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Abstract. Let ν be a positive measure supported on [−1, 1], with infinitely
many points in its support. Let {pn (ν, x)}n≥0 be its sequence of orthonormal
polynomials. Suppose we add masspoints at ±1, giving a new measure µ =
ν +Mδ1 + Nδ−1. How much larger can |pn (µ, 0)| be than |pn (ν, 0)|? We
study this question for symmetric measures, and give more precise results for
ultraspherical weights. Under quite general conditions, such as ν lying in the
Nevai class, it turns out that the growth is no more than 1 + o (1) as n→∞.
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1. Results

Let µ be a finite positive Borel measure on the real line with infinitely many
points in its support, and all finite moments∫

tjdµ (t) , j = 0, 1, 2, ... .

Then we may define orthonormal polynomials

pn (µ, x) = γn (µ)xn + ..., γn (µ) > 0,

n = 0, 1, 2, ... satisfying the orthonormality conditions∫
pn (µ, x) pm (µ, x) dµ (x) = δmn.

The zeros of pn (µ, x) are denoted by

xnn (µ) < xn−1,n (µ) < ... < x2n (µ) < x1n (µ) .

The nth reproducing kernel for µ is

Kn (µ, x, t) =

n−1∑
j=0

pj (µ, x) pj (µ, t) =
γn−1

γn
(µ)

pn (µ, x) pn−1 (µ, t)− pn−1 (µ, x) pn−1 (µ, t)

x− t .

The three term recurrence relation has the form

(x− bn (µ)) pn (µ, x) = an+1 (µ) pn+1 (µ, x) + an (µ) pn−1 (µ, x) ,

where
an (µ) =

γn−1

γn
(µ) .

A central problem in the theory of orthonormal polynomials is to establish
bounds on pn (µ, x), and there is an extensive literature. See for example [1], [3], [5],
[8], [12], [14]. In this paper, our goal is to assess how adding masspoints at ±1 can
increase the size of the orthonormal polynomial at the origin. We take advantage of
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the fact that a lot is known about the orthogonal polynomials for measures formed
by adding such masspoints. Differential equations and other identities have been
obtained, asymptotics as n → ∞ have been established, and Sobolev analogues
have been investigated. See [2], [4], [7], [10], [11] for some references.
Consider a fixed positive measure ν supported on [−1, 1] with infinitely many

points in its support, and that is symmetric about 0, so that ν ([−b,−a]) = ν ([a, b])
for all [a, b] ⊂ [−1, 1]. Fix S > 0. We letM (ν, S) denote the class of all measures

(1) µ = ν +Mδ1 +Nδ−1

where M,N ≥ 0 and M +N ≤ S. We letM (ν) denote the class of all measures of
this form with M,N ≥ 0 and no restriction on M +N .
We shall need some auxiliary parameters that depend only on n and ν. For even

integers n, we set

(2) rn =
γn−1

γn
(ν)

pn−1 (ν, 1)

pn (ν, 1)
= −Kn (ν,−1, 1)

p2
n (ν, 1)

.

The second formula for rn follows from the Christoffel-Darboux formula, and sym-
metry of ν. Also let

Un = Kn (ν, 1, 1)−Kn (ν,−1, 1) ;

Vn = Kn (ν, 1, 1) +Kn (ν,−1, 1) .

(3)

We note that it follows from the recurrence relation that 0 < rn < 1, while the
symmetry of ν and Cauchy-Schwarz show that Un, Vn > 0 (see (27) below).
We prove:

Theorem 1.1
Let ν be a positive measure with support in [−1, 1] and with infinitely many points
in its support. Assume also that ν is symmetric, so that ν ([−b,−a]) = ν ([a, b]) for
all subintervals [a, b] of [−1, 1]. Let n ≥ 2 be even. Then

(4) sup
µ∈M(ν)

(
pn (µ, 0)

pn (ν, 0)

)2

= max

{
1,

U2
n

VnVn+1

}
.

Moreover,

(5) sup
µ∈M(ν)

(
pn (µ, 0)

pn (ν, 0)

)2

=
U2
n

VnVn+1
> 1

iff

(6)
2p2
n (ν, 1)

Vn
>

1− 2rn
r2
n

.

Remarks
(a) We have been unable to find a measure for which (6) fails, but nor have we been
able to prove that it is always true. It is true for all even Jacobi weights and large
enough n, as we shall see below.
(b) Interestingly enough, the supremum in (4) is not attained. It occurs as M =
N → ∞. However, we note that for a large class of measures, it decays to 1 as
n→∞:
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Corollary 1.2
Assume in addition to the hypotheses of Theorem 1.1, that ν lies in the Nevai class,
so that the recurrence coeffi cients satisfy

(7) lim
n→∞

an (ν) =
1

2
.

Then

(8) lim
n→∞

(
sup

µ∈M(ν)

(
pn (µ, 0)

pn (ν, 0)

)2
)

= 1.

Remarks
(i) Note that since ν is symmetric about 0, bn (ν) = 0 for all n.
(ii) The only property that we use of the Nevai class is subexponential growth at 1 :

lim
n→∞

pn (ν, 1)
2
/Kn (ν, 1, 1) = 0.

