EXPLICIT ORTHOGONAL POLYNOMIALS FOR RECIPROCAL POLYNOMIAL WEIGHTS ON $(-\infty, \infty)$

D. S. LUBINSKY

Abstract

Let S be a polynomial of degree $2 n+2$, that is positive on the real axis, and let $w=1 / S$ on $(-\infty, \infty)$. We present an explicit formula for the nth orthogonal polynomial and related quantities for the weight w. This is an analogue for the real line of the classical Bernstein-Szegő formula for $(-1,1)$.

Orthogonal Polynomials, Bernstein-Szegő formulas. 42C05

1. The Result ${ }^{1}$

The Bernstein-Szegő formula provides an explicit formula for orthogonal polynomials for a weight of the form $\sqrt{1-x^{2}} / S(x), x \in(-1,1)$, where S is a polynomial positive in $(-1,1)$, possibly with at most simple zeros at ± 1. It plays a key role in asymptotic analysis of orthogonal polynomials.

In this paper, we present an explicit formula for the nth degree orthogonal polynomial for weights w on the whole real line of the form

$$
\begin{equation*}
w=1 / S \tag{1.1}
\end{equation*}
$$

where S is a polynomial of degree $2 n+2$, positive on \mathbb{R}. In addition, we give representations for the $(n+1)$ st reproducing kernel and Christoffel function. We present elementary proofs, although they follow partly from the theory of de Branges spaces [1]. The formulae do not seem to be recorded in de Branges' book, nor in the orthogonal polynomial literature [2], [3], [7], [8], [9]. We believe they will be useful in analyzing orthogonal polynomials for weights on \mathbb{R}.

Recall that we may define orthonormal polynomials $\left\{p_{m}\right\}_{m=0}^{n}$, where

$$
\begin{equation*}
p_{m}(x)=\gamma_{m} x^{m}+\ldots, \gamma_{m}>0 \tag{1.2}
\end{equation*}
$$

satisfying

$$
\int_{-\infty}^{\infty} p_{j} p_{k} w=\delta_{j k}
$$

Because the denominator S in w has degree $2 n+2$, orthogonal polynomials of degree higher than n are not defined. The $(n+1)$ st reproducing kernel for w is

$$
\begin{equation*}
K_{n+1}(x, y)=\sum_{j=0}^{n} p_{j}(x) p_{j}(y) \tag{1.3}
\end{equation*}
$$

Inasmuch as S is a positive polynomial, we can write

$$
\begin{equation*}
S(z)=E(z) \overline{E(\bar{z})} \tag{1.4}
\end{equation*}
$$

Date: August 19, 2008.
${ }^{1}$ Research supported by NSF grant DMS0400446 and US-Israel BSF grant 2004353
where E is a polynomial of degree $n+1$, with all zeros in the lower-half plane $\{z: \operatorname{Im} z<0\}$. We ensure E is unique by normalizing E so that

$$
\begin{equation*}
E(i) \text { is real and positive. } \tag{1.5}
\end{equation*}
$$

Write

$$
\begin{equation*}
E(z)=\sum_{j=0}^{n+1} e_{j} z^{j}, S(z)=\sum_{j=0}^{2 n+2} s_{j} z^{j} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{*}(z)=\overline{E(\bar{z})} \tag{1.7}
\end{equation*}
$$

Denote the first difference of a function f by

$$
\begin{equation*}
[f, t, x]=\frac{f(t)-f(x)}{t-x} \tag{1.8}
\end{equation*}
$$

We shall need various Cauchy principal value integrals: for real x, and suitable functions h,

$$
\begin{aligned}
P V_{x} \int_{-\infty}^{\infty} \frac{h(t)}{t-x} d t & =\lim _{\varepsilon \rightarrow 0+} \int_{|t-x| \geq \varepsilon} \frac{h(t)}{t-x} d t \\
P V_{\infty} \int_{-\infty}^{\infty} h(t) d t & =\lim _{R \rightarrow \infty} \int_{-R}^{R} h(t) d t \\
P V_{x, \infty} \int_{-\infty}^{\infty} \frac{h(t)}{t-x} d t & =\lim _{\varepsilon \rightarrow 0+, R \rightarrow \infty} \int_{|t| \leq R,|t-x| \geq \varepsilon} \frac{h(t)}{t-x} d t
\end{aligned}
$$

