AVERAGE GROWTH OF L_{p} NORMS OF ERDÖS-SZEKERES POLYNOMIALS

${ }^{1}$ COOPER BILLSBOROUGH, ${ }^{2}$ SARAH GOLD, ${ }^{3}$ EPHRAIM LINDER, ${ }^{1}$ D.S. LUBINSKY, ${ }^{4}$ JIAHUI YU

$$
\begin{aligned}
& \text { AbSTRACT. We study the average growth of } p \text { th powers of } L_{p} \text { noms on the } \\
& \text { unit circle of Erdős-Szekeres polynomials } \\
& \qquad P_{n}\left(\left\{s_{j}\right\}, z\right)=\prod_{j=1}^{n}\left(1-z^{s_{j}}\right)
\end{aligned}
$$

where $1 \leq s_{1}, s_{2}, \ldots, s_{n} \leq M$ and $M, n \rightarrow \infty$. In particular, we show the average growth is geometric and determine the precise geometric growth. We also analyze the variance.
Primary 42C05, 11C08; Secondary 30C10 Erdős-Szekeres products, polynomials. This paper is in final form and no version of it will be submitted for publication elsewhere. Research of D Lubinsky supported by NSF Grant DMS1800251. REU Research of other authors supported by NSF Grant DMS1851843

1. Introduction

In a 1959 paper, Erdős and Szekeres [12] posed the problem of determining the behavior, especially as $n \rightarrow \infty$, of

$$
M_{n}=\inf _{s_{1}, s_{2}, \ldots, s_{n} \geq 1} M\left(s_{1}, s_{2}, \ldots, s_{n}\right)=\inf _{s_{1}, s_{2}, \ldots, s_{n} \geq 1}\left\|\prod_{j=1}^{n}\left(1-z^{s_{j}}\right)\right\|_{L_{\infty}(|z|=1)}
$$

over all n-tuples of positive integers $s_{2}, s_{2}, \ldots, s_{n}$. The best current upper bound is the 1996 estimate of Belov and Konyagin [6]

$$
M_{n}=\exp \left(O\left((\log n)^{4}\right)\right)
$$

The best lower bound is still that of Erdős and Szekeres:

$$
M_{n} \geq \sqrt{2 n}
$$

Erdős later conjectured that M_{n} grows faster than any power of n [11]. The complexity of the problem is perhaps best illustrated by the contrast in the results of Bourgain and Chang [10]. They proved that there exist $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} \subset$ $\{1,2, \ldots, N\}$ with $n / N \rightarrow 1 / 2$ as $N \rightarrow \infty$ such that

$$
M\left(s_{1}, s_{2}, \ldots, s_{n}\right) \leq \exp (O(\sqrt{n} \sqrt{\log n} \log \log n))
$$

but if $\tau>0$ is small enough and $n>(1-\tau) N$, then for all $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} \subset$ $\{1,2, \ldots, N\}$,

$$
M\left(s_{1}, s_{2}, \ldots, s_{n}\right)>\exp (\tau n)
$$

[^0]There is an extensive literature - see for example, [5], [7], [8], [9], [10], [18], [19]. There is also an extensive literature on the closely related pointwise growth of Sudler products $\prod_{j=1}^{n}\left(1-z^{j}\right)$, where all $s_{j}=j$, and also some other special $\left\{s_{j}\right\}$, are considered. See [1], [2], [3], [4], [13], [14], [15], [17], [21].

The primary focus of this paper is the average behavior of L_{p} norms of ErdősSzekeres polynomials, motivated by the contrast mentioned above in the results of Bourgain and Chang. For $0<p<\infty$, we set

$$
\|P\|_{p}=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p}
$$

Given $s_{1}, s_{2}, \ldots, s_{n} \geq 1$, we set

$$
P_{n}\left(\left\{s_{j}\right\}, z\right)=\prod_{j=1}^{n}\left(1-z^{s_{j}}\right)
$$

For $\dot{M} \geq 1$, and $p>0$, form the average of the p th powers of the L_{p} norms over all $1 \leq s_{j} \leq M$:

$$
\begin{equation*}
A_{p}(M, n)=\frac{1}{M^{n}} \sum_{1 \leq s_{1}, s_{2}, \ldots, s_{n} \leq M}\left\|P_{n}\left(\left\{s_{j}\right\}, \cdot\right)\right\|_{p}^{p} \tag{1.1}
\end{equation*}
$$

The corresponding variance is

$$
\begin{equation*}
V_{p}(M, n)=\left\{\frac{1}{M^{n}} \sum_{1 \leq s_{1}, s_{2}, \ldots, s_{n} \leq M}\left\{\left\|P_{n}\left(\left\{s_{j}\right\}, \cdot\right)\right\|_{p}^{p}-A_{p}(M, n)\right\}^{2}\right\}^{1 / 2} \tag{1.2}
\end{equation*}
$$

The following simple expressions facilitate analysis:

Proposition 1.1

(a)

$$
\begin{equation*}
A_{p}(M, n)=2^{n p} \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}}\left(\frac{1}{M} \sum_{k=1}^{M}|\sin k t|^{p}\right)^{n} d t \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
V_{p}(M, n)^{2}=\left(2^{n p} \frac{2}{\pi}\right)^{2} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}}\left(\frac{1}{M} \sum_{k=1}^{M}(|\sin k s||\sin k t|)^{p}\right)^{n} d s d t-A_{p}(M, n)^{2} \tag{b}
\end{equation*}
$$

Perhaps surprisingly, the growth of M relative to n is a factor only when M grows much faster than n. The formulation of our results is particularly simple for $p=2$:

Theorem 1.2

Let $\left\{M_{k}\right\},\left\{n_{k}\right\}$ be sequences of positive integers with limit ∞ such that for some $\rho \in[1, \infty]$,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} M_{k}^{1 / n_{k}}=\rho \tag{1.5}
\end{equation*}
$$

(a) Let $s_{0} \in\left(\pi, \frac{3}{2} \pi\right)$ be the unique root of the equation $\tan s=s$ in the interval ($\left.\pi, \frac{3}{2} \pi\right)$. Then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} A_{2}\left(M_{k}, n_{k}\right)^{1 / n_{k}}=2 \max \left\{1, \frac{1}{\rho}\left(1-\frac{\sin s_{0}}{s_{0}}\right)\right\} . \tag{1.6}
\end{equation*}
$$

(b) If $\rho=1$,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} V_{2}\left(M_{k}, n_{k}\right)^{1 / n_{k}}=\sqrt{8} \tag{1.7}
\end{equation*}
$$

Remarks

(a) If for some $L>0$, we have $M_{k}=O\left(\left(n_{k}\right)^{L}\right)$, then $\rho=1$, and

$$
\lim _{k \rightarrow \infty} A_{2}\left(M_{k}, n_{k}\right)^{1 / n_{k}}=2\left\{1-\frac{\sin s_{0}}{s_{0}}\right\}=2.434 \ldots
$$

while

$$
\lim _{k \rightarrow \infty} V_{2}\left(M_{k}, n_{k}\right)^{1 / n_{k}}=\sqrt{8}
$$

Recalling that we squared the norm before averaging, this indicates the average L_{2} norm of these polynomials grows roughly like $\left(\sqrt{2\left\{1-\frac{\sin s_{0}}{s_{0}}\right\}}\right)^{n}=(1.56 \ldots)^{n}$. Note that when all $s_{j}=j$ and we take the sup norm, Sudler showed [20] that the norm grows geometrically, but smaller, namely,

$$
\lim _{n \rightarrow \infty}\left\|\prod_{j=1}^{n}\left(1-z^{j}\right)\right\|_{L_{\infty}(|z|=1)}^{1 / n}=1.219 \ldots
$$

(b) It is possible to analyze the variance for $\rho \in\left(1, \frac{3}{2}\right)$, for then the first term in the right-hand side of (1.4) dominates the second term. However, this is quite technical, and there are other factors that arise, for example, from the diagonal $s=t, t \in\left[0, \frac{\pi}{2}\right]$ in the first term in (1.4), so is omitted.

