at 0 in the Laguerre weight, is the reason for the powers of n. Next, we
present Markov-Bernstein inequalities:

Theorem 3.2. For n ≥ 1 and P ∈ Ln, we have

∥∥P ′∥∥ ≤ ( max
1≤j≤n

|log λj |+
√
n (n− 1)

2

)
‖P‖ . (3.4)

Remark. Now (2.11) shows that

∥∥ψ′n∥∥ / ‖ψn‖ =

√
(log λn)2 + n− 1,

so Theorem 3.2 is sharp with respect to the rate of growth in log λn. To
see that the right-hand side of (3.4) must include a constant multiple of
n, one can use the polynomial Pn (t) = Kn (t, 0). Here ‖Pn‖2 = n, and a
straightforward calculation shows that

∥∥P ′n∥∥ ≥
√
n (n− 1) (2n− 1)

6
−

√
n

(
max

1≤j≤n
|log λj |

)2

,

so at least when n� log λn,∥∥P ′n∥∥ / ‖Pn‖ ≥ n√
3

(1 + o (1)) .

4. Proofs of Theorem 2.1-2.3

Proof of (.a), (b) Assume that ψn is defined by the integral in (2.4). Then

Ij =

∫ ∞
0

ψn (t)λitj e
−tdt

=
∆n

2πi

∫ ∞
0

[∫
Γ
e−tzRn (z) dz

]
λitj e

−tdt

=
∆n

2πi

∫
Γ
Rn (z)

[∫ ∞
0

e−t[z−i log λj+1]dt

]
dz

=
∆n

2πi

∫
Γ
Rn (z)

1

z − i log λj + 1
dz. (4.1)
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Here the interchange and integration are justified as Γ lies in Re z > −1.
The integrand in the right-hand side of (4.1) is analytic outside Γ except
for a simple pole at −1 + i log λj , and is O

(
z−2
)
as z →∞, recall (2.1). So

we can deform Γ into a negatively oriented circle C center −1 + i log λj and
radius 1

2 . Thus

Ij =
∆n

2πi

∫
C
Rn (z)

1

z − i log λj + 1
dz = −∆nRn (−1 + i log λj) .

Then from (2.1),
Ij = 0, 1 ≤ j ≤ n− 1,

so ψn is an orthogonal polynomial. For j = n, instead

In = −∆nRn (−1 + i log λn)

= ∆n

n−1∏
j=1

1

− (i log λn/λj)
−1 + 1

=
Dn

|Dn|

n−1∏
j=1

(
1 + (i log λj/λn)−1

)−1
=

1

|Dn|
. (4.2)

Next, as Rn has simple poles inside Γ at i log λj , 1 ≤ j ≤ n− 1, the residue
theorem and the partial fraction decomposition or Rn (z) show that

ψn (t) =

n∑
`=1

Bn`λ
−it
` ,

so ψn ∈ Ln, where

Bnn = ∆n

n−1∏
j=1

(
1 +

1

i log λn/λj

)
=

Dn

|Dn|
Dn = |Dn| , (4.3)

recall (2.2). Moreover, for ` < n,

Bn` =
∆n

i log λ`/λn

n−1∏
j=1,j 6=`

(
1 +

1

i log λ`/λj

)
.

It remains to show that ψn is orthonormal. Orthogonality gives∫ ∞
0
|ψn (t)|2 e−tdt =

∫ ∞
0

ψn (t)Bnnλ
it
ne
−tdt = |Dn| In = 1,
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by (4.2).
(c) Let L be a large positive number, and 0 < α < 1 < β. Let t ∈ (0,∞).
We can take Γ in (a) to be a rectangular contour, consisting of vertical line
segments Γ1 = {β + is : s ∈ [−L,L]} and −Γ3 = {−α+ is : s ∈ [−L,L]},
and horizontal line segments −Γ2 = {s+ iL : s ∈ [−α, β]}, Γ4 = {s − iL :
s ∈ [−α, β]}. Here as Rn (z) = O

(
z−1
)
, z → ∞, we see that for large

enough L, ∣∣∣∣∫
Γ4

e−tzRn (z) dz

∣∣∣∣ ≤ (α+ β) e|t|max{α,β}C

L
,

where C is independent of L. A similar estimate holds for
∫

Γ2
. We now let

L→∞, to deduce that

ψn (t) =
∆n

2π

∫ ∞
−∞

[
e−t(β+is)Rn (β + is)− e−t(−α+is)Rn (−α+ is)

]
ds.