With the above assumptions on w, we prove:
Theorem 1 (a) For $\operatorname{Im} z>0$,

$$
\begin{equation*}
E(z)=\exp \left(-\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{1+t z}{t-z} \frac{\log w(t)}{1+t^{2}} d t\right) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{n+1}=s_{2 n+2}^{1 / 2}(-i)^{n+1} \exp \left(\frac{1}{2 \pi i} P V_{\infty} \int_{-\infty}^{\infty} \frac{\log w(t)}{1+t^{2}} t d t\right) \tag{1.10}
\end{equation*}
$$

(b) For $z \neq v$,

$$
\begin{align*}
K_{n+1}(z, v) & =\frac{i}{2 \pi} \frac{E(z) E^{*}(v)-E^{*}(z) E(v)}{z-v} \tag{1.11}\\
K_{n+1}(z, z) & =\frac{i}{2 \pi}\left(E^{\prime}(z) E^{*}(z)-E(z) E^{* \prime}(z)\right) . \tag{1.12}
\end{align*}
$$

$$
\begin{equation*}
\gamma_{n}=\left\{\frac{1}{\pi} \operatorname{Im}\left(\overline{e_{n+1}} e_{n}\right)\right\}^{1 / 2} \tag{c}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{n}(z)=-\frac{1}{\gamma_{n}} \frac{i}{2 \pi}\left(\overline{e_{n+1}} E(z)-e_{n+1} E^{*}(z)\right) \tag{1.14}
\end{equation*}
$$

Theorem 2 For $x \in \mathbb{R}$,
(a)

$$
\begin{equation*}
p_{n}(x) w(x)^{1 / 2}=\frac{s_{2 n+2}^{1 / 2}}{\pi \gamma_{n}} \cos \left(\frac{n \pi}{2}+\frac{1}{2 \pi} P V_{x, \infty} \int_{-\infty}^{\infty} \frac{\log w(t)}{t-x} d t\right) \tag{1.15}
\end{equation*}
$$

$$
\begin{align*}
& \pi K_{n+1}(x, x) w(x)=-\frac{1}{2 \pi} \int_{-\infty}^{\infty}[\log w, t, x] \frac{t}{1+t^{2}} d t \tag{b}\\
& -\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\partial}{\partial x}[\log w, t, x] \frac{1+t x}{1+t^{2}} d t \tag{1.16}
\end{align*}
$$

(c) If $s_{2 n+1}=0$,

$$
\begin{equation*}
\gamma_{n}=\frac{1}{\pi}\left\{\frac{s_{2 n+2}}{2} \int_{-\infty}^{\infty} \log \left[\frac{S(t)}{s_{2 n+2} t^{2 n+2}}\right] d t\right\}^{1 / 2} \tag{1.17}
\end{equation*}
$$

Remarks (a) The function E is a Szego/ outer function associated with w for the upper-half plane. It has been used in the relative asymptotics of G. Lopez [6] and in the orthogonal rational functions of Bultheel et al [2].
(b) It is easily seen that for $\operatorname{Im} z>0$,

$$
\begin{equation*}
E^{*}(z)=C E(z) \prod_{a: E(a)=0} \frac{z-\bar{a}}{z-a} \tag{1.18}
\end{equation*}
$$

where

$$
C=\frac{\overline{e_{n+1}}}{e_{n+1}}=(-1)^{n+1} \exp \left(-\frac{1}{\pi i} P V_{\infty} \int_{-\infty}^{\infty} \frac{\log w(t)}{1+t^{2}} t d t\right)
$$

(c) Of course if S is even, then $s_{2 n+1}$ is 0 . The latter condition ensures that the integral in (1.17) converges.
(d) Explicit formulae for the Christoffel function $K_{n}(x, x)^{-1}$ for Bernstein-Szegő weights appear in [3], [5], [7], [8], [9], [10]. We will present one application of (1.11-12) in Section 3.

2. Proofs

As we noted above, our original proofs arose from de Branges spaces, but we present elementary proofs. Let us choose E satisfying (1.4) and (1.5).