The case of general p is more complicated. When n is fixed, however, the situation is rather simple:

Theorem 1.3

Fix $n \geq 1$. Then for $p>0$,

$$
\begin{equation*}
\lim _{M \rightarrow \infty} A_{p}(M, n)=2^{n p}\left(\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}}(\sin t)^{p} d t\right)^{n} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{M \rightarrow \infty} V_{p}(M, n)=0 \tag{1.9}
\end{equation*}
$$

For general p, we let

$$
\begin{equation*}
g_{p}(t)=|\sin t|^{p}, t \in[-\pi, \pi] . \tag{1.10}
\end{equation*}
$$

Its Fourier series has the form

$$
\begin{equation*}
g_{p}(t)=\frac{a_{0}}{2}+\sum_{j=1}^{\infty} a_{2 j} \cos 2 j t \tag{1.11}
\end{equation*}
$$

where

$$
a_{j}=\frac{1}{\pi} \int_{-\pi}^{\pi} g_{p}(t) \cos j t d t, j \geq 0
$$

(As g_{p} is even, the sine coefficients are 0 , while the identity $g_{p}(\pi-t)=g_{p}(t)$ shows that the odd order cosine coefficients $\left.a_{2 j+1}=0\right)$. We also need for $k \geq 1$,

$$
\begin{equation*}
F_{k}(s)=\frac{a_{0}}{2}+\sum_{j=1}^{\infty} a_{2 j k} \frac{\sin k j s}{k j s} \tag{1.12}
\end{equation*}
$$

Theorem 1.4

Let $p \geq 1$. Let $\left\{M_{k}\right\},\left\{n_{k}\right\}$ be sequences of positive integers with limit ∞ such that for some $\rho \in[1, \infty]$, (1.5) holds.
(a) Then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} A_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}}=2^{p} \max \left\{\frac{1}{2} a_{0}, \frac{1}{\rho}\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)}\right\} \tag{1.13}
\end{equation*}
$$

where k_{0} is a positive integer such that

$$
\begin{equation*}
\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)}=\sup _{k \geq 1}\left\|F_{k}\right\|_{L_{\infty}[0, \infty)} \geq \frac{1}{2}>\frac{1}{2} a_{0} \tag{1.14}
\end{equation*}
$$

(b) When $p \geq 4$, this simplifies to

$$
\begin{equation*}
\lim _{k \rightarrow \infty} A_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}}=2^{p} \max \left\{\frac{1}{2} a_{0}, \frac{1}{2 \rho}\right\} \tag{1.15}
\end{equation*}
$$

(c) If $\rho=1$ and $p \geq 2$, then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} V_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}}=2^{p-1 / 2} \tag{1.16}
\end{equation*}
$$

Remarks

From Hölder's inequality, the average without p th powers, namely

$$
A_{p}^{*}(M, n)=\frac{1}{M^{n}} \sum_{1 \leq s_{1}, s_{2}, \ldots, s_{n} \leq M}\left\|P_{n}\left(\left\{s_{j}\right\}, \cdot\right)\right\|_{p}
$$

satisfies for $p \geq 1$,

$$
A_{1}(M, n) \leq A_{p}^{*}(M, n) \leq A_{p}(M, n)^{1 / p}
$$

so under the hypotheses of the above theorem,

$$
\limsup _{k \rightarrow \infty} A_{p}^{*}\left(M_{k}, n_{k}\right)^{1 / n_{k}} \leq 2 \max \left\{\frac{2}{\pi} \int_{0}^{\pi / 2}|\sin t|^{p} d t, \frac{1}{\rho}\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)}\right\}^{1 / p}
$$

where $F_{k_{0}}$ arises from the $\left\{F_{k}\right\}$ for p. In the other direction, we have from our results for $A_{1}(M, n)$,

$$
\liminf _{k \rightarrow \infty} A_{p}^{*}\left(M_{k}, n_{k}\right)^{1 / n_{k}} \geq 2\left(\frac{2}{\pi} \int_{0}^{\pi / 2}|\sin t| d t\right)=\frac{4}{\pi}
$$

In particular,

$$
\liminf _{k \rightarrow \infty} A_{\infty}^{*}\left(M_{k}, n_{k}\right)^{1 / n_{k}} \geq \frac{4}{\pi}
$$

This paper is organized as follows: we prove Proposition 1.1 and Theorem 1.3 in Section 2. We prove Theorem 1.2(a) and 1.4(a), (b) in Section 3 and Theorems $1.2(\mathrm{~b}), 1.4(\mathrm{~b})$ in Section 4. We present some further results in Section 5.

2. Proof of Proposition 1.1 and Theorem 1.3

Proof of Proposition 1.1

(a) We have

$$
\left\|P_{n}\left(\left\{s_{j}\right\}, \cdot\right)\right\|_{p}^{p}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \prod_{j=1}^{n}\left(2\left|\sin \frac{s_{j} \theta}{2}\right|\right)^{p} d \theta=2^{n p} \frac{2}{\pi} \int_{0}^{\pi / 2} \prod_{j=1}^{n}\left|\sin s_{j} \theta\right|^{p} d \theta
$$

So

$$
\begin{aligned}
A_{p}(M, n) & =\frac{1}{M^{n}} \sum_{s_{1}=1}^{M} \sum_{s_{2}=1}^{M} \ldots \sum_{s_{n}=1}^{M}\left(2^{n p} \frac{2}{\pi} \int_{0}^{\pi / 2} \prod_{j=1}^{n}\left|\sin s_{j} \theta\right|^{p} d \theta\right) \\
& =2^{n p} \frac{2}{\pi} \int_{0}^{\pi / 2}\left(\frac{1}{M} \sum_{k=1}^{M}|\sin k \theta|^{p}\right)^{n} d \theta
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
V_{p}(M, n)^{2} & =\frac{1}{M^{n}} \sum_{1 \leq s_{1}, s_{2}, \ldots, s_{n} \leq M}\left\|P_{n}\left(\left\{s_{j}\right\}, \cdot\right)\right\|_{p}^{2 p}-A_{p}(M, n)^{2} \\
& =B_{p}(M, n)-A_{p}(M, n)^{2}
\end{aligned}
$$

say. Here as above,

$$
\begin{align*}
B_{p}(M, n) & =\frac{1}{M^{n}} \sum_{s_{1}=1}^{M} \sum_{s_{2}=1}^{M} \ldots \sum_{s_{n}=1}^{M}\left(2^{n p} \frac{2}{\pi} \int_{0}^{\pi / 2} \prod_{j=1}^{n}\left|\sin s_{j} \theta\right|^{p} d \theta\right)^{2} \\
& =\left(2^{n p} \frac{2}{\pi}\right)^{2} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2}\left(\frac{1}{M} \sum_{k=1}^{M}|\sin k \theta \sin k \phi|^{p}\right)^{n} d \phi d \theta \tag{2.1}
\end{align*}
$$

Proof of Theorem 1.3

Recall that if $f:[0,1] \rightarrow \mathbb{R}$ is continuous, and α is irrational, while $\{k \alpha\}$ denotes the fractional part of $k \alpha$, the theory of uniform distribution [16] gives

$$
\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{k=1}^{M} f(\{k \alpha\})=\int_{0}^{1} f(t) d t
$$

Applying this to $f(t)=|\sin \pi t|^{p}$, we see that for t / π irrational, and hence for a.e. $t \in[0, \pi]$,

$$
\begin{equation*}
\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{k=1}^{M}|\sin k t|^{p}=\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{k=1}^{M}\left|\sin \pi\left\{k \frac{t}{\pi}\right\}\right|^{p}=\int_{0}^{1}|\sin \pi t|^{p} d t \tag{2.2}
\end{equation*}
$$

In addition,

$$
\frac{1}{M} \sum_{k=1}^{M}|\sin k t|^{p} \leq 1
$$

Lebesgue's Dominated Convergence Theorem shows that

$$
\lim _{M \rightarrow \infty} A_{p}(M, n)=2^{n p} \frac{2}{\pi} \int_{0}^{\pi / 2}\left(\int_{0}^{1}|\sin \pi t|^{p} d t\right)^{n} d \theta
$$

(b) Let $B_{p}(M, n)$ be given by (2.1). The theory of uniform distribution [16, Chapter $6]$ shows that for a.e. $(\theta, \phi) \in\left[0, \frac{\pi}{2}\right]^{2}$, we have

$$
\begin{aligned}
& \lim _{M \rightarrow \infty} \frac{1}{M} \sum_{k=1}^{M}|\sin k \theta \sin k \phi|^{p} \\
= & \lim _{M \rightarrow \infty} \frac{1}{M} \sum_{k=1}^{M}\left(\left|\sin \pi\left\{k \frac{\theta}{\pi}\right\}\right|\left|\sin \pi\left\{k \frac{\phi}{\pi}\right\}\right|\right)^{p} \\
= & \int_{0}^{1} \int_{0}^{1}(|\sin \pi t||\sin \pi s|)^{p} d s d t \\
= & \left(\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}}|\sin s|^{p} d s\right)^{2}
\end{aligned}
$$

Then

$$
\lim _{M \rightarrow \infty} B_{p}(M, n)=2^{2 n p}\left(\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}}|\sin s|^{p} d s\right)^{2 n}=\lim _{M \rightarrow \infty} A_{p}(M, n)^{2}
$$

so we obtain (1.9).
3. Proof of Theorems $1.2(\mathrm{~A}), 1.4(\mathrm{~A})$ and $1.4(\mathrm{~B})$

Let

$$
h_{M, p}(t)=\frac{1}{M} \sum_{k=1}^{M}|\sin k t|^{p} .
$$

Lemma 3.1

Let $p \geq 1$.
(a) There exists $C_{p}>0$ such that for $M \geq 1$ and $s, t \in \mathbb{R}$,

$$
\left|h_{M, p}(t)-h_{M, p}(s)\right| \leq C_{p} M|t-s|
$$

(b) Given $\varepsilon>0$, there exists M_{0} and δ_{0} such that for $M \geq M_{0}$ and $\left|t-\frac{\pi}{2}\right| \leq \delta_{0} / M$,

$$
\left|h_{M, p}(t)-\frac{1}{2}\right| \leq \varepsilon
$$

Proof
(a) We use the fact that there exists $C_{p}>0$ such that for $u, v \in \mathbb{R}$,

$$
\left||\sin u|^{p}-|\sin v|^{p}\right| \leq C_{p}|u-v| .
$$

Then

$$
\left|h_{M, p}(t)-h_{M, p}(s)\right| \leq \frac{C_{p}}{M} \sum_{k=1}^{M}|k(t-s)|=\frac{C_{p}}{M}|t-s| \frac{M(M+1)}{2}
$$