(4.4)
We next let β → ∞, in the first integral and show that it has limit 0.
Since the integral is not absolutely convergent, this requires some care. We
integrate by parts, and use Rn (z) = O

(
1
z

)
at ∞ to obtain∣∣∣∣∫ ∞

−∞
e−t(β+is)Rn (β + is) ds

∣∣∣∣ =

∣∣∣∣e−tβt
∫ ∞
−∞

e−itsR′n (β + is) ds

∣∣∣∣
≤ e−tβ

t

∫ ∞
−∞

∣∣R′n (β + is)
∣∣ ds

≤ C e
−tβ

t

∫ ∞
−∞

ds(
β2 + s2

) ,
where C is independent of β. We can now let β → ∞ and obtain the
result. �

We note that it is also possible to derive the explicit formula for the
coeffi cients from the determinantal representation for ψn involving moments.
Indeed, (

λ−itj , λ−itk

)
=

1

1 + i (log λj − log λk)
,

and one can then use Cauchy’s determinant formula to evaluate the coef-
ficients Bn`. This was the author’s first method, but the contour integral
approach is shorter. �

Proof of (.a) From (2.4),

ψn (0) = ∆n
1

2πi

∫
Γ
Rn (z) dz.
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Here Rn is analytic outside Γ and Rn (z) = 1
z (1 + o (1)) as z →∞. Hence,

deforming the contour into ∞ gives ψn (0) = ∆n.
(b) Since

d

dt

(
λ−itn

)
= (−i log λn)λ−itn ,

we can write, for some {cj},

ψ′n (t) = (−i log λn)ψn (t) +
n−1∑
j=1

cjψj (t) .

An integration by parts gives, for j ≤ n− 1,

cj =

∫ ∞
0

ψ′n (t)ψj (t)e−tdt

= −ψn (0)ψj (0)−
∫ ∞

0
ψn (t)ψ′j (t)e−tdt+

∫ ∞
0

ψn (t)ψj (t)e−tdt

= −ψn (0)ψj (0).

So

ψ′n (t) = (−i log λn)ψn (t)− ψn (0)
n−1∑
j=1

ψj (0)ψj (t)

= (−i log λn)ψn (t)− ψn (0)Kn−1 (t, 0) .

(c) This follows by solving the first order linear differential equation in the
last line.
(d), (e) These follow directly from (a), (b), from orthonormality, and the
fact that |∆n| = 1.
(f) From (b),

ψ′′n (t) = (−i log λn)ψ′n (t)− ψn (0)

n−1∑
j=1

ψj (0)ψ′j (t)

= (−i log λn) [(−i log λn)ψn (t)− ψn (0)Kn−1 (t, 0)]

− ψn (0)
n−1∑
j=1

ψj (0)
{

(−i log λj)ψj (t)− ψj (0)Kj−1 (t, 0)
}
.
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Then

ψ′′n (0) /ψn (0) = − (log λn)2 + (i log λn) (n− 1)

+
n−1∑
j=1

{i log λj + j − 1}

= − (log λn)2 + i
n−1∑
j=1

log (λjλn) +
(n− 1) (n− 2)

2
.

�
Remark. One can also use integration by parts in

1 =

∫ ∞
0
|ψn (t)|2 e−tdt

to derive |ψn (0)| = 1.

Proof of C.omparing leading coeffi cients in (2.5) and (2.14), we see that

c`` = B−1
`` =

(
`−1∏
k=1

(
1 + [log (λ`/λk)]

−2
))−1/2

.