Proof of (1.9) of Theorem 1(a) Let H denote the right side of (1.9), so that

$$
H(z)=\exp \left(-\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{1+t z}{t-z} \frac{\log w(t)}{1+t^{2}} d t\right)
$$

Then for $z=x+i y$,

$$
\begin{align*}
\log |H(z)| & =-\operatorname{Re}\left[\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{1+t z}{t-z} \frac{\log w(t)}{1+t^{2}} d t\right] \\
& =\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{\log |E(t)|}{(t-x)^{2}+y^{2}} d t \\
& =\log |E(z)| \tag{2.1}
\end{align*}
$$

by a Theorem in [4, p. 47]. This may be applied as $E(z)$ is analytic and non-zero in the closed upper-half plane, and $\log |E(z)|$ is $O(\log |z|)$ as $|z| \rightarrow \infty$. Since H / E
is analytic there, we deduce that for some C with $|C|=1, E=C H$. Now by hypothesis, $E(i)$ is real and positive, while

$$
H(i)=\exp \left(-\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\log w(t)}{1+t^{2}} d t\right)>0
$$

so $C=1$.
Proof of (1.10) of Theorem 1(a) We first show that

$$
\begin{equation*}
1-i z=\exp \left(\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{\log \left(1+t^{2}\right)}{1+t^{2}} \frac{1+t z}{t-z} d t\right), \operatorname{Im} z>0 \tag{2.2}
\end{equation*}
$$

Indeed, $1-i z$ serves as the Szegő function for the weight $1 /\left(1+t^{2}\right)$, so (1.9) of Theorem 1 applied to the weight $1 /\left(1+t^{2}\right)$ gives this identity. Then for $\operatorname{Im} z>0$,

$$
\begin{equation*}
E(z) /(1-i z)^{n+1}=\exp \left(I_{1}+I_{2}\right) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
I_{1} & =-\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{\log \left[w(t) s_{2 n+2}\left(1+t^{2}\right)^{n+1}\right]}{1+t^{2}} \frac{1+t z}{t-z} d t \\
I_{2} & =\frac{\log s_{2 n+2}}{2 \pi i} \int_{-\infty}^{\infty} \frac{1}{1+t^{2}} \frac{1+t z}{t-z} d t
\end{aligned}
$$

The integrand in I_{2} has simple poles in the upper-half plane at i and z, and is $O\left(t^{-2}\right)$ as $|t| \rightarrow \infty$, so the residue calculus gives

$$
\begin{equation*}
I_{2}=\frac{\log s_{2 n+2}}{2} \tag{2.4}
\end{equation*}
$$

Next, $\log \left[w(t) s_{2 n+2}\left(1+t^{2}\right)^{n+1}\right]=O\left(\frac{1}{t}\right)$ as $|t| \rightarrow \infty$. Thus the integrand in I_{1} is bounded in absolute value for $z=i y, y \geq 1$ and all t by

$$
C \frac{1}{\left(1+t^{2}\right)(1+|t|)} \frac{1+|t| y}{|t|+y} \leq \frac{C}{1+t^{2}}
$$

Here C is independent of t and z. We may then apply Lebesgue's Dominated Convergence Theorem to I_{1}, with $z=i y, y \rightarrow \infty$, to deduce that

$$
\begin{align*}
I_{1} & \rightarrow \frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{\log \left[w(t) s_{2 n+2}\left(1+t^{2}\right)^{n+1}\right]}{1+t^{2}} t d t \\
& =\frac{1}{2 \pi i} P V_{\infty} \int_{-\infty}^{\infty} \frac{\log w(t)}{1+t^{2}} t d t \tag{2.5}
\end{align*}
$$

as

$$
P V_{\infty} \int_{-\infty}^{\infty} \frac{t}{1+t^{2}} d t=0=P V_{\infty} \int_{-\infty}^{\infty} \frac{\log \left(1+t^{2}\right)}{1+t^{2}} t d t
$$

the integrands being odd. Substituting (2.5) and (2.4) into (2.3) and letting also $z=i y, y \rightarrow \infty$, in the left-hand side there, gives (1.10).

Proof of Theorem 1(b) We need prove only (1.11), for (1.12) then follows by l'Hospital's rule. Set

$$
G(u, v)=\frac{i}{2 \pi} \frac{E(u) E^{*}(v)-E^{*}(u) E(v)}{u-v}
$$

Observe that for fixed $v, G(u, v)$ is a polynomial of degree at most n in u. Assume that P is a polynomial of degree $\leq n$ and that $\operatorname{Im} u>0$. Now for real $t, w(t)=$ $1 /\left(E(t) E^{*}(t)\right)$, so

$$
\begin{align*}
& \int_{-\infty}^{\infty} P(t) G(u, t) w(t) d t \\
= & \frac{i}{2 \pi}\left(E^{*}(u) \int_{-\infty}^{\infty} \frac{P(t)}{E^{*}(t)(t-u)} d t-E(u) \int_{-\infty}^{\infty} \frac{P(t)}{E(t)(t-u)} d t\right) \tag{2.6}
\end{align*}
$$