(b) Now

$$
h_{M, p}\left(\frac{\pi}{2}\right)=\frac{1}{M} \sum_{1 \leq k \leq M, k \text { odd }} 1=\frac{1}{2}+O\left(\frac{1}{M}\right)
$$

The result then follows from (a).
We can now prove a preliminary lower bound:

Lemma 3.2

Let $p>0$ and $\left\{M_{k}\right\},\left\{n_{k}\right\}$ be sequences of positive integers with $M_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Then

$$
\liminf _{k \rightarrow \infty} A_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}} \geq 2^{p} \max \left\{\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}}|\sin t|^{p} d t, \frac{1}{2 \limsup _{k \rightarrow \infty} M_{k}^{1 / n_{k}}}\right\}
$$

Proof

First, from (1.3) and Hölder's inequality,

$$
A_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}} \geq 2^{p} \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} h_{M_{k}, p}(t) d t
$$

Using Fatou's Lemma, and uniform distribution as in (2.2),

$$
\begin{align*}
\liminf _{k \rightarrow \infty} A_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}} & \geq 2^{p} \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \liminf _{k \rightarrow \infty} h_{M_{k}, p}(t) d t \\
& =2^{p} \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}}\left(\int_{0}^{1}|\sin \pi \theta|^{p} d \theta\right) d t \\
& =2^{p} \int_{0}^{1}|\sin \pi \theta|^{p} d \theta \tag{3.1}
\end{align*}
$$

Next, let $\varepsilon \in\left(0, \frac{1}{2}\right)$. From Lemma 3.1(b), there exists K_{0} and δ_{0} such that for $k \geq K_{0}$,

$$
\int_{\frac{\pi}{2}-\frac{\delta_{0}}{M}}^{\frac{\pi}{2}} h_{M_{k}, p}(t)^{n_{k}} d t \geq \int_{\frac{\pi}{2}-\frac{\delta_{0}}{M}}^{\frac{\pi}{2}}\left(\frac{1}{2}-\varepsilon\right)^{n_{k}} d t=\frac{\delta_{0}}{M}\left(\frac{1}{2}-\varepsilon\right)^{n_{k}}
$$

so that

$$
A_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}} \geq\left(\frac{2}{\pi} \frac{\delta_{0}}{M}\right)^{1 / n_{k}} 2^{p}\left(\frac{1}{2}-\varepsilon\right)
$$

Letting $k \rightarrow \infty$,

$$
\liminf _{k \rightarrow \infty} A_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}} \geq 2^{p}\left(\frac{1}{2}-\varepsilon\right) \liminf _{k \rightarrow \infty} \frac{1}{M_{k}^{1 / n_{k}}}
$$

Here as $\varepsilon>0$ is arbitrary, we obtain

$$
\liminf _{k \rightarrow \infty} A_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}} \geq 2^{p-1} \frac{1}{\lim \sup _{k \rightarrow \infty} M_{k}^{1 / n_{k}}}
$$

Combining this and (3.1) gives the result.
We now consider the special case $p=2$, where there is a simple formula for $h_{M, p}$.

Lemma 3.3

(a)

$$
\begin{equation*}
h_{M, 2}(t)=\frac{1}{2}\left(1+\frac{1}{2 M}-\frac{\sin (2 M+1) t}{2 M \sin t}\right) . \tag{3.2}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\left\|h_{M, 2}\right\|_{L_{\infty}\left[0, \frac{\pi}{2}\right]}=\frac{1}{2}\left(1-\frac{\sin s_{0}}{s_{0}}\right)+o(1) \tag{3.3}
\end{equation*}
$$

where $s_{0} \in\left(\pi, \frac{3}{2} \pi\right)$ is the unique root of the equation $\tan s=s$ in that interval. The sup norm of $h_{M, 2}$ is attained at a point of the form $t_{M}=\frac{s_{0}}{2 M+1}(1+o(1))$.

Proof

(a) This uses the standard trick from Fourier series:

$$
\begin{aligned}
h_{M, 2}(t) & =\frac{1}{2 M} \sum_{k=1}^{M}(1-\cos 2 k t) \\
& =\frac{1}{2}-\frac{1}{2 M} \sum_{k=1}^{M} \frac{\sin (2 k+1) t-\sin (2 k-1) t}{2 \sin t} \\
& =\frac{1}{2}-\frac{\sin (2 M+1) t}{4 M \sin t}+\frac{1}{4 M}
\end{aligned}
$$

(b) If first $t \in\left[0, \frac{\pi}{2 M+1}\right]$, then $\sin (2 m+1) t \geq 0$, so

$$
0 \leq h_{M, 2}(t) \leq \frac{1}{2}+\frac{1}{4 M}
$$

If $t \in\left[\frac{3}{2} \frac{\pi}{2 M+1}, \frac{\pi}{2}\right]$, then

$$
\begin{aligned}
0 & \leq h_{M, 2}(t) \leq \frac{1}{2}+\frac{1}{4 M \sin t}+\frac{1}{4 M} \\
& \leq \frac{1}{2}+\frac{1}{4 M \sin \frac{3}{2} \frac{\pi}{2 M+1}}+\frac{1}{4 M}=h_{M, 2}\left(\frac{3}{2} \frac{\pi}{2 M+1}\right)
\end{aligned}
$$

So $\left\|h_{M, 2}\right\|_{L_{\infty}\left[0, \frac{\pi}{2}\right]}$ is attained in the interval $\left[\frac{\pi}{2 M+1}, \frac{3}{2} \frac{\pi}{2 M+1}\right]$. As $M \rightarrow \infty$, uniformly for $s \in\left[\pi, \frac{3}{2} \pi\right]$, we have

$$
\begin{aligned}
h_{M, 2}\left(\frac{s}{2 M+1}\right) & =\frac{1}{2}\left(1+\frac{1}{2 M}-\frac{\sin s}{2 M \sin \frac{s}{2 M+1}}\right) \\
& =\frac{1}{2}\left(1-\frac{\sin s}{s}\right)+O\left(\frac{1}{M}\right)
\end{aligned}
$$

The function $\frac{\sin s}{s}$ has a unique minimum in $\left(\pi, \frac{3}{2} \pi\right)$, at the point s_{0}, where $\tan s_{0}=$ s_{0}. Then we have the result.

Proof of Theorem 1.2(a)

We first establish the asymptotic lower bound. Let $\varepsilon \in\left(0, \frac{1}{4}\right)$. From Lemma 3.1(a) and Lemma 3.3(b), there exists $\delta_{0}>0$ such that for large enough M,

$$
\int_{t_{M}-\frac{\delta_{0}}{2 M+1}}^{t_{M}-\frac{\delta_{0}}{2 M+1}} h_{M, 2}(t)^{n} d t \geq \frac{2 \delta_{0}}{2 M+1}\left(\frac{1}{2}\left(1-\frac{\sin s_{0}}{s_{0}}\right)-\varepsilon\right)^{n}
$$

so that

$$
\begin{aligned}
\liminf _{k \rightarrow \infty} A_{2}\left(M_{k}, n_{k}\right)^{1 / n_{k}} & \geq \liminf _{k \rightarrow \infty} 2^{2}\left(\frac{2}{\pi} \frac{2 \delta_{0}}{2 M_{k}+1}\right)^{1 / n_{k}}\left(\frac{1}{2}\left(1-\frac{\sin s_{0}}{s_{0}}\right)-\varepsilon\right) \\
& =2^{2} \frac{1}{\rho}\left(\frac{1}{2}\left(1-\frac{\sin s_{0}}{s_{0}}\right)-\varepsilon\right)
\end{aligned}
$$

As $\varepsilon>0$ is arbitrary,

$$
\liminf _{k \rightarrow \infty} A_{2}\left(M_{k}, n_{k}\right)^{1 / n_{k}} \geq 2^{2} \frac{1}{\rho}\left(\frac{1}{2}\left(1-\frac{\sin s_{0}}{s_{0}}\right)\right)
$$

Together with Lemma 3.2 and the fact that $\frac{1}{2}\left(1-\frac{\sin s_{0}}{s_{0}}\right)>\frac{1}{2}$, this gives

$$
\begin{array}{ll}
\liminf _{k \rightarrow \infty} A_{2}\left(M_{k}, n_{k}\right)^{1 / n_{k}} & \geq 2^{2} \max \left\{\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}}|\sin t|^{2} d t, \frac{1}{\rho}\left(\frac{1}{2}\left(1-\frac{\sin s_{0}}{s_{0}}\right)\right)\right\} \\
3.4) & =2 \max \left\{1, \frac{1}{\rho}\left(1-\frac{\sin s_{0}}{s_{0}}\right)\right\} \tag{3.4}
\end{array}
$$