Next, we consider the case where we maximize over the class M (ν, S). For a
given S > 0, and given n, let

(9) XS = p2
n (ν, 1)

S + S2Un/2

S2UnVn/4 + SKn (ν, 1, 1) + 1
.

In the course of our proofs, we shall show that XS is an increasing function of
S > 0, and its limit as S →∞ coincides with the left-hand side of (6). We prove:

Theorem 1.3
Let ν be a positive measure with support in [−1, 1] and with infinitely many points
in its support. Assume also that ν is symmetric, so that ν ([−b,−a]) = ν ([a, b]) for
all subintervals [a, b] of [−1, 1]. Let n ≥ 2 be even and S > 0 and let M (ν, S)
denote the class of measures defined above.
(a) There exists µ∗ = ν +M∗δ1 +N∗δ−1 ∈M (ν, S) satisfying

(10) |pn (µ∗, 0)| = max {|pn (µ, 0)| : µ ∈M (ν, S)} .
(b) If XS <

1−2rn
r2n

, then M∗ = N∗ = 0, µ∗ = ν, and

(11) |pn (µ∗, 0)| = |pn (ν, 0)| .
(c) If XS >

1−2rn
r2n

, then M∗ = N∗ = S
2 , µ

∗ = ν + S
2 (δ−1 + δ1), and(

pn (µ∗, 0)

pn (ν, 0)

)2

=

(
S2U2

n/4 + SUn + 1
)2

(S2UnVn/4 + SKn (ν, 1, 1) + 1) (S2UnVn+1/4 + SKn+1 (ν, 1, 1) + 1)
> 1.

(12)

(d) If XS = 1−2rn
r2n

, then there are two extremal measures, namely µ∗ = ν, and

µ∗ = ν + S
2 (δ−1 + δ1), and (11) holds.

(e) In all cases,

max
µ∈M(ν,S)

(
pn (µ, 0)

pn (ν, 0)

)2

= max

{
1,

(1 + rnXS)
2

1 +XS

}
.
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Thus the extremal measure is always symmetric. It is also unique, except when
XS = 1−2rn

r2n
. For even Jacobi weights (or equivalently ultraspherical weights), we

obtain more explicit results:

Theorem 1.4
Let α > −1 and

(13) ν′ (t) =
(
1− t2

)α
, t ∈ (−1, 1) .

For even n ≥ 2, the inequality (5) holds, and

sup
µ∈M(ν)

(
pn (µ, 0)

pn (ν, 0)

)2

= 1 +

(
1

n+α

)2

2 (α+ 1) {1 + 2α+1
n }

1 + 2 α+1
n+α + α+1

(n+α)2

{
α− 1− 2(2α+1)

n

}
= 1 +

2 (α+ 1)

(n+ α)
2 +O

(
n−3

)
.

(14)

Thus for all α > −1, the supremum exceeds 1 for large enough n, but decays to
1 with rate O

(
n−2

)
as n→∞. For fixed S, we prove:

Theorem 1.5
Let ν, n be as in Theorem 1.4 and let S > 0. Let µ∗ = ν+M∗δ1+N∗δ−1 ∈M (ν, S)
be an extremal measure satisfying (10).
(a) Suppose −1 < α < − 1

2 . Then there exists n0 (α) such that for n ≥ n0 (α),
rn > 1

2 . Moreover, for n ≥ n0 (α) and for all S > 0, M∗ = N∗ = S
2 and

µ∗ = ν + S
2 (δ−1 + δ1).

(b) Suppose α > − 1
2 . Then there exists n0 (α) such that for n ≥ n0 (α), rn < 1

2 .
Then for n ≥ n0 (α) and S > 0 so small that XS < 1−2rn

r2n
, M∗ = N∗ = 0

and µ∗ = ν. For n ≥ n0 (α) and XS = 1−2rn
r2n

, we may take µ∗ = ν, or

µ∗ = ν + S
2 (δ−1 + δ1). For n ≥ n0 (α) and XS > 1−2rn

r2n
, M∗ = N∗ = S

2 and

µ∗ = ν + S
2 (δ−1 + δ1).

(c) Suppose α = − 1
2 . Then rn = 1

2 . For n ≥ 2, M∗ = N∗ = S
2 and µ∗ =

ν + S
2 (δ−1 + δ1).

Observe that if α > − 1
2 , the extremal measure is µ

∗ = ν for small enough S, but
once S increases beyond a certain threshold, µ∗ = ν + S

2 (δ−1 + δ1). It is possible
to give a more explicit form to the expression for the sup in (10) for ultraspherical
weights, but it is messy and so omitted.
This paper is organized as follows: In Section 2, we present a basic identity. In

Section 3, we first prove Theorem 1.3 and then Theorem 1.1 and Corollary 1.2. In
Section 4, we first prove Theorem 1.4 and then Theorem 1.5.
In the sequel C,C1, C2, ... denote constants independent of n, x, t. The same

symbol does not necessarily denote the same constant in different occurences.
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2. The Basic Identity

Throughout this section, ν satisfies the hypotheses of Theorem 1.1. Recall that
rn, Un, Vn and XS are defined by (2), (3) and (9). Our analysis is based on the
identity in Lemma 2.2 below. We do not claim that it is new, as identities of this
type are commonly used in analyzing measures with added masspoints, but derive
it in a form that we can apply it:

Theorem 2.1
Let n ≥ 2 be even. Let M,N ≥ 0 and

µ = ν +Mδ1 +Nδ−1.