Recall that E has all its zeros in the lower-half plane, so E^{*} has all its zeros in the upper-half plane. Then the integrand $\frac{P(t)}{E^{*}(t)(t-u)}$ in the first integral is analytic in the closed lower-half plane, and is $O\left(|t|^{-2}\right)$ as $|t| \rightarrow \infty$. By Cauchy's integral theorem, the first integral is 0 . Next, the integrand $\frac{P(t)}{E(t)(t-u)}$ in the second integral is analytic in the closed upper-half plane, except for a simple pole at u (unless $P(u)=0)$ and is $O\left(|t|^{-2}\right)$ as $|t| \rightarrow \infty$. The residue theorem shows that

$$
\int_{-\infty}^{\infty} \frac{P(t)}{E(t)(t-u)} d t=2 \pi i \frac{P(u)}{E(u)}
$$

Substituting this into (2.6) gives

$$
\int_{-\infty}^{\infty} P(t) G(u, t) w(t) d t=P(u)
$$

for $\operatorname{Im} u>0$. As both sides are polynomials in u, analytic continuation gives it for all u. Finally, (1.11) follows from uniqueness of reproducing kernels:

$$
K_{n+1}(u, v)=\int_{-\infty}^{\infty} K_{n+1}(t, v) G(u, t) w(t) d t=G(u, v)
$$

Proof of Theorem $\mathbf{1 (c)}$ We note that since p_{n+1} is not defined, we cannot use the Christoffel-Darboux formula for K_{n+1}. However, we can use it for K_{n} :

$$
K_{n+1}(u, v)=\frac{\gamma_{n-1}}{\gamma_{n}} \frac{p_{n}(u) p_{n-1}(v)-p_{n}(v) p_{n-1}(u)}{u-v}+p_{n}(u) p_{n}(v)
$$

Multiplying by $u-v$ leads to

$$
\begin{aligned}
& \frac{\gamma_{n-1}}{\gamma_{n}}\left(p_{n}(u) p_{n-1}(v)-p_{n}(v) p_{n-1}(u)\right)+(u-v) p_{n}(u) p_{n}(v) \\
= & (u-v) K_{n+1}(u, v)=\frac{i}{2 \pi}\left(E(u) E^{*}(v)-E^{*}(u) E(v)\right),
\end{aligned}
$$

by (1.11). Now we compare coefficients of u^{n+1} on both sides above:

$$
\begin{equation*}
\gamma_{n} p_{n}(v)=\frac{i}{2 \pi}\left(e_{n+1} E^{*}(v)-\overline{e_{n+1}} E(v)\right) \tag{2.7}
\end{equation*}
$$

giving (1.14). For (1.13), we compare the coefficients of v^{n} on both sides above:

$$
\gamma_{n}^{2}=\frac{i}{2 \pi}\left(e_{n+1} \overline{e_{n}}-\overline{e_{n+1}} e_{n}\right)
$$

(Note that the coefficient of v^{n+1} on the right-hand side in (2.7) is zero).
Proof of Theorem 2(a) From (1.14), for real x,

$$
\pi \gamma_{n} p_{n}(x)=\operatorname{Im}\left(\overline{e_{n+1}} E(x)\right)
$$

We take non-tangential boundary values $z \rightarrow x$ from the upper-half plane in (1.9).
The Sokhotsky-Plemelj formulae give

$$
\begin{equation*}
E(x)=\exp \left(-\frac{1}{2 \pi i} P V_{x} \int_{-\infty}^{\infty} \frac{\log w(t)}{1+t^{2}} \frac{1+t x}{t-x} d t-\frac{1}{2} \log w(x)\right) \tag{2.8}
\end{equation*}
$$

and this and (1.10) give

$$
\begin{aligned}
& \pi \gamma_{n} p_{n}(x) w(x)^{1 / 2} \\
= & s_{2 n+2}^{1 / 2} \operatorname{Im}\left[i^{n+1} \exp \left(-\frac{1}{2 \pi i} P V_{\infty} \int_{-\infty}^{\infty} \frac{\log w(t)}{1+t^{2}} t d t-\frac{1}{2 \pi i} P V_{x} \int_{-\infty}^{\infty} \frac{\log w(t)}{1+t^{2}} \frac{1+t x}{t-x} d t\right)\right] \\
= & s_{2 n+2}^{1 / 2} \operatorname{Im}\left[i^{n+1} \exp \left(-\frac{1}{2 \pi i} P V_{x, \infty} \int_{-\infty}^{\infty} \frac{\log w(t)}{t-x} d t\right)\right]
\end{aligned}
$$