We now turn to the matching upper bound. Let $R>0$. We have

$$
\int_{0}^{\frac{R}{2 M+1}} h_{M, 2}(t)^{n} d t \leq \frac{R}{2 M+1}\left\|h_{M, 2}\right\|_{L_{\infty}\left[0, \frac{\pi}{2}\right]}^{n}
$$

Next, for $t \in\left[\frac{R}{2 M+1}, \frac{\pi}{2}\right]$, we have from (3.2), for large enough M,

$$
h_{M, 2}(t) \leq \frac{1}{2}\left(1+\frac{1}{2 M}+\frac{1}{2 M \sin \frac{R}{2 M+1}}\right) \leq \frac{1}{2}\left(1+\frac{2}{R}\right)
$$

Combining the above estimates, gives for large enough k,

$$
\begin{aligned}
A_{2}\left(M_{k}, n_{k}\right) & =2^{2 n_{k}} \frac{2}{\pi}\left[\int_{0}^{\frac{R}{2 M+1}}+\int_{\frac{R}{2 M+1}}^{\frac{\pi}{2}}\right] h_{M_{k}, 2}(t)^{n} d t \\
& \leq 2^{2 n_{k}} \frac{2}{\pi}\left[\frac{R}{2 M_{k}+1}\left\|h_{M_{k}, 2}\right\|_{L_{\infty}\left[0, \frac{\pi}{2}\right]}^{n_{k}}+\frac{\pi}{2}\left(\frac{1}{2}\left(1+\frac{2}{R}\right)\right)^{n_{k}}\right]
\end{aligned}
$$

Then using Lemma 3.3(b),

$$
A_{2}\left(M_{k}, n_{k}\right)^{1 / n_{k}} \leq 2^{2}(1+o(1)) \max \left\{\frac{1}{\rho} \frac{1}{2}\left(1-\frac{\sin s_{0}}{s_{0}}\right), \frac{1}{2}\left(1+\frac{2}{R}\right)\right\}
$$

Since R may be made arbitrarily large, we obtain

$$
\limsup _{k \rightarrow \infty} A_{2}\left(M_{k}, n_{k}\right)^{1 / n_{k}} \leq 2 \max \left\{1, \frac{1}{\rho}\left(1-\frac{\sin s_{0}}{s_{0}}\right)\right\}
$$

This and (3.4) give the result.
We turn to the more difficult case of general p. Recall that we expanded $g_{p}(t)=$ $|\sin t|^{p}$ as a Fourier series in (1.11) and defined F_{k} by (1.12). Recall too that

$$
h_{M, p}(t)=\frac{1}{M} \sum_{k=1}^{M}|\sin k t|^{p}
$$

Lemma 3.4

Let $p \geq 1, R>1$, and $\varepsilon \in(0,1)$.
(a)

$$
\begin{equation*}
h_{M, p}(t)=\frac{1}{2} a_{0}\left(1+\frac{1}{2 M}\right)+\sum_{j=1}^{\infty} a_{2 j} \frac{\sin (j(2 M+1) t)}{2 M \sin j t} . \tag{3.5}
\end{equation*}
$$

(b) There exists N such that if

$$
\begin{equation*}
h_{M, p, N}(t)=\frac{1}{2} a_{0}\left(1+\frac{1}{2 M}\right)+\sum_{j=1}^{N} a_{2 j} \frac{\sin (j(2 M+1) t)}{2 M \sin j t}, \tag{3.6}
\end{equation*}
$$

then for $M \geq 1$ and $t \in \mathbb{R}$,

$$
\begin{equation*}
\left|h_{M, p}(t)-h_{M, n, p}(t)\right| \leq \varepsilon \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=N+1}^{\infty}\left|a_{2 j}\right|<\varepsilon \tag{3.8}
\end{equation*}
$$

(c) Let $M \geq R$. With N as in (b), let

$$
\begin{equation*}
\mathcal{I}=\left\{t \in\left[0, \frac{\pi}{2}\right]:|\sin j t| \geq \frac{R}{M} \text { for } 1 \leq j \leq N\right\} \tag{3.9}
\end{equation*}
$$

Then for $t \in \mathcal{I}$, we have

$$
\begin{equation*}
h_{M, p, N}(t) \leq \frac{1}{2} a_{0}+\frac{C}{R} \tag{3.10}
\end{equation*}
$$

where C is independent of M, R, N, t.
(d) Let $\mathcal{J}=\left[0, \frac{\pi}{2}\right] \backslash \mathcal{I}$. Then for $t \in \mathcal{J}$, and $M \geq M_{0}(\varepsilon)$, we have

$$
\begin{equation*}
h_{M, p}(t) \leq \sup _{k \geq 1}\left\|F_{k}\right\|_{L_{\infty}[0, \infty)}+3 \varepsilon . \tag{3.11}
\end{equation*}
$$

(e) Given $1 \leq j_{0} \leq N$, there exists for large enough $M, t_{M} \in\left[0, \frac{\pi}{2}\right]$ and $\eta>0$ such that for $\left|t-t_{M}\right| \leq \frac{\eta}{M}$,

$$
\begin{equation*}
h_{M, p}(t) \geq\left\|F_{j_{0}}\right\|_{L_{\infty}[0, \infty)}-\varepsilon \tag{3.12}
\end{equation*}
$$

Remark
The sets \mathcal{I} and \mathcal{J} depend on M, N and R, but we do not explicitly display this dependence.

Proof

(a) We have

$$
\begin{aligned}
h_{M, p}(t) & =\frac{1}{M} \sum_{k=1}^{M}\left(\frac{a_{0}}{2}+\sum_{j=1}^{\infty} a_{2 j} \cos 2 j k t\right) \\
& =\frac{a_{0}}{2}+\sum_{j=1}^{\infty} a_{2 j} \frac{1}{M} \sum_{k=1}^{M} \cos 2 j k t \\
& =\frac{a_{0}}{2}+\sum_{j=1}^{\infty} a_{2 j}\left[\frac{\sin j(2 M+1) t}{2 M \sin j t}-\frac{1}{2 M}\right]
\end{aligned}
$$

by the usual sums of Fourier series. Here as g_{p} has left and right derivatives at each point of $[-\pi, \pi]$, it equals its Fourier series there. In particular at $t=0$,

$$
\begin{equation*}
0=\frac{a_{0}}{2}+\sum_{j=1}^{\infty} a_{2 j} \tag{3.13}
\end{equation*}
$$

so that (3.5) follows.
(b) A direct computation shows that if $p=1$,

$$
a_{2 j}=-\frac{4}{\pi} \frac{1}{4 j^{2}-1}, j \geq 1
$$

If $p>1$, integrating by parts twice shows that

$$
a_{2 j}=-\frac{p(p-1)}{2 \pi j^{2}} \int_{0}^{\pi}(\sin t)^{p-2} \cos (2 j t) d t
$$

Consequently if $p \geq 1$, there exists $C>0$ such that for $j \geq 1$,

$$
\left|a_{j}\right| \leq \frac{C}{j^{2}}, j \geq 1
$$

Then if N is large enough,

$$
\left|h_{M, p}(t)-h_{M, p, N}(t)\right|=\left|\sum_{j=N+1}^{\infty} a_{2 j} \frac{\sin (j(2 M+1) t)}{2 M \sin j t}\right| \leq 2 \sum_{j=N+1}^{\infty} \frac{C}{j^{2}}<\varepsilon
$$

Thus we obtain (3.7) and (3.8).
(c) Here

$$
\begin{aligned}
h_{M, p, N}(t) & \leq \frac{1}{2} a_{0}\left(1+\frac{1}{2 M}\right)+\frac{1}{2 R} \sum_{j=1}^{N}\left|a_{2 j}\right| \\
& \leq \frac{1}{2} a_{0}+\frac{C}{R}
\end{aligned}
$$

where C is independent of $M \geq R$ and N, t.
(d) We assume that $M \gg N^{2} R$. Let $t \in \mathcal{J}$. Then for some $1 \leq j \leq N$, we have $|\sin j t|<\frac{R}{M}$. For the given t, let

$$
S_{t}=\left\{j: 1 \leq j \leq N \text { and }|\sin j t|<\frac{R}{M}\right\}
$$

Let j_{0} be the smallest integer in S_{t}. Then necessarily $j_{0} t$ is close to a multiple of π. Let us make this more precise. Since $0 \leq j_{0} t \leq j_{0} \frac{\pi}{2}$, there exists an integer $0 \leq m_{0} \leq \frac{j_{0}}{2}$ such that $\left|j_{0} t-m_{0} \pi\right| \leq \frac{\pi}{2}$ and $m_{0} \pi$ is the closest multiple of π to $j_{0} t$. Then

$$
\begin{align*}
\frac{R}{M} & \geq\left|\sin \left(j_{0} t-m_{0} \pi\right)\right| \geq \frac{2}{\pi}\left|j_{0} t-m_{0} \pi\right| \\
& \Rightarrow\left|t-\frac{m_{0}}{j_{0}} \pi\right| \leq \frac{\pi R}{2 j_{0} M} \leq \frac{\pi R}{2 M} \tag{3.14}
\end{align*}
$$