Let

(15) x = x (M,N) = p2
n (ν, 1)

2MNUn +M +N

MNUnVn + (M +N)Kn (ν, 1, 1) + 1
.

(a) Then (
pn (µ, 0)

pn (ν, 0)

)2

= g (x) :=
(1 + rnx)

2

1 + x
.

(b) If rn < 1
2 , the function g is a strictly decreasing function of x ∈ (0, 1−2rn

rn
) and

is a strictly increasing function of x ∈ ( 1−2rn
rn

,∞).

(c) If rn ≥ 1
2 , the function g is a strictly increasing function of x ∈ (0,∞).

(d) g (x) > 1 iff

(16) x >
1− 2rn
r2
n

.

while g (x) = 1 iff x = 1−2rn
rn

or x = 0.
We begin the proof with

Lemma 2.2
(a) Let

(17) πn−1 (y) = pn (µ, y)− γn (µ)

γn (ν)
pn (ν, y) ;

(18) A =

[
1 +MKn (ν, 1, 1) −MKn (ν, 1,−1)
−NKn (ν, 1,−1) 1 +NKn (ν, 1, 1)

]
;

and

(19) d = MNUnVn + (M +N)Kn (ν, 1, 1) + 1.

(a) Then

(20) pn (µ, y) =
γn (µ)

γn (ν)

{
pn (ν, y) +

pn (ν, 1)

d

[
−NKn (ν, y,−1)
−MKn (ν, y, 1)

]T
A

[
1
1

]}
.

(b)

(21)
(
γn (µ)

γn (ν)

)2
{

1 +
p2
n (ν, 1)

d

[
1
1

]T
AT
[
N
M

]}
= 1.
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Proof
(a) Using orthogonality, we see that

πn−1 (y) =

∫ 1

−1

Kn (ν, y, t)πn−1 (t) dν (t)

=

∫ 1

−1

Kn (ν, y, t) pn (µ, t) dν (t)

= −MKn (ν, y, 1) pn (µ, 1)−NKn (ν, y,−1) pn (µ,−1) .

(22)

Taking y = −1 and y = 1, and gathering the terms involving pn (µ,±1), gives the
matrix equation[

1 +NKn (ν,−1,−1) MKn (ν,−1, 1)
NKn (ν, 1,−1) 1 +MKn (ν, 1, 1)

] [
pn (µ,−1)
pn (µ, 1)

]
=
γn (µ)

γn (ν)

[
pn (ν,−1)
pn (ν, 1)

]
.

The determinant d of the matrix can be put into the form in (19), if we take account
of the definition (3) of Un, Vn. Solving the matrix equation and using the symmetry
of ν gives[
pn (µ,−1)
pn (µ, 1)

]
=

γn (µ)

γn (ν)

1

d

[
1 +MKn (ν, 1, 1) −MKn (ν, 1,−1)
−NKn (ν, 1,−1) 1 +NKn (ν, 1, 1)

] [
pn (ν, 1)
pn (ν, 1)

]
=

γn (µ)

γn (ν)
pn (ν, 1)

A

d

[
1
1

]
.

(23)

From (22) and this last identity,

πn−1 (y) =
γn (µ)

γn (ν)

pn (ν, 1)

d

[
−NKn (ν, y,−1)
−MKn (ν, y, 1)

]T
A

[
1
1

]
.

Then (20) follows from the definition of πn−1.
(b) We obtain equations for γn(µ)

γn(ν) in two ways:∫ 1

−1

π2
n−1 (y) dν (y)

=

∫ 1

−1

p2
n (µ, y)

2
dν (y)− 2

(
γn (µ)

γn (ν)

)2

+

(
γn (µ)

γn (ν)

)2

= 1−Mpn (µ, 1)
2 −Npn (µ,−1)

2 −
(
γn (µ)

γn (ν)

)2

.

Also, from (22),∫ 1

−1

π2
n−1 (y) dν (y)

=

∫ 1

−1

(−NKn (ν, y,−1) pn (µ,−1)−MKn (ν, y, 1) pn (µ, 1))
2
dν (y)

= N2p2
n (µ,−1)Kn (ν,−1,−1) +M2p2

n (µ, 1)Kn (ν, 1, 1) + 2MNpn (µ,−1) pn (µ, 1)Kn (ν,−1, 1) .
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Then using the last two equations and solving for 1−
(
γn(µ)
γn(ν)

)2

,

1−
(
γn (µ)

γn (ν)

)2

= p2
n (µ,−1)

{
N +N2Kn (ν,−1,−1)

}
+ p2

n (µ, 1)
{
M +M2Kn (ν, 1, 1)

}
+2MNpn (µ,−1) pn (µ, 1)Kn (ν,−1, 1)

=

[
pn (µ,−1)
pn (µ, 1)

]T [
N 0
0 M

] [
1 +NKn (ν, 1, 1) MKn (ν,−1, 1)
NKn (ν,−1, 1) 1 +MKn (ν, 1, 1)

] [
pn (µ,−1)
pn (µ, 1)