Proof of Theorem 2(b) For real x, and E as above, we define a phase function φ (cf. [1, p. 54]) by

$$
\begin{equation*}
E(x)=|E(x)| e^{-i \varphi(x)} \tag{2.9}
\end{equation*}
$$

Here, as in [1, p. 54], φ is an increasing differentiable function. We have, as there

$$
\begin{equation*}
K_{n+1}(x, x)=\frac{1}{\pi}|E(x)|^{2} \varphi^{\prime}(x)=\frac{1}{\pi} w(x)^{-1} \varphi^{\prime}(x) \tag{2.10}
\end{equation*}
$$

Indeed, for real x,

$$
E^{*}(x)=|E(x)| e^{i \varphi(x)}
$$

so for real $t \neq x,(1.11)$ gives

$$
K_{n+1}(x, t)=\frac{|E(x)||E(t)|}{\pi} \frac{\sin (\varphi(x)-\varphi(t))}{x-t}
$$

L'Hospital's rule gives the first equality in (2.10). Next, from (2.8) and the definition of φ, we have for some constant C independent of x,

$$
\begin{equation*}
\varphi(x)=-\frac{1}{2 \pi} P V_{x} \int_{-\infty}^{\infty} \frac{\log w(t)}{1+t^{2}} \frac{1+t x}{t-x} d t+C \tag{2.11}
\end{equation*}
$$

The residue theorem shows that for $\operatorname{Im} z>0$,

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{1}{1+t^{2}} \frac{1+t z}{t-z} d t=\frac{1}{2} \tag{2.12}
\end{equation*}
$$

so also for real x, the Sokhotsky-Plemelj formulae give

$$
\frac{1}{2 \pi i} P V_{x} \int_{-\infty}^{\infty} \frac{1}{1+t^{2}} \frac{1+t x}{t-x} d t+\frac{1}{2}=\frac{1}{2}
$$

thus

$$
\begin{equation*}
\frac{1}{2 \pi i} P V_{x} \int_{-\infty}^{\infty} \frac{1}{1+t^{2}} \frac{1+t x}{t-x} d t=0 \tag{2.13}
\end{equation*}
$$

Hence we may write

$$
\begin{aligned}
\varphi(x) & =-\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\log w(t)-\log w(x)}{t-x} \frac{1+t x}{1+t^{2}} d t+C \\
& =-\frac{1}{2 \pi} \int_{-\infty}^{\infty}[\log w, t, x] \frac{1+t x}{1+t^{2}} d t+C
\end{aligned}
$$

where the integral is now a Lebesgue integral. Then

$$
\varphi^{\prime}(x)=-\frac{1}{2 \pi} \int_{-\infty}^{\infty}[\log w, t, x] \frac{t}{1+t^{2}} d t-\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\partial}{\partial x}[\log w, t, x] \frac{1+t x}{1+t^{2}} d t
$$

The interchange of derivative and integral is justified by uniform in x (and absolute) convergence of the differentiated integrals. Finally, apply (2.10).
Proof of Theorem 2(c) We compute γ_{n} by comparing both sides of (2.10) as $x \rightarrow \infty$. First observe that if $a>0$, and

$$
w_{a}(x)=\left(x^{2}+a^{2}\right)^{-(n+1)},
$$

then the Szegö/ outer function E_{a} for the weight w_{a} is given by

$$
E_{a}(z)=(a-i z)^{n+1} \text { and } E_{a}^{*}(z)=(a+i z)^{n+1}
$$

If $K_{n+1}\left(w_{a}, \cdot, \cdot\right)$ denotes the kernel for $w_{a},(1.11)$ leads to

$$
K_{n+1}\left(w_{a}, x+i y, x-i y\right)=\frac{\left(x^{2}+(a+y)^{2}\right)^{n+1}-\left(x^{2}+(a-y)^{2}\right)^{n+1}}{4 \pi y}
$$

Letting $y \rightarrow 0+$, and using l'Hospital's rule gives

$$
K_{n+1}\left(w_{a}, x, x\right)=\frac{n+1}{\pi} a\left(x^{2}+a^{2}\right)^{n}
$$

and

$$
\begin{equation*}
K_{n+1}\left(w_{a}, x, x\right) w_{a}(x)=\frac{(n+1) a}{\pi\left(x^{2}+a^{2}\right)} . \tag{2.14}
\end{equation*}
$$