We claim that we can assume either $m_{0}=0$ or j_{0}, m_{0} are coprime. For suppose $m_{0} \neq 0$ but j_{0}, m_{0} are not coprime. Then $j_{0}=j_{1} k$ and $m_{0}=m_{1} k$ for some $k \geq 2$,
and we have

$$
\begin{aligned}
\left|\sin j_{1} t\right| & =\left|\sin \left(j_{1} t-m_{1} \pi\right)\right|=\left|\sin \left(\frac{1}{k}\left(j_{0} t-m_{0} \pi\right)\right)\right| \\
& \leq \frac{j_{0}}{k}\left|t-\frac{m_{0}}{j_{0}} \pi\right| \leq \frac{\pi R}{2 k M}<\frac{R}{M}
\end{aligned}
$$

as $k \geq 2$. This contradicts our choice of j_{0} as the smallest element of S_{t}. We next claim that

$$
\begin{equation*}
S_{t} \subseteq\left\{k j_{0}: 1 \leq k \leq N / j_{0}\right\} \tag{3.15}
\end{equation*}
$$

If first $m_{0}=0$, then $\left|\sin j_{0} t\right| \leq \frac{R}{M}$, and since j_{0} is the smallest member of S_{t}, so necessarily $j_{0}=1$. So all this last statement asserts is $S_{t} \subseteq\{1,2, \ldots, N\}$, which follows from the definition. Next suppose $m_{0}>0$ so that j_{0} and m_{0} are coprime. If j_{1} is not a multiple of j_{0} and $j_{1} \in S_{t}$, we have for some $m_{1} \leq j_{1} / 2$ that

$$
\left|t-\frac{m_{1}}{j_{1}} \pi\right| \leq \frac{\pi R}{2 M}
$$

as at (3.14). Then

$$
\begin{aligned}
\left|\frac{m_{0}}{j_{0}}-\frac{m_{1}}{j_{1}}\right| & \leq \frac{R}{M} \\
\Rightarrow\left|m_{0} j_{1}-m_{1} j_{0}\right| & \leq \frac{R}{M} N^{2}<1 .
\end{aligned}
$$

Then $m_{0} j_{1}-m_{1} j_{0}=0$, and so $j_{0} \mid j_{1}$, a contradiction. Thus we have (3.15) in all cases. Next, we can write

$$
\begin{equation*}
t=\frac{m_{0}}{j_{0}} \pi+\frac{s}{2 M+1}, \text { where }|s| \leq \frac{\pi R}{2} \frac{2 M+1}{2 M} \tag{3.16}
\end{equation*}
$$

Then from (3.6),

$$
\begin{equation*}
h_{M, p, N}(t)=\frac{1}{2} a_{0}\left(1+\frac{1}{2 M}\right)+\sum_{j=1}^{N} a_{2 j} \frac{\sin \left(j(2 M+1) \frac{m_{0}}{j_{0}} \pi+j s\right)}{2 M \sin j\left(\frac{m_{0}}{j_{0}} \pi+\frac{s}{2 M+1}\right)} . \tag{3.17}
\end{equation*}
$$

If first $m_{0}=0$, this yields uniformly in s,

$$
\begin{equation*}
h_{M, p, N}(t)=\frac{1}{2} a_{0}\left(1+\frac{1}{2 M}\right)+\sum_{j=1}^{N} a_{2 j} \frac{\sin j s}{j s}+O\left(\frac{1}{M}\right) . \tag{3.18}
\end{equation*}
$$

Next suppose $m_{0} \neq 0$ but j_{0}, m_{0} are coprime. The main contributions to the sum in (3.17) come from those $j \leq N$ that are multiples of j_{0}, say $j=j_{0} \ell$, where $\ell \leq N / j_{0}$. Then

$$
\begin{aligned}
\frac{\sin \left(j(2 M+1) \frac{m}{j_{0}} \pi+j s\right)}{2 M \sin j\left(\frac{m}{j_{0}} \pi+\frac{s}{2 M+1}\right)} & =\frac{\sin \left((2 M+1) \ell m \pi+j_{0} \ell s\right)}{2 M \sin \left(\ell m \pi+j_{0} \ell \frac{s}{2 M+1}\right)} \\
& =\frac{\sin \left(j_{0} \ell s\right)}{2 M \sin \left(j_{0} \ell \frac{s}{2 M+1}\right)} \\
& =\frac{\sin \left(j_{0} \ell s\right)}{j_{0} \ell s}+O\left(\frac{1}{M}\right)
\end{aligned}
$$

uniformly for $|s| \leq \frac{\pi R}{2} \frac{2 M+1}{2 M}$. Note that this holds even if we do not know that $j=j_{0} \ell \in S_{t}$. For the remaining terms, we have as $j_{0} \nmid j m$ that $j_{0} \geq 2$, so

$$
\begin{aligned}
\left|\sin j\left(\frac{m}{j_{0}} \pi+\frac{s}{2 M+1}\right)\right| & \geq\left|\sin \frac{\pi}{j_{0}}\right|-\left|\frac{j s}{2 M+1}\right| \\
& \geq\left|\sin \frac{\pi}{N}\right|-O\left(\frac{1}{M}\right)
\end{aligned}
$$

Then no matter whether $m=0$ or j_{0}, m are coprime,

$$
\begin{equation*}
h_{M, p, N}(t)=\frac{1}{2} a_{0}+\sum_{1 \leq \ell \leq N / j_{0}} a_{2 j_{0} \ell} \frac{\sin \left(j_{0} \ell s\right)}{j_{0} \ell s}+O\left(\frac{1}{M}\right) . \tag{3.19}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left|h_{M, p, N}(t)-F_{j_{0}}(s)\right| \leq \sum_{k=N+1}^{\infty}\left|a_{2 k}\right|+O\left(\frac{1}{M}\right)<\varepsilon+O\left(\frac{1}{M}\right), \tag{3.20}
\end{equation*}
$$

by (3.8). Together with (3.7), this gives

$$
\begin{aligned}
h_{M, p}(t) & \leq F_{j_{0}}(s)+2 \varepsilon+O\left(\frac{1}{M}\right) \\
& \leq \sup _{k \geq 1}\left\|F_{k}\right\|_{L_{\infty}[0, \infty)}+2 \varepsilon+O\left(\frac{1}{M}\right) .
\end{aligned}
$$

For large enough M, we obtain (3.11).
(e) With t given by (3.16), we have from (3.7), (3.19), (3.20),

$$
h_{M, p}(t) \geq F_{j_{0}}(s)-2 \varepsilon+O\left(\frac{1}{M}\right) .
$$

Here we can choose any $1 \leq j_{0} \leq N$ and any s with $|s| \leq \frac{\pi R}{2} \frac{2 M+1}{2 M}$. As R can be as large as we please, we can choose a suitable t and then a suitable j_{0} with

$$
h_{M, p}(t) \geq\left\|F_{j_{0}}\right\|_{L_{\infty}[0, \infty)}-4 \varepsilon
$$

for large enough M. The Hölder estimate in Lemma 3.1(a) yields the result.
Next we establish further properties of the $\left\{F_{k}\right\}$ defined by (1.12):

Lemma 3.5

Let $p \geq 1$.
(a) There is an integer $k_{0} \geq 1$ such that

$$
\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)}=\sup _{k \geq 1}\left\|F_{k}\right\|_{L_{\infty}[0, \infty)} \geq\left\|F_{1}\right\|_{L_{\infty}[0, \infty)}>\frac{1}{2} a_{0}
$$

and for $k>k_{0}$,

$$
\left\|F_{k}\right\|_{L_{\infty}[0, \infty)}<\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)}
$$

(b) In addition,

$$
\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)} \geq F_{2}(0)=\frac{1}{2}
$$

(c) Each F_{k} is nonnegative in $[0, \infty)$. Moreover, if $p \geq 2$, then with s_{0} as above,

$$
\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)}=\sup _{k \geq 1}\left\|F_{k}\right\|_{L_{\infty}[0, \infty)} \leq \frac{1}{2}\left(1-\frac{\sin s_{0}}{s_{0}}\right)
$$

Proof

(a) Now

$$
\lim _{s \rightarrow \infty} F_{1}(s)=\frac{a_{0}}{2}=F_{1}(m \pi), m \geq 1
$$

If $\left\|F_{1}\right\|_{L_{\infty}[0, \infty)}=\frac{a_{0}}{2}$, then for all $m \geq 1, F_{1}^{\prime}(m \pi)=0$. Here

$$
\begin{gathered}
F_{1}^{\prime}(s)=\sum_{j=1}^{\infty} a_{2 \ell} \frac{(j \cos j s) s-\sin j s}{j s^{2}} \\
\Rightarrow 0=F_{1}^{\prime}(2 \pi)=\frac{1}{2 \pi} \sum_{j=1}^{\infty} a_{2 j}
\end{gathered}
$$

But then from (3.13), $a_{0}=0$, which is false. So

$$
\sup _{k \geq 1}\left\|F_{k}\right\|_{L_{\infty}[0, \infty)} \geq\left\|F_{1}\right\|_{L_{\infty}[0, \infty)}>\frac{1}{2} a_{0}
$$