]
= d

[
pn (µ,−1)
pn (µ, 1)

]T [
N 0
0 M

]
A−1

[
pn (µ,−1)
pn (µ, 1)

]
Using (23) gives

1−
(
γn (µ)

γn (ν)

)2

=
p2
n (ν, 1)

d

(
γn (µ)

γn (ν)

)2 [
1
1

]T
AT
[
N 0
0 M

] [
1
1

]
and (21) follows.�

Proof of Theorem 2.1(a)
Setting y = 0 in (20), squaring and multiplying by the factor {} in (21) gives

p2
n (µ, 0)

{
1 +

p2
n (ν, 1)

d

[
1
1

]T
AT
[
N
M

]}

=

{
pn (ν, 0) +

pn (ν, 1)

d

[
−NKn (ν, 0,−1)
−MKn (ν, 0, 1)

]T
A

[
1
1

]}2

.

(24)

Here from the Christoffel-Darboux formula and as pn−1 (ν, 0) = 0, while pn−1 (ν,−1) =
−pn−1 (ν, 1),

Kn (ν, 0,±1) = −
γn−1

γn
(ν) pn (ν, 0) pn−1 (ν, 1)

so using Christoffel-Darboux again,

pn (ν, 1)Kn (ν, 0,±1) = pn (ν, 0)Kn (ν,−1, 1) .

Thus (24) becomes (
pn (µ, 0)

pn (ν, 0)

)2
{

1 +
p2
n (ν, 1)

d

[
1
1

]T
AT
[
N
M

]}

=

{
1− Kn (ν,−1, 1)

d

[
N
M

]T
A

[
1
1

]}2

.

(25)
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Here from (18) and (19), followed by (15),

p2
n (ν, 1)

d

[
1
1

]T
AT
[
N
M

]
= p2

n (ν, 1)
N +M + 2MNUn

MNUnVn + (M +N)Kn (ν, 1, 1) + 1
= x.

Also, from (2),

Kn (ν,−1, 1) = −
γn−1

γn
(ν) pn (ν, 1) pn−1 (ν, 1) = −rnp2

n (ν, 1)

(26)

so (25) becomes (
pn (µ, 0)

pn (ν, 0)

)2

{1 + x} = {1 + rnx}2 .

�

Proof of Theorem 2.1 (b), (c), (d)
A calculation shows that

g (x) = r2
nx+

(
2rn − r2

n

)
+

(rn − 1)
2

1 + x

so

g′ (x) = r2
n

1−

(
1− 1

rn

)2

(1 + x)
2

 .

Thus g′ (x) is an increasing function of x ∈ [0,∞), with limit r2
n > 0 as x → ∞.

Also

g′ (x) = 0⇔ 1 + x = ±
(

1− 1

rn

)
so as x > 0, and rn > 0,

g′ (x) = 0⇔ x =
1− 2rn
rn

.

Then if rn < 1
2 , it follows that g (x) decreases in

(
0, 1−2rn

rn

)
and increases in(

1−2rn
rn

,∞
)
. If rn ≥ 1

2 , it follows that g (x) increases in [0,∞). Finally

g (x) > 1⇔ 1 + 2rnx+ r2
nx

2 > 1 + x

⇔ x >
1− 2rn
r2
n

,

as x > 0. Also g (x) = 1 iff x = 0 or x = 1−2rn
r2n

.�
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3. Proof of Theorems 1.1 and 1.3

Recall that x = x (M,N) is given by (15). We begin with

Lemma 3.1
(a) For M,N ≥ 0,

∂x

∂M
> 0;

∂x

∂N
> 0.

(b) The maximum of x = x (M,N) in the triangular region T = {(M,N) : 0 ≤M,N and M +N ≤ S}
occurs when and only when

M = N =
S

2
.

(c) Moreover, the maximum is

x = XS = p2
n (ν, 1)

S2Un/2 + S

S2UnVn/4 + SKn (ν, 1, 1) + 1
.

(d)

X∞ := lim
S→∞

XS =
2p2
n (ν, 1)

Vn
.

Proof
(a) Note that from Cauchy-Schwarz, and as pj (ν,−1) = (−1)

j
pj (ν, 1),

|Kn (ν,−1, 1)| =

∣∣∣∣∣∣
n−1∑
j=0

pj (ν, 1) pj (ν,−1)

∣∣∣∣∣∣
<

n−1∑
j=0

|pj (ν, 1) pj (ν,−1)|

≤
√
Kn (ν, 1, 1)Kn (ν,−1,−1) = Kn (ν, 1, 1)

so that

(27) Un, Vn > 0.

Next, using Vn − 2Kn (ν, 1, 1) = −Un, and from (15),

1

p2
n (ν, 1)

(MNUnVn + (M +N)Kn (ν, 1, 1) + 1)
2

(
∂x

∂M

)
= (2NUn + 1) (MNUnVn + (M +N)Kn (ν, 1, 1) + 1)− (2MNUn +M +N) (NUnVn +Kn (ν, 1, 1))

= MNUn {(2NUn + 1)Vn − 2 (NUnVn +Kn (ν, 1, 1))}
+ (M +N) {(1 + 2NUn)Kn (ν, 1, 1)− (NUnVn +Kn (ν, 1, 1))}+ 2NUn + 1

= MNUn {Vn − 2Kn (ν, 1, 1)}+ (M +N) {NUn (2Kn (ν, 1, 1)− Vn)}+ 2NUn + 1

= MNUn {−Un}+ (M +N)
{
NU2

n

}
+ 2NUn + 1

= (NUn + 1)
2
> 0.