Next, if we write

$$
E_{a}(x)=\left|E_{a}(x)\right| e^{-i \varphi_{a}(x)}
$$

then, as at (2.11),

$$
\begin{equation*}
\varphi_{a}(x)=-\frac{1}{2 \pi} P V_{x} \int_{-\infty}^{\infty} \frac{\log w_{a}(t)}{1+t^{2}} \frac{1+t x}{t-x} d t+C_{a} \tag{2.15}
\end{equation*}
$$

Let

$$
g_{a}(t)=\log \left[w(t) s_{2 n+2} / w_{a}(t)\right]=\log \left[\frac{s_{2 n+2}\left(t^{2}+a^{2}\right)^{n+1}}{S(t)}\right]
$$

In view of $(2.11),(2.13)$ and (2.15), we may then write

$$
\begin{equation*}
\varphi(x)-\varphi_{a}(x)=-\frac{1}{2 \pi} P V_{x} \int_{-\infty}^{\infty} \frac{g_{a}(t)}{1+t^{2}} \frac{1+t x}{t-x} d t+C-C_{a} \tag{2.16}
\end{equation*}
$$

and then (2.14), followed by (2.10) and (2.16) give

$$
\begin{align*}
& \pi K_{n+1}(x, x) w(x)-\frac{(n+1) a}{x^{2}+a^{2}} \\
= & \pi K_{n+1}(x, x) w(x)-\pi K_{n+1}\left(w_{a}, x, x\right) w_{a}(x) \\
= & \varphi^{\prime}(x)-\varphi_{a}^{\prime}(x) \\
= & \frac{d}{d x}\left[-\frac{1}{2 \pi} P V_{x} \int_{-\infty}^{\infty} \frac{g_{a}(t)}{1+t^{2}} \frac{1+t x}{t-x} d t\right] . \tag{2.17}
\end{align*}
$$

Since $s_{2 n+1}=0$, it is easily seen that for each $j \geq 0$,

$$
\begin{equation*}
g_{a}^{(j)}(t)=O\left(|t|^{-j-2}\right) \text { as }|t| \rightarrow \infty \tag{2.18}
\end{equation*}
$$

As

$$
\frac{1}{1+t^{2}} \frac{1+t x}{t-x}=\frac{1}{t-x}-\frac{t}{1+t^{2}}
$$

the decay of g_{a} at ∞ enables us to deduce that

$$
\begin{align*}
& \pi K_{n+1}(x, x) w(x)-\frac{(n+1) a}{x^{2}+a^{2}} \\
= & \frac{d}{d x}\left[-\frac{1}{2 \pi} P V_{x} \int_{-\infty}^{\infty} \frac{g_{a}(t)}{t-x} d t\right] \tag{2.19}
\end{align*}
$$

It is well known that the derivative of a Cauchy principal value is a Hadamard finite part integral, but we sketch what we need here. Fix x, let $R>|x|$, and split

$$
P V_{x} \int_{-\infty}^{\infty} \frac{g_{a}(t)}{t-x} d t=P V_{x}\left(\int_{-R}^{R}+\int_{\mathbb{R} \backslash[-R, R]}\right) \frac{g_{a}(t)}{t-x} d t=: F_{R}(x)+G_{R}(x)
$$

Here, because the differentiated integrand has uniformly convergent integral,

$$
G_{R}^{\prime}(x)=\int_{\mathbb{R} \backslash[-R, R]} \frac{g_{a}(t)}{(t-x)^{2}} d t
$$

Note too that $G_{R}^{\prime}(x) \rightarrow 0$ as $R \rightarrow \infty$. Next, adding and subtracting a principal value integral gives

$$
F_{R}(x)=\int_{-R}^{R} \frac{g_{a}(t)-g_{a}(x)}{t-x} d t+g_{a}(x) \ln \left|\frac{R-x}{R+x}\right|
$$

so, again, as the differentiated integrand has uniformly convergent integral,

$$
\begin{aligned}
F_{R}^{\prime}(x) & =\int_{-R}^{R} \frac{g_{a}(t)-g_{a}(x)-g_{a}^{\prime}(x)(t-x)}{(t-x)^{2}} d t+g_{a}^{\prime}(x) \ln \left|\frac{R-x}{R+x}\right|+g_{a}(x)\left(\frac{1}{x-R}-\frac{1}{x+R}\right) \\
& =P V_{x} \int_{-R}^{R} \frac{g_{a}(t)-g_{a}(x)}{(t-x)^{2}} d t+g_{a}(x)\left(\frac{1}{x-R}-\frac{1}{x+R}\right) .
\end{aligned}
$$