Next, for each k,

$$
\left\|F_{k}\right\|_{L_{\infty}[0, \infty)} \leq \frac{1}{2} a_{0}+\sum_{j=2 k}^{\infty}\left|a_{j}\right| \rightarrow \frac{1}{2} a_{0}
$$

as $k \rightarrow \infty$, so for sufficiently large k, we obtain

$$
\left\|F_{k}\right\|_{L_{\infty}[0, \infty)}<\left\|F_{1}\right\|_{L_{\infty}[0, \infty)}
$$

Thus there is a k_{0} as described above.
(b) Now

$$
\begin{equation*}
F_{2}(0)=\frac{1}{2} a_{0}+\sum_{j=1}^{\infty} a_{4 j} . \tag{3.21}
\end{equation*}
$$

Here

$$
\begin{aligned}
& 1=g_{p}\left(\frac{\pi}{2}\right)=\frac{1}{2} a_{0}+\sum_{j=1}^{\infty} a_{2 j}(-1)^{j} \\
& 0=g_{p}(0)=\frac{1}{2} a_{0}+\sum_{j=1}^{\infty} a_{2 j}
\end{aligned}
$$

so adding,

$$
1=a_{0}+2 \sum_{j=1}^{\infty} a_{4 j}
$$

Substituting in (3.21), gives

$$
F_{2}(0)=\frac{1}{2}
$$

(c) Suppose that $p \geq 2$. This essentially follows from the inequality $h_{M, p}(t) \leq$ $h_{M, 2}(t)$. By Lemma 3.3(b), for all t,

$$
0 \leq h_{M, p}(t) \leq \frac{1}{2}\left(1-\frac{\sin s_{0}}{s_{0}}\right)+o(1)
$$

Given $\varepsilon>0$, we can then choose N, M_{0} so large that for $M \geq M_{0}$ and all t,

$$
-\varepsilon \leq h_{M, p, N}(t) \leq \frac{1}{2}\left(1-\frac{\sin s_{0}}{s_{0}}\right)+\varepsilon
$$

as at (3.7). By taking scaling limits of the left-hand side, much as in the proof of Lemma 3.4, we will obtain the result. Let us make this precise. Let $j_{0} \geq 1$ and $s \in \mathbb{R}$. From (3.20), with t given by (3.16), we obtain

$$
-2 \varepsilon \leq F_{j_{0}}(s) \leq \frac{1}{2}\left(1-\frac{\sin s_{0}}{s_{0}}\right)+2 \varepsilon
$$

Since $\varepsilon>0$ is arbitrary,

$$
0 \leq F_{j_{0}}(s) \leq \frac{1}{2}\left(1-\frac{\sin s_{0}}{s_{0}}\right)
$$

Here $s \in(0, \infty]$ is arbitrary, so we obtain the result. The nonnegativity clearly also follows for $p \leq 2$.

Proof of Theorem 1.4(a)

We first establish the asymptotic lower bound. Let k_{0} be as in the lemma above. Let $\varepsilon \in\left(0, \frac{1}{2}\right)$. From Lemma 3.4(e), Lemma 3.5(a), and Lemma 3.1(a), there exists for large enough $k, t_{k} \in(0, \infty)$ and $\eta>0$, such that for $\left|t-t_{k}\right| \leq \frac{\eta}{M_{k}}$, we have

$$
h_{M_{k}, p}(t) \geq\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)}-\varepsilon .
$$

Then

$$
\begin{aligned}
\liminf _{k \rightarrow \infty} A_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}} & \geq \liminf _{k \rightarrow \infty}\left(2^{n_{k} p} \frac{2}{\pi} \int_{t_{k}-\frac{\eta}{M_{k}}}^{t_{k}+\frac{\eta}{M_{k}}}\left(\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)}-\varepsilon\right)^{n_{k}} d t\right)^{1 / n_{k}} \\
& =2^{p} \frac{1}{\rho}\left(\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)}-\varepsilon\right)
\end{aligned}
$$

As $\varepsilon>0$ is arbitrary, this last lower bound and Lemma 3.2, give

$$
\begin{align*}
\liminf _{k \rightarrow \infty} A_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}} & \geq 2^{p} \max \left\{\frac{1}{2} a_{0}, \frac{1}{2 \rho}, \frac{1}{\rho}\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)}\right\} \\
& =2^{p} \max \left\{\frac{1}{2} a_{0}, \frac{1}{\rho}\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)}\right\} \tag{3.22}
\end{align*}
$$

recall Lemma 3.5(b). Now let us establish the corresponding uper bound. We split $\left[0, \frac{\pi}{2}\right]=\mathcal{I} \cup \mathcal{J}$, where the latter are as in Lemma 3.4. From Lemma 3.4(c), (d),

$$
\begin{aligned}
A_{p}(M, n) & =2^{n p} \frac{2}{\pi}\left(\int_{\mathcal{I}}+\int_{\mathcal{J}}\right) h_{M, p}(t)^{n} d t \\
& \leq 2^{n p} \frac{2}{\pi}\left(\frac{\pi}{2}\left[\frac{1}{2} a_{0}+\frac{C}{R}\right]^{n}+\operatorname{meas}(\mathcal{J})\left[\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)}+3 \varepsilon\right]^{n}\right)
\end{aligned}
$$

Here meas $(\mathcal{J}) \leq \frac{C}{M},\left(\right.$ as is clear from (3.14) and the fact that there are $O\left(N^{2}\right)$ pairs $\left.\left(j_{0}, m_{0}\right)\right)$ so

$$
\begin{aligned}
& A_{p}\left(M_{k}, n_{k}\right) \leq C 2^{n_{k} p} \max \left\{\left[\frac{1}{2} a_{0}+\frac{C}{R}\right]^{n_{k}}, \frac{1}{M_{k}}\left[\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)}+3 \varepsilon\right]^{n_{k}}\right\} \\
& \Rightarrow \limsup _{k \rightarrow \infty} A_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}} \leq 2^{p} \max \left\{\frac{1}{2} a_{0}+\frac{C}{R}, \frac{1}{\rho}\left[\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)}+3 \varepsilon\right]\right\}
\end{aligned}
$$

As R may be as large as we please while ε may be as small as we please,

$$
\limsup _{k \rightarrow \infty} A_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}} \leq 2^{p} \max \left\{\frac{1}{2} a_{0}, \frac{1}{\rho}\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)}\right\}
$$

This and our lower bound (3.22) give the result.
We next look at $p=4$ in some detail:

Lemma 3.6

Let $p \geq 4$. Then

$$
\begin{equation*}
\lim _{M \rightarrow \infty}\left\|h_{M, p}\right\|_{L_{\infty}\left[0, \frac{\pi}{2}\right]}=\frac{1}{2}=\sup _{k \geq 1}\left\|F_{k}\right\|_{L_{\infty}[0, \infty)} \tag{3.23}
\end{equation*}
$$

Proof
The Fourier series of $(\sin t)^{4}$ can be deduced from trigonometric identities:

$$
(\sin t)^{4}=\frac{3}{8}-\frac{1}{2} \cos 2 t+\frac{1}{8} \cos 4 t
$$

Then we see from Lemma 3.4(a) that

$$
h_{M, 4}(t)=\frac{3}{8}\left(1+\frac{1}{2 M}\right)-\frac{1}{2} \frac{\sin ((2 M+1) t)}{2 M \sin t}+\frac{1}{8} \frac{\sin (2(2 M+1) t)}{2 M \sin 2 t} .
$$

Here there are really only 2 of the " F " functions:

$$
\begin{gathered}
F_{1}(s)=\frac{3}{8}-\frac{1}{2} \frac{\sin s}{s}+\frac{1}{8} \frac{\sin 2 s}{2 s} \\
F_{2}(s)=\frac{3}{8}+\frac{1}{8} \frac{\sin 2 s}{2 s}
\end{gathered}
$$

For $k \geq 3, F_{k}=\frac{3}{8}$. Recall from Lemma 3.5(c) that these are nonnegative functions. We see that

$$
0 \leq F_{2}(s) \leq \frac{1}{2}=F_{2}(0)
$$

Next if $s \in[0, \pi)$, we have $\sin s \geq 0$, so

$$
0 \leq F_{1}(s) \leq \frac{3}{8}+\frac{1}{8}=\frac{1}{2}
$$

If $s \geq \frac{3}{2} \pi$, then

$$
0 \leq F_{1}(s) \leq \frac{3}{8}+\frac{1}{3 \pi}+\frac{1}{24 \pi}=0.375+0.106+0.0132<\frac{1}{2}
$$

It remains to deal with $s \in\left[\pi, \frac{3}{2} \pi\right]$. Here a plot of the function $F_{2}(s), s \in\left[\pi, \frac{3}{2} \pi\right]$ shows that its maximum is $0.4922 \ldots$. Combining the above estimates for F_{1} and F_{2}, we see that

$$
\sup _{k \geq 1}\left\|F_{k}\right\|_{L_{\infty}[0, \infty)}=\frac{1}{2}=F_{2}(0)
$$

so that from Lemma 3.4(c), (d), (e),

$$
\left\|h_{M, 4}\right\|_{L_{\infty}[0, \infty)}=\frac{1}{2}+o(1)
$$

Finally for $p \geq 4, h_{M, p} \leq h_{M, 4}$, which together with Lemma 3.1(b), gives the result.