Also, for j < `, our contour integral representation gives

c`j =

∫ ∞
0

ψj (t)λit` e
−tdt

=
∆j

2πi

∫
Γ

[∫ ∞
0

e−tz−tλit` dt

]
Rj (z) dz

=
∆j

2πi

∫
Γ

1

1 + z − i log λ`
Rj (z) dz.

As in the proof of orthogonality via the contour integral representation, we
can deform the contour into a negatively oriented circle Γ0 of small positive
radius, and center −1 + i log λ`. Then the residue theorem gives

c`j = −∆jRj (−1 + i log λ`) .

Finally, orthonormality gives

1 =

∫ ∞
0

∣∣λ−it`

∣∣2 e−tdt =
∑̀
j=1

|c`j |2 .

�
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5. Proof of Theorems 3.1 and 3.2

Proof of (.a) We use the standard fact that

Λ`n (x) := inf
P∈Ln

∫∞
0 |P (t)|2 e−tdt∣∣P (`) (x)

∣∣2 = 1/
n∑
j=1

∣∣∣ψ(`)
j (x)

∣∣∣2 . (5.1)

This is an easy consequence of the Cauchy-Schwarz inequality, and the Par-
seval identity in Ln; the inf is attained for

P (t) =

n∑
j=1

ψ
(`)
j (x)ψj (t) .

Now Ln is closed under translations, that is, if P (·) ∈ Ln, P (· − x) ∈ Ln.
Let x > y ≥ 0. Then we see that

Λ`n (x) ≥ inf
P∈Ln

∫∞
x−y |P (t)|2 e−tdt∣∣P (`) (x)

∣∣2
= e−(x−y) inf

P∈Ln

∫∞
0 |P (u+ x− y)|2 e−udu∣∣P (`) (y + x− y)

∣∣2
= e−(x−y) inf

P∈Ln

∫∞
0 |P (u)|2 e−udu∣∣P (`) (y)

∣∣2
= e−(x−y)Λ`n (y) .

Thus,
exΛ`n (x) ≥ eyΛ`n (y) ,

or equivalently,

e−x
n∑
j=1

∣∣∣ψ(`)
j (x)

∣∣∣2 ≤ e−y n∑
j=1

∣∣∣ψ(`)
j (y)

∣∣∣2 .
(b) For ` = 0, we know from (2.8) that

n∑
j=1

∣∣ψj (0)
∣∣2 = n;
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For ` = 1, we know from (2.12) that

n∑
j=1

∣∣ψ′j (0)
∣∣2 =

n∑
j=1

(
(j − 1)2 + (log λj)

2
)

=
n (n− 1) (2n− 1)

6
+

n∑
j=1

(log λj)
2 .

�

Proof of W.rite

P (t) =

n∑
j=1

cjψj (t) .

Using (2.9), we see that

P ′ (t) =

n∑
j=2

cj
{
−i (log λj)ψj (t)− ψj (0)Kj−1 (t, 0)

}
= R (t) + S (t) , (5.2)

where

R (t) = −i
n∑
j=2

cj log λjψj (t) (5.3)

and

S(t) = −
n∑
j=2

cjψj (0)Kj−1 (t, 0) .

Cauchy-Schwarz’inequality gives

∫ ∞
0
|S (t)|2 e−tdt ≤

∫ ∞
0

 n∑
j=2

|cj |2
 n∑

j=2

|Kj−1 (t, 0)|2
 e−tdt

=

 n∑
j=2

|cj |2
 n∑

j=2

|Kj−1 (0, 0)|

≤
(∫ ∞

0
|P (t)|2 e−tdt

) n∑
j=2

(j − 1)

= ‖P‖2 n (n− 1)

2
.
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Also, ∫ ∞
0
|R (t)|2 e−tdt =

n∑
j=2

|cj |2 (log λj)
2

≤ ‖P‖2
(

max
1≤j≤n

|log λj |
)2

.

Finally, the triangle inequality gives∥∥P ′∥∥ ≤ ‖R‖+ ‖S‖

≤ ‖P‖
(

max
1≤j≤n

|log λj |+
√
n (n− 1)

2

)
.

�
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