As $x \rightarrow \infty$, the decay of g_{a} at ∞ ensures that

$$
F_{R}^{\prime}(x) \rightarrow P V_{x} \int_{-\infty}^{\infty} \frac{g_{a}(t)-g_{a}(x)}{(t-x)^{2}} d t
$$

We deduce that

$$
\frac{d}{d x}\left[P V_{x} \int_{-\infty}^{\infty} \frac{g_{a}(t)}{t-x} d t\right]=P V_{x} \int_{-\infty}^{\infty} \frac{g_{a}(t)-g_{a}(x)}{(t-x)^{2}} d t
$$

Thus, from (2.19),

$$
\begin{align*}
\pi x^{2} K_{n+1}(x, x) w(x)-\frac{(n+1) a x^{2}}{x^{2}+a^{2}} & =-\frac{x^{2}}{2 \pi} P V_{x} \int_{-\infty}^{\infty} \frac{g_{a}(t)-g_{a}(x)}{(t-x)^{2}} d t \\
& =-\frac{1}{2 \pi} \int_{-\infty}^{\infty} h_{a}(t, x) d t \tag{2.20}
\end{align*}
$$

where

$$
h_{a}(t, x)=\left\{\begin{array}{rl}
\frac{x^{2}\left[g_{a}(t)-g_{a}(x)\right]}{(t-x)^{2}} & , t \notin\left[\frac{x}{2}, \frac{3 x}{2}\right] \\
\frac{x^{2}\left[g_{a}(t)-g_{a}(x)-g_{a}^{\prime}(x)(t-x)\right]}{(t-x)^{2}} & , t \in\left[\frac{x}{2}, \frac{3 x}{2}\right]
\end{array} .\right.
$$

Observe that for each fixed t,

$$
\lim _{x \rightarrow \infty} h_{a}(t, x)=g_{a}(t)
$$

(We use (2.18) for this). We next obtain an integrable bound on $h_{a}(t, x)$ that is independent of large x. If $t \in\left(-\infty, \frac{x}{2}\right)$,

$$
\left|h_{a}(t, x)\right| \leq C\left|g_{a}(t)\right|+\frac{C}{1+t^{2}}
$$

Similarly if $t \in\left(\frac{3 x}{2}, \infty\right)$, this bound holds. If $t \in\left[\frac{x}{2}, \frac{3 x}{2}\right]$, then for some ξ in this interval, (2.18) shows that

$$
\left|h_{a}(t, x)\right|=\frac{x^{2}}{2}\left|g_{a}^{\prime \prime}(\xi)\right| \leq \frac{C}{1+t^{2}}
$$

In all occurrences, C is independent of x and t. It follows that we may apply Lebesgue's Dominated Convergence Theorem to the integral in the right-hand side of (2.20) and let $x \rightarrow \infty$ on both sides to deduce that

$$
\frac{\pi \gamma_{n}^{2}}{s_{2 n+2}}-(n+1) a=-\frac{1}{2 \pi} \int_{-\infty}^{\infty} g_{a}(t) d t
$$

Now we let $a \rightarrow 0+$, and use the definition of g_{a} (and an easier Dominated Convergence) to deduce that

$$
\frac{\pi \gamma_{n}^{2}}{s_{2 n+2}}=-\frac{1}{2 \pi} \int_{-\infty}^{\infty} \log \left[\frac{s_{2 n+2} t^{2 n+2}}{S(t)}\right] d t
$$

3. An Application to Reciprocal Entire Weights

Suppose $z_{j}=x_{j}+i y_{j}, j \geq 1$, with all $y_{j}<0$ and

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left(\frac{x_{j}}{\left|z_{j}\right|}\right)^{2}<\infty \tag{3.1}
\end{equation*}
$$

Let

$$
E(z)=\prod_{j=1}^{\infty}\left(1-\frac{z}{z_{j}}\right) \text { and } E_{n}(z)=\prod_{j=1}^{n+1}\left(1-\frac{z}{z_{j}}\right), n \geq 1
$$

Assume that E is entire, and let

$$
W=\frac{1}{|E|^{2}} \text { and } w_{n}=\frac{1}{\left|E_{n}\right|^{2}}, n \geq 1
$$

For real x, it is easily seen that

$$
\frac{w_{n}}{W}(x) \geq \prod_{j=n+2}^{\infty}\left(1-\left(\frac{x_{j}}{\left|z_{j}\right|}\right)^{2}\right)=: \rho_{n}
$$