Proof of Theorem 1.4(b)
For $p \geq 4$, this follows from the lemma above and (1.13).

4. The Variance

Recall from (2.1) that

$$
B_{p}(M, n)=\left(2^{n p} \frac{2}{\pi}\right)^{2} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2}\left(H_{M, p}(\theta, \phi)\right)^{n} d \phi d \theta
$$

where

$$
H_{M, p}(\theta, \phi)=\frac{1}{M} \sum_{k=1}^{M}(|\sin k \theta||\sin k \phi|)^{p}
$$

Lemma 4.1

Let $p \geq 1$.
(a)

$$
H_{M, p}(\theta, \phi) \leq \sqrt{h_{M, 2 p}(\theta) h_{M, 2 p}(\phi)}
$$

(b) There exists $C_{p}>0$ such that for $M \geq 1$ and $s, t, u, v \in \mathbb{R}$,

$$
\begin{equation*}
\left|H_{M, p}(s, t)-H_{M, p}(u, v)\right| \leq C_{p}(M|s-u|+M|t-v|) \tag{4.1}
\end{equation*}
$$

(c) For $p \geq 2$,

$$
\begin{equation*}
\left\|H_{M, p}\right\|_{L_{\infty}\left(\left[0, \frac{\pi}{2}\right] \times\left[0, \frac{\pi}{2}\right]\right)}=H_{m, p}\left(\frac{\pi}{2}, \frac{\pi}{2}\right)+o(1)=\frac{1}{2}+o(1) . \tag{4.2}
\end{equation*}
$$

Proof
(a) This follows directly from Cauchy-Schwarz's inequality and the fact that $H_{M, p}(\theta, \theta)=$ $h_{M, 2 p}(\theta)$.
(b) This follows much as in Lemma 3.1(a) .
(c) From (a),

$$
\left\|H_{M, p}\right\|_{L_{\infty}\left(\left[0, \frac{\pi}{2}\right] \times\left[0, \frac{\pi}{2}\right]\right)}=\left\|h_{M, 2 p}\right\|_{L_{\infty}\left[0, \frac{\pi}{2}\right]}
$$

Also from Lemma 3.6,

$$
\left\|h_{M, 2 p}\right\|_{L_{\infty}\left[0, \frac{\pi}{2}\right]}=\frac{1}{2}+o(1)=h_{M, 2 p}\left(\frac{\pi}{2}\right)+o(1)
$$

Lemma 4.2

If $p \geq 2$ and $\rho=1$,

$$
\lim _{k \rightarrow \infty} B_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}}=2^{2 p-1}
$$

Proof

Firstly,

$$
\begin{aligned}
B_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}} & \leq\left\{\left(2^{n_{k} p} \frac{2}{\pi}\right)^{2} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2}\left(\left\|H_{M_{k}, p}\right\|_{L_{\infty}\left(\left[0, \frac{\pi}{2}\right] \times\left[0, \frac{\pi}{2}\right]\right)}\right)^{n_{k}} d \phi d \theta\right\}^{1 / n_{k}} \\
(4.3) & \leq 2^{2 p}\left(\frac{1}{2}+o(1)\right)
\end{aligned}
$$

from Lemma 4.1(c). We turn to the corresponding lower bound. Let $\varepsilon \in\left(0, \frac{1}{2}\right)$. It follows from Lemma 4.1(b), that there exists $\eta>0$ such that for $s, t \in\left[0, \frac{\pi}{2}\right]$ with
$\left|s-\frac{\pi}{2}\right|<\frac{\eta}{M}$ and $\left|t-\frac{\pi}{2}\right|<\frac{\eta}{M}$, that

$$
H_{M, p}(t) \geq \frac{1}{2}-\varepsilon
$$

so that

$$
\begin{aligned}
B_{p}(M, n) & \geq\left(2^{n p} \frac{2}{\pi}\right)^{2} \int_{\pi / 2-\frac{\eta}{M}}^{\pi / 2} \int_{\pi / 2-\frac{\eta}{M}}^{\pi / 2}\left(\frac{1}{2}-\varepsilon\right)^{n} d \phi d \theta \\
& =\left(2^{n p} \frac{2}{\pi}\right)^{2}\left(\frac{\eta}{M}\right)^{2}\left(\frac{1}{2}-\varepsilon\right)^{n}
\end{aligned}
$$

Letting $M=M_{k}$ and $n=n_{k}$, and $k \rightarrow \infty$, gives as $\rho=1$,

$$
\liminf _{k \rightarrow \infty} B_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}} \geq 2^{2 p}\left(\frac{1}{2}-\varepsilon\right)
$$

Here $\varepsilon>0$ is arbitrary. Together with (4.3), this gives the result.

Proof of Theorem 1.4(c)

Recall from (1.4) and (2.1) that

$$
\begin{equation*}
V_{p}(M, n)^{2}=B_{p}(M, n)-A_{p}(M, n)^{2} . \tag{4.4}
\end{equation*}
$$

We shall show that the term $B_{p}\left(M_{k}, n_{k}\right)$ is geometrically larger than $A_{p}\left(M_{k}, n_{k}\right)^{2}$.
From Theorem 1.4(a), with $\rho=1$,

$$
\lim _{k \rightarrow \infty} A_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}}=2^{p} \max \left\{\frac{1}{2} a_{0},\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)}\right\}
$$

Here

$$
\frac{1}{2} a_{0} \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}(\sin t)^{2} d t=\frac{1}{2}
$$

and from Lemma 3.5(c)

$$
\left\|F_{k_{0}}\right\|_{L_{\infty}[0, \infty)} \leq \frac{1}{2}\left(1-\frac{\sin s_{0}}{s_{0}}\right) .
$$

This last right-hand side is larger than $\frac{1}{2}$. Then

$$
\begin{aligned}
\lim _{k \rightarrow \infty} A_{p}\left(M_{k}, n_{k}\right)^{2 / n_{k}} & \leq 2^{2 p-2}\left(1-\frac{\sin s_{0}}{s_{0}}\right)^{2} \\
& <2^{2 p-2}(1.217 \ldots)^{2} \\
& <2^{2 p-1}=\lim _{k \rightarrow \infty} B_{p}\left(M_{k}, n_{k}\right)^{1 / n_{k}}
\end{aligned}
$$

by Lemma 4.2. Now (4.4) gives the result.

Proof of Theorem 1.2(b)

This is the special case $p=2$ of Theorem 1.4(c).

5. Further Results

We can also estimate the average over subsequences of the integers that generate uniformly distributed subsequences, rather than requiring all $1 \leq s_{j} \leq M$:

Proposition 5.1

Let $\left\{p_{j}\right\}_{j \geq 1}$ be an increasing sequence of positive integers such that for each irrational $\alpha \in(0,1)$ and continuous $f:[0,1] \rightarrow \mathbb{R}$, we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{j=1}^{m} f\left(\left\{p_{j} \alpha\right\}\right)=\int_{0}^{1} f(t) d t \tag{5.1}
\end{equation*}
$$

For $M \geq 1$, let $\mathcal{P}_{M}=\left\{p_{1}, p_{2}, \ldots p_{M}\right\}$. For $n \geq 1$, and $p>0$, let

$$
A_{p}\left(\mathcal{P}_{M}, n\right)=\frac{1}{M^{n}} \sum_{s_{1}, s_{2} \ldots s_{n} \in \mathcal{P}_{M}}\left\|P_{n}\left(\left\{s_{j}\right\}, \cdot\right)\right\|_{p}^{p}
$$

Let $\left\{M_{k}\right\},\left\{n_{k}\right\}$ be sequences of positive integers with limit ∞. Then

$$
\liminf _{k \rightarrow \infty} A_{p}\left(\mathcal{P}_{M_{k}}, n_{k}\right)^{1 / n_{k}} \geq 2^{p} \max \left\{\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}}|\sin t|^{p} d t, \frac{1}{2 \lim \sup _{k \rightarrow \infty} M_{k}^{1 / n_{k}}}\right\}
$$

Proof

We see that as in Proposition 1.1,

$$
A_{p}\left(\mathcal{P}_{M}, n\right)=2^{n p} \frac{2}{\pi} \int_{0}^{\pi / 2}\left(\frac{1}{M} \sum_{k=1}^{M}\left|\sin p_{k} \theta\right|^{p}\right)^{n} d \theta
$$

and can then proceed as in Lemma 3.2.
For example, the prime numbers satisfy (5.1), and for any positive integer L, so also do $p_{j}=j^{L}, j \geq 1$. Another direction is to replace the uniform bound M on $\left\{s_{j}\right\}$ with varying bounds. When these grow very rapidly, there is a simple explicit formula for the average of the L_{2} norm:

Proposition 5.2

Let $\left\{M_{j}\right\}_{j=1}^{n}$ be positive integers satisfying for $2 \leq m \leq n$,

$$
\begin{equation*}
M_{m} \geq \sum_{j=1}^{m-1} M_{j} \tag{5.2}
\end{equation*}
$$