Thus
∂x

∂M
= p2

n (ν, 1)
(NUn + 1)2

d2
.

Then as Un > 0, ∂x
∂M > 0 and similarly ∂x

∂N > 0.

(b) Since ∂x
∂M > 0, ∂x∂N > 0 for all M,N ≥ 0, so there are no critical points within
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the interior of the triangle. Moreover, it then follows that the maximum cannot
occur on the axes M = 0 or N = 0, so occurs when M +N = S. Then on this line
segment,

x = p2
n (ν, 1)

2M (S −M)Un + S

M (S −M)UnVn + SKn (ν, 1, 1) + 1

=
p2
n (ν, 1)

Vn

{
2 +

SVn − 2SKn (ν, 1, 1)− 2

M (S −M)UnVn + SKn (ν, 1, 1) + 1

}
=

p2
n (ν, 1)

Vn

{
2− SUn + 2

M (S −M)UnVn + SKn (ν, 1, 1) + 1

}
.

(28)

Here we have used the definition of Un, Vn. Since S ≥ 0 is fixed and Un, Vn > 0,
this last expression is an increasing function ofM (S −M) and in turn that is max-
imized over M ∈ [0, S] when and only when M = S

2 .
(c) This follows by substituting M = N = S

2 into the first line in (28).
(d) This is immediate from (c). �

Proof of Theorem 1.3(a)
We can choose sequences {Mm} and {Nm} of nonnegative numbers with 0 ≤
Mm +Nm ≤ S and if

µm = ν +Mmδ1 +Nmδ−1,

then
lim
m→∞

|pn (µm, 0)| = sup {|pn (µ, 0)| : µ ∈M (ν, S)} .

By passing to a subsequence, and relabeling, we can assume that {µm} converges
weakly to µ∗ while Mm → M∗ and Nm → N∗ so that µ∗ = ν + M∗δ1 + N∗δ−1.
Then for each fixed j ≥ 0,

lim
m→∞

∫
tjdµm (t) =

∫
tjdµ∗ (t) .

It follows from the determinantal representation of orthonormal polynomials [9, p.
57], [16, p. 23] that

|pn (µ∗, 0)| = lim
m→∞

|pn (µm, 0)| = sup {|pn (µ, 0)| : µ ∈M (ν, S)} .

�

Proof of Theorem 1.3(b)
We’re assuming that XS <

1−2rn
r2n

. Of course this is possible only if rn < 1
2 , since

XS > 0. Let 0 ≤ M,N and M + N ≤ S and µ = ν + Mδ1 + Nδ−1. By Theorem
2.1, if x = x (M,N), we have(

pn (µ, 0)

pn (ν, 0)

)2

=
(1 + rnx)

2

1 + x
= g (x) .

Here by Lemma 3.1, 0 ≤ x ≤ XS <
1−2rn
r2n

, so Theorem 2.1(d) shows that(
pn (µ, 0)

pn (ν, 0)

)2

< 1,



UNIVERSALITY LIMITS 11

unless x = 0. It follows that the maximum possible value of
(
pn(µ,0)
pn(ν,0)

)2

for µ ∈
M (ν, S) occurs iffM = N = 0. �

Proof of Theorem 1.3(c)
We’re assuming that XS >

1−2rn
r2n

. By Theorem 2.1, if x = x (M,N), we have(
pn (µ, 0)

pn (ν, 0)

)2

=
(1 + rnx)

2

1 + x
= g (x)

is maximal when x is large as possible under the restrictions 0 ≤M,N andM+N ≤
S. By Lemma 3.1, this occurs iffM = N = S

2 , and then x = XS . Here from (2)
and (9),

rnXS = −SKn (ν,−1, 1)
1 + SUn/2

S2UnVn/4 + SKn (ν, 1, 1) + 1
so

1 + rnXS

=
S2 (UnVn − 2UnKn (ν,−1, 1)) /4 + S (Kn (ν, 1, 1)−Kn (ν,−1, 1)) + 1

S2UnVn/4 + SKn (ν, 1, 1) + 1

=
S2U2

n/4 + SUn + 1

S2UnVn/4 + SKn (ν, 1, 1) + 1

while

1 +XS

=
S2Un

[
Vn + 2p2

n (ν, 1)
]
/4 + S

[
Kn (ν, 1, 1) + p2

n (ν, 1)
]

+ 1

S2UnVn/4 + SKn (ν, 1, 1) + 1

=
S2UnVn+1/4 + SKn+1 (ν, 1, 1) + 1

S2UnVn/4 + SKn (ν, 1, 1) + 1

Then (
pn (µ, 0)

pn (ν, 0)

)2

=
(1 + rnXS)2

1 + rnXS

=

(
S2U2

n/4 + SUn + 1
)2

(S2UnVn/4 + SKn (ν, 1, 1) + 1) (S2UnVn+1/4 + SKn+1 (ν, 1, 1) + 1)
.