Let $K_{n+1}(W, \cdot, \cdot)$ and $K_{n+1}\left(w_{n}, \cdot, \cdot\right)$ denote the nth reproducing kernels for W and w_{n} respectively. This last inequality and extremal properties of K_{n+1} yield

$$
K_{n+1}(W, z, \bar{z}) \geq \rho_{n}^{-1} K_{n+1}\left(w_{n}, z, \bar{z}\right) \text { for all } z \in \mathbb{C}
$$

In view of (3.1), $\rho_{n} \rightarrow 1$ as $n \rightarrow \infty$. Then the explicit formula (1.11) for $K_{n+1}\left(w_{n}, z, \bar{z}\right)$ and the fact that $E_{n} \rightarrow E$ as $n \rightarrow \infty$ give, for non-real z,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} K_{n+1}(W, z, \bar{z}) \geq \frac{i}{2 \pi} \frac{E(z) E^{*}(\bar{z})-E^{*}(z) E(\bar{z})}{z-\bar{z}} \tag{3.2}
\end{equation*}
$$

For real z, we instead use (1.12). Now let $\mathcal{H}(E)$ be the de Branges space corresponding to E. This consists [1, p. 50 ff .] of all entire functions g for which both g / E and g^{*} / E belong to the Hardy 2 space of the upper-half plane $H^{2}\left(\mathbb{C}^{+}\right)$, with

$$
\int_{-\infty}^{\infty}\left|\frac{g}{E}\right|^{2}<\infty
$$

The reproducing kernel for this space is [1, p. 51]

$$
K(z, v)=\frac{i}{2 \pi} \frac{E(z) E^{*}(v)-E^{*}(z) E(v)}{z-v}, z \neq v
$$

with a confluent form when $z=v$. Moreover, for such g, we have [1, p. 53]

$$
|g(z)|^{2} \leq K(z, \bar{z}) \int_{-\infty}^{\infty}\left|\frac{g}{E}\right|^{2}, z \in \mathbb{C}
$$

Since $\mathcal{H}(E)$ contains all polynomials, we may apply this last inequality to $g(t)=$ $K_{n+1}(W, t, \bar{z})$ for fixed z, and deduce that

$$
K_{n+1}(W, z, \bar{z})^{2} \leq K(z, \bar{z}) \int_{-\infty}^{\infty}\left|K_{n+1}(W, t, \bar{z})\right|^{2} W(t) d t=K(z, \bar{z}) K_{n+1}(W, z, \bar{z})
$$

so

$$
K_{n+1}(W, z, \bar{z}) \leq K(z, \bar{z})
$$

Together with (3.2), this yields, for non-real z,

$$
\lim _{n \rightarrow \infty} K_{n}(W, z, \bar{z})=K(z, \bar{z})=\frac{i}{2 \pi} \frac{E(z) E^{*}(\bar{z})-E^{*}(z) E(\bar{z})}{z-\bar{z}}
$$

Similarly, for x real,

$$
\lim _{n \rightarrow \infty} K_{n}(W, x, x)=K(x, x)=\frac{i}{2 \pi}\left(E^{\prime}(x) E^{*}(x)-E(x) E^{* \prime}(x)\right)
$$

In particular, as this is finite, the moment problem corresponding to W is indeterminate (cf. [3]).

References

[1] L. de Branges, Hilbert Spaces of Entire Functions, Prentice Hall, New Jersey, 1968.
[2] A. Bultheel, P. Gonzalez-Vera, E. Hendriksen, O. Njastad, Orthogonal Rational Functions, Cambridge University Press, Cambridge, 1999.
[3] G. Freud, Orthogonal Polynomials, Pergamon Press/ Akademiai Kiado, Budapest, 1971.
[4] P. Koosis, The Logarithmic Integral I, Cambridge University Press, Cambridge, 1988.
[5] Eli Levin and D.S. Lubinsky, Orthogonal Polynomials for Exponential Weights, Springer, New York, 2001.
[6] G. Lopez Lagomasino, Relative Asymptotics for Polynomials Orthogonal on the Real Axis, Math. USSR Sbornik, 65(1990), 505-529.
[7] P. Nevai, Geza Freud, Orthogonal Polynomials and Christoffel Functions: A Case Study, J. Approx. Theory, 48(1986), 3-167.
[8] B. Simon, Orthogonal Polynomials on the Unit Circle, Parts 1 and 2, American Mathematical Society, Providence, 2005.
[9] G. Szegő, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, 1975.
[10] V. Totik, Asymptotics for Christoffel Functions for General Measures on the Real Line, J. d'Analyse Math., 81(2000), 283-303.

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA., LUBINSKY@MATh.GATECH.EDU