Let

$$
A_{n}=\frac{1}{M_{1} M_{2} \ldots M_{n}} \sum_{1 \leq s_{j} \leq M_{j}, 1 \leq j \leq n}\left\|P_{n}\left(\left\{s_{j}\right\}, \cdot\right)\right\|_{2}^{2}
$$

Then

$$
\begin{equation*}
A_{n}=2^{n} \prod_{j=2}^{n}\left(1+\frac{1}{2 M_{j}}\right) \tag{5.3}
\end{equation*}
$$

Proof

The proof is essentially via induction. Let \mathcal{P}_{m} denote the set of all polynomials of the form $\prod_{j=1}^{m}\left(1-z^{s_{j}}\right)$ with $1 \leq s_{j} \leq M_{j}$, all $1 \leq j \leq m$. We observe that we obtain all polynomials in \mathcal{P}_{m} from those in \mathcal{P}_{m-1} by multiplying by factors
$\left(1-z^{s_{m}}\right)$ where $1 \leq s_{m} \leq M_{m}$. So fix a polynomial P in \mathcal{P}_{m-1}. It will have degree at most M_{m} because of (5.2). We see that for $m \geq 2$,

$$
\begin{aligned}
& \sum_{s_{m}=1}^{M_{m}}\left\|P(z)\left(1-z^{s_{m}}\right)\right\|_{2}^{2} \\
= & \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|P\left(e^{i \theta}\right)\right|^{2}\left(\sum_{s_{m}=1}^{M_{m}}\left|1-e^{i s_{m} \theta}\right|^{2}\right) d \theta \\
= & \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|P\left(e^{i \theta}\right)\right|^{2} 2 \sum_{s_{m}=1}^{M_{m}}\left(1-\cos s_{m} \theta\right) d \theta \\
= & \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|P\left(e^{i \theta}\right)\right|^{2}\left\{\left(2 M_{m}+1\right)-2 D_{M_{m}}(\theta)\right\} d \theta
\end{aligned}
$$

where

$$
D_{M_{m}}(\theta)=\frac{1}{2}+\sum_{k=1}^{M_{m}} \cos k \theta
$$

is the usual Dirichlet kernel of Fourier series. Here $\left|P\left(e^{i \theta}\right)\right|^{2}=P\left(e^{i \theta}\right) P\left(e^{-i \theta}\right)$ is a trigonometric polynomial of degree at most $\sum_{j=1}^{m-1} M_{j} \leq M_{m}$. By the usual reproducing kernel property of Fourier series, we then have for $m \geq 2$,

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|P\left(e^{i \theta}\right)\right|^{2} D_{M_{m}}(\theta) d \theta=\left|P\left(e^{i 0}\right)\right|^{2}=0 \tag{5.4}
\end{equation*}
$$

(Note that when $m=1$, we have $P=1$, so we instead obtain 1.) Then for $m \geq 2$,

$$
\sum_{s_{m}=1}^{M_{m}}\left\|P(z)\left(1-z^{s_{m}}\right)\right\|_{2}^{2}=\left(2 M_{m}+1\right)\|P\|_{2}^{2}
$$

Adding over all P in \mathcal{P}_{m-1} gives the identity

$$
\sum_{P \in \mathcal{P}_{m}}\|P\|_{2}^{2}=\left(2 M_{m}+1\right) \sum_{P \in \mathcal{P}_{m-1}}\|P\|_{2}^{2}
$$

Applying this repeatedly gives

$$
\sum_{P \in \mathcal{P}_{n}}\|P\|_{2}^{2}=\left(2 M_{1}\right) \prod_{j=2}^{n}\left(2 M_{j}+1\right)
$$

where we have used the fact that for $m=1$, we have 1 rather then 0 in (5.4). Dividing by $M_{1} M_{2} \ldots M_{n}$ gives the result.

When we have an infinite sequence $\left\{M_{n}\right\}$ satisfying (5.2), the product in (5.3) converges, and so the average grows like $c 2^{n}$ for some constant c.

One interesting question is the distribution of the norms of the polynomials. Numerical calculations suggest some sort of bell curve for the distribution of the L_{2} norms. It would be good to have a theoretical justification of the bell shape. Following is a typical example that was generated using our algorithm, with $M=n$, and $n=10,11, \ldots, 20$. Here are the steps:
(1) Uniformly sample (with repetition) from the set of all possible n-tuples $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ with each $1 \leq s_{j} \leq M$.
(2) Calculate $\left\|\prod_{j=1}^{n}\left(1-z^{s_{j}}\right)\right\|_{2}^{2}$.
(3) Store the result and return to step (1) until the desired number of polynomials have been sampled.

玉உOOPER BILLSBOROUGH, ${ }^{2}$ SARAH GOLD, ${ }^{3}$ EPHRAIM LINDER, ${ }^{1}$ D.S. LUBINSKY, ${ }^{4}$ JIAHUI YU

Norms

Mean L2 Norms for n=M (10 to 20)

References

[1] C. Aistleitner, R. Hofer, G. Larcher, On Parametric Thue-Morse Sequences and Lacunary Trigonometric Products, Annales Inst. Fourier, $\mathbf{6 7}(2017)$, 637-687.
[2] C. Aistleitner, G. Larcher, F. Pillichshammer, S. Saad Eddin, R.F. Tichy, On Weyl products and Uniform Distribution Modulo One, Monatshefte Math., 185(2018), 363-395.
[3] C. Aistleitner, N. Technau, and A. Zafeiropoulos, On the Order of Magnitude of Sudler Products, Arxiv: 2002.06602v1.
[4] A. Avila, S. Jitomirskaya, and C.A. Marx, Spectral Theory of Extended Harper's Model and a Question by Erdős and Szekeres, Inventiones Mathematicae, 210(2017), 2697-2718.
[5] J.P. Bell, P.B. Borwein and L.B. Richmond, Growth of the Product $\prod_{j=1}^{n}\left(1-x^{a_{j}}\right)$, Acta Arithmetica, 86(1998), 155-170.
[6] A.S. Belov and S.V. Konyagin, An estimate of the free term of a non-negative trigonometric polynomial with integer coefficients, Izvestiya Mathematics, 60(1996), 1123-1182.
[7] C. Billsborough, M. J. Freedman, S. Hart, G. Kowalsky, D.S. Lubinsky, A. Pomeranz, A. Sammel, On Lower Bounds for Erdös-Szekeres Polynomials, Proc. Amer. Math. Soc., 149(2021), 4233-4246.
[8] P. Borwein, Some Restricted Partition Functions, J. Number Theory, 45(1993), 228-240.
[9] P. Borwein, C. Ingalls, The Prouhet-Tarry-Escott Problem Revisited, L'Enseignement Mathematique, 49(1994), 3-27.
[10] J. Bourgain and Mei-Chu Chang, On a Paper of Erdős and Szekeres, J. Anal. Math., 136(2018), 253-271.
[11] P. Erdős, Problems and Results on Diophantine Approximation, Compositio Mathematica, 16(1964), 52-66.
[12] P. Erdős, G. Szekeres, On the Product $\prod_{k=1}^{n}\left(1-z^{a_{k}}\right)$, Publications de L'Institut Mathematique, Academie Serbe des Sciences, 1959, pp. 29-34.
[13] S. Grepstad, L. Kaltenböck, and M. Neumüller, A Positive Lower Bound for $\lim \inf _{N \rightarrow \infty} \prod_{r=1}^{N}|2 \sin \pi r \phi|$, Proc. Amer. Math. Soc., 147(2019), 4863-4876.
[14] S. Greptsad and M. Neumüller, Asymptotic Behavior of the Sudler Product of Sines for Quadratic Irrationals, J. Math. Anal. Applns., 465(2018), 928-960.
[15] S. Grepstad, L. Kaltenböck, and M. Neumüller, On the Asymptotic Behavior of the sine product $\prod_{r=1}^{N}|2 \sin \pi r \alpha|$, arXiv:1909.00980, to appear in Discrepancy Theory (eds. D. Bilyk, J. Dick, F. Pillichshammer).
[16] H. Niederreiter and L. Kuipers, Uniform Distribution of Sequences, Wiley, New York, 1974.
[17] D.S. Lubinsky, The Size of $(q ; q)_{n}$ for q on the Unit Circle, J. Number Theory, $76(1999)$, 217-247.
[18] R. Maltby, Root Systems and the Erdős-Szekeres Problem, Acta Arithmetica, 81(1997), 229245.
[19] R. Maltby, Pure Product Polynomials and the Prouhet-Tarry-Escott Problem, Math. Comp., 219 (1997), 1323-1340.
[20] C. Sudler, An Estimate for a Restricted Partition Function, Quart. J. Math. Oxford, 1591964), 1-10.
[21] P. Verschueren and B. Mestel, Growth of the Sudler Product of Sines at the Golden Rotation Number, J. Math. Anal. Applns., 433(2016), 200-226.
${ }^{1}$ School of Mathematics, Georgia Tech, Atlanta GA, 30332-0160., ${ }^{2}$ Department of Mathematics, Haverford College, 370 Lancaster Ave, Haverford, PA 19041, ${ }^{3}$ School of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ., ${ }^{4}$ Department of Mathematics, Pomona College, 610 N. College Ave., Claremont, CA 91711.

[^0]: Date: October 13, 2021.