By Theorem 2.1(d), and as XS >
1−2rn
r2n

, this exceeds 1. �

Proof of Theorem 1.3(d)
Here as XS = 1−2rn

r2n
, we have g (Xs) = 1 = g (0), and for any other value of

x = x (M,N) we have g (x) < 1. �

Proof of Theorem 1.3(e)
It follows from Theorem 2.1 and Lemma 3.1, that for a given S > 0,

sup
µ∈M(ν,S)

(
pn (µ, 0)

pn (ν, 0)

)2

= max

{
1,

(1 + rnXS)
2

1 +XS

}
and moreover the sup is attained. Indeed if XS ≤ 1−2rn

r2n
, the maximum is 1, while

if XS >
1−2rn
r2n

, the maximum is achieved when M = N = S
2 . If XS = 1−2rn

r2n
, the
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maximum is achieved when M = N = S
2 and M = N = 0. �

Proof of Theorem 1.1
From Lemma 3.1, Theorem 1.3(e) and (12),

sup
µ∈M(ν)

(
pn (µ, 0)

pn (ν, 0)

)2

= lim
S→∞

sup
µ∈M(ν,S)

(
pn (µ, 0)

pn (ν, 0)

)2

= max

{
1,

(
U2
n/4
)2

(UnVn/4)UnVn+1/4

}

= max{1, U2
n

VnVn+1
}.

Finally, the above considerations show that we can drop the 1 in the max, that is

sup
µ∈M(ν)

(
pn (µ, 0)

pn (ν, 0)

)2

=
U2
n

VnVn+1
> 1

iff for large enough S, XS >
1−2rn
r2n

, which is true iff (recall Lemma 3.1(d))

(29)
2p2
n (ν, 1)

Vn
= X∞ >

1− 2rn
r2
n

.

�

We have been unable to resolve if (29) is always true. Here is an equivalent form:

Lemma 3.2
The inequality (29) is equivalent for even n to

−Kn (ν,−1, 1)

Kn+1 (ν,−1, 1)
>

Kn (ν, 1, 1)

Kn+1 (ν, 1, 1)
.

Proof
From the second identity in (2),

1− 2rn
r2
n

=
p2
n (ν, 1)

Kn (ν, 1,−1)
2

[
2Kn (ν, 1,−1) + p2

n (ν, 1)
]
,

so (29) is equivalent to

2p2
n (ν, 1)

Vn
>

p2
n (ν, 1)

Kn (ν,−1, 1)
2

(
p2
n (ν, 1) + 2Kn (ν,−1, 1)

)
⇔ 2Kn (ν,−1, 1)

2
> (Kn (ν, 1, 1) +Kn (ν,−1, 1))

(
p2
n (ν, 1) + 2Kn (ν,−1, 1)

)
⇔ 0 > (Kn (ν, 1, 1) +Kn (ν,−1, 1)) p2

n (ν, 1) + 2Kn (ν, 1, 1)Kn (ν,−1, 1)

⇔ 0 >
(
Kn (ν, 1, 1) + p2

n (ν, 1)
)
Kn (ν,−1, 1) +

(
Kn (ν,−1, 1) + p2

n (ν, 1)
)
Kn (ν, 1, 1)

⇔ 0 > Kn+1 (ν, 1, 1)Kn (ν,−1, 1) +Kn+1 (ν,−1, 1)Kn (ν, 1, 1)

⇔ −Kn (ν,−1, 1)

Kn+1 (ν,−1, 1)
>

Kn (ν, 1, 1)

Kn+1 (ν, 1, 1)
.
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Here we are using Kn (ν,−1, 1) < 0 < Kn+1 (ν,−1, 1). �

Proof of Corollary 1.2
By the Christoffel-Darboux formula, and symmetry of ν, ,

|Kn (ν,−1, 1)| /Kn (ν, 1, 1) =
γn−1

γn

|pn (ν, 1) pn−1 (ν, 1)|
Kn (1, 1)

.

Here as the support of ν is [−1, 1],
γn−1
γn
≤ 2 [9, p. 41, Lemma 7.2] while as ν lies

in the Nevai class, we have subexponential growth [13, Thm. 2.1, p. 218]:

lim
n→∞

pn (ν, 1)
2
/Kn (ν, 1, 1) = 0.

See also [6], [15]. It follows that

lim
n→∞

Un
Kn (ν, 1, 1)

= 1 = lim
n→∞

Vn
Kn (ν, 1, 1)

and also

lim
n→∞

Vn
Vn+1

= 1.

Thus

lim
n→∞

U2
n

VnVn+1
= 1

and Theorem 1.1 gives the result. �

4. Proof of Theorems 1.4 and 1.5

Let us first recall the values of some orthogonal polynomial quantities for the
ultraspherical weight (or even Jacobi weight)

ν′ (t) =
(
1− t2

)α
, t ∈ (−1, 1) .

Here α > −1 is fixed. Throughout this section, we drop the parameter ν in pn (ν, x)

etc. The classical Jacobi polynomials P (α,α)
n are normalized by [16, p. 58]

(30) P (α,α)
n (1) =

(
n+ α

n

)
.

The leading coeffi cient of P (α,α)
n is [16, p. 63]

2−n
(

2n+ 2α

n

)
.

Also, the orthonormal polynomial is given by [16, p. 68]

(31) pn (x) = cnP
(α,α)
n (x) ,

where

(32) cn =

{
2n+ 2α+ 1

22α+1

Γ (n+ 1) Γ (n+ 2α+ 1)

Γ (n+ α+ 1)
2

}1/2

,

so that

(33) pn (1) = cn

(
n+ α

n

)
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and

(34) γn = cn2−n
(

2n+ 2α

n

)
.

Furthermore, taking account that our reproducing kernel sums to n− 1 while that
in [16] adds to n, [16, p. 71, eqn. (4.5.3)]

(35) Kn (x, 1) = 2−2α−1 Γ (n+ 2α+ 1)

Γ (α+ 1) Γ (n+ α)
P

(α+1,α)
n−1 (x)

so that

(36) Kn (1, 1) = 2−2α−1 Γ (n+ 2α+ 1)

Γ (α+ 1) Γ (n+ α)

(
n+ α

n− 1

)
while using that P (α+1,α)

n−1 (−x) = (−1)
n−1

P
(α,α+1)
n−1 (x) ,

(37) Kn (−1, 1) = (−1)
n−1

2−2α−1 Γ (n+ 2α+ 1)

Γ (α+ 1) Γ (n+ α)

(
n− 1 + α

n− 1

)
.

The proofs of this section involve several straightforward calculations. We shall
exclude some of the line by line computations.

Lemma 4.1
Let n ≥ 2 be even.
(a)

(38)
pn−1 (1)

pn (1)
=

(
1− 1 + 2α

n
+ ηn

)1/2

,

where

(39) ηn = (2α+ 1)
n (4α+ 1) + 2α (2α+ 1)

(2n+ 2α+ 1) (n+ 2α)n
.

(b)

rn =
1

2

(
1 +

1− 4α2

4 (n+ α)
2 − 1

)1/2(
1− 1 + 2α

n
+ ηn

)1/2

=
1

2

(
1− 1 + 2α

2n
+O

(
n−2

))
.

(40)

(c)

(41)
1− 2rn
r2
n

=
2(1 + 2α)

n

(
1 +O

(
n−1

))
.

(d)

(42) X∞ =
2p2
n (1)

Vn
>

1− 2rn
r2
n

.

(e)

(43)
2p2
n (1)

Kn (1, 1)
= 4

(
α+ 1

n

)(
1 +

1

2 (n+ α)

)
.
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(f)

(44)
−Kn (−1, 1)

Kn (1, 1)
=
α+ 1

n+ α
.

Proof
(a) Firstly using (32),

cn−1

cn
=

(
2n+ 2α− 1

2n+ 2α+ 1

Γ (n) Γ (n+ 2α)

Γ (n+ 1) Γ (n+ 2α+ 1)

Γ (n+ α+ 1)
2

Γ (n+ α)
2

)1/2

=

(
2n+ 2α− 1

2n+ 2α+ 1

(n+ α)
2

n (n+ 2α)

)1/2

so by (34), and a straightforward calculation,

γn−1

γn
= 2

cn−1

cn

(
2n− 2 + 2α

n− 1

)
/

(
2n+ 2α

n

)

=
1

2

(
1 +

1− 4α2

4 (n+ α)
2 − 1

)1/2

.

(45)

Next, from (33),

pn−1 (1)

pn (1)

=
cn−1

(
n−1+α
n−1

)
cn
(
n+α
n

)
=

(
2n+ 2α− 1

2n+ 2α+ 1

n

n+ 2α

)1/2

=

(
1− 1 + 2α

n
+ ηn

)1/2

,

where

ηn = −2

[
1

2n+ 2α+ 1
− 1

2n
+

α

n+ 2α
− α

n

]
+

4α

(2n+ 2α+ 1) (n+ 2α)

= (2α+ 1)
n (4α+ 1) + 2α (2α+ 1)

(2n+ 2α+ 1) (n+ 2α)n
,

again, by a straightforward calculation.
(b) From (45) and (38),

rn =
γn−1

γn

pn−1 (1)

pn (1)

=
1

2

(
1 +

1− 4α2

4 (n+ α)
2 − 1

)1/2(
1− 1 + 2α

n
+ ηn

)1/2

=
1

2

(
1− 1 + 2α

2n
+O

(
n−2

))
.
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(c) This follows immediately from (b).
(d) Recall from Lemma 3.2 that

2p2
n (ν, 1)

Vn
= X∞ >

1− 2rn
r2
n

is equivalent to

(46)
−Kn (−1, 1)

Kn+1 (−1, 1)
>

Kn (1, 1)

Kn+1 (1, 1)
.

Now substitute in our values from (36) and (37):

−Kn (−1, 1)

Kn+1 (−1, 1)
=

(
Γ(n+2α+1)

Γ(n+α)

) (
n−1+α
n−1

)(
Γ(n+2α+2)
Γ(n+1+α)

) (
n+α
n

)
= 1− 2α+ 1

n+ 2α+ 1
.

(47)

Also

Kn (1, 1)

Kn+1 (1, 1)
=

(
Γ(n+2α+1)

Γ(n+α)

) (
n+α
n−1

)(
Γ(n+2α+2)
Γ(n+1+α)

) (
n+1+α

n

)
=

n+ α

n+ 2α+ 1

n

n+ α+ 1

=

(
1− α+ 1

n+ 2α+ 1

)(
1− α+ 1

n+ α+ 1

)
= 1− (α+ 1)

[
1

n+ 2α+ 1
+

1

n+ α+ 1

]
+

(α+ 1)
2

(n+ 2α+ 1) (n+ α+ 1)

= 1− 2 (α+ 1)

n+ 2α+ 1
− (α+ 1)α

(n+ α+ 1) (n+ 2α+ 1)
+

(α+ 1)
2

(n+ 2α+ 1) (n+ α+ 1)

so recalling (46) and (47), we want to check when

2α+ 1

n+ 2α+ 1
<

2 (α+ 1)

n+ 2α+ 1
+

(α+ 1)α

(n+ α+ 1) (n+ 2α+ 1)
− (α+ 1)

2

(n+ 2α+ 1) (n+ α+ 1)

which is equivalent to

0 < 1 +
(α+ 1)α

(n+ α+ 1)
− (α+ 1)

2

(n+ α+ 1)

= 1− α+ 1

n+ α+ 1
.

which is true for all even n ≥ 2.
(e) From (33), (36), and then (32),

2p2
n (1)

Kn (1, 1)
=

2
{
cn
(
n+α
n

)}2

2−2α−1 Γ(n+2α+1)
Γ(α+1)Γ(n+α)

(
n+α
n−1

)
= 4 (α+ 1)

(
1 +

1

2 (n+ α)

)
1

n
.
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(f) From (36), (37),

−Kn (−1, 1)

Kn (1, 1)
=

(
n−1+α
n−1

)(
n+α
n−1

) =
α+ 1

n+ α
.

�

Proof of Theorem 1.4
As shown in the previous lemma, we have the inequality (42) for n ≥ 2. For such
n, we have from Theorem 1.1 that

sup
µ∈M(ν)

(
pn (µ, 0)

pn (ν, 0)

)2

=
U2
n

VnVn+1
.

Here from (44),

Un = Kn (1, 1)

{
1− Kn (−1, 1)

Kn (1, 1)

}
= Kn (1, 1)

{
1 +

α+ 1

n+ α

}
;

Vn = Kn (1, 1)

{
1 +

Kn (−1, 1)

Kn (1, 1)

}
= Kn (1, 1)

{
1− α+ 1

n+ α

}
;

and from (43) and (44), and as pn (−1) = pn (1) ,

Vn+1 = Kn (1, 1)

{
1 +

Kn (−1, 1)

Kn (1, 1)
+

2p2
n (1)

Kn (1, 1)

}
= Kn (1, 1)

{
1− α+ 1

n+ α
+ 4

(
α+ 1

n

)(
1 +

1

2 (n+ α)

)}
= Kn (1, 1) {1 + 3

α+ 1

n+ α
+

2 (α+ 1) (2α+ 1)

n (n+ α)
}

so

VnVn+1 = K2
n (1, 1)

 1 + 2 α+1
n+α + 2(α+1)(2α+1)

n(n+α)

−3
(
α+1
n+α

)2

− 2(α+1)2(2α+1)

n(n+α)2


= K2

n (1, 1)

{
1 + 2 α+1

n+α

+ α+1
n+α

{
α−1
n+α −

2(2α+1)
n(n+α)

} } .
Then by yet another calculation,

U2
n

VnVn+1

=
1 + 2 α+1

n+α +
(
α+1
n+α

)2

1 + 2 α+1
n+α + α+1

n+α

{
α−1
n+α −

2(2α+1)
n(n+α)

}
= 1 +

(
1

n+α

)2

2 (α+ 1) {1 + 2α+1
n }

1 + 2 α+1
n+α + α+1

(n+α)2

{
α− 1− 2(2α+1)

n

} .
�

Proof of Theorem 1.5
(a) From Lemma 4.1(b), as α < − 1

2 , so rn >
1
2 for n ≥ n0 (α). Then 1−2rn

r2n
< 0 for
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n ≥ n0 (α), so for all S ≥ 0, XS > 0 > 1−2rn
r2n

. By Theorem 1.3(c), the extremal

measure has the form ν + S
2 (δ1 + δ−1).

(b) From Lemma 4.1(b), as α > − 1
2 , so rn < 1

2 for n ≥ n0 (α). From Lemma
4.1(d), X∞ > 1−2rn

r2n
while from (9), X0 = 0 < 1−2rn

r2n
. Also we know XS is an

increasing function of S. By Theorem 1.3(b), (c), there is a threshold S∗ such that
for 0 ≤ S < S∗, the extremal measure is ν, while for S > S∗, the extremal measure
is ν + S

2 (δ1 + δ−1). For S = S∗, where XS∗ = 1−2rn
r2n

, there are two extremal mea-

sures, namely ν and ν + S
2 (δ1 + δ−1).

(c) For α = − 1
2 , (39) and (40) show that rn = 1

2 , so XS > 0 = 1−2rn
r2n

for all S and

the extremal measure is ν + S
2 (δ1 + δ−1) for all S ≥ 0. �
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