
EXPLICIT ORTHOGONAL POLYNOMIALS FOR RECIPROCAL
POLYNOMIAL WEIGHTS ON (�1;1)

D. S. LUBINSKY

Abstract. Let S be a polynomial of degree 2n + 2, that is positive on the
real axis, and let w = 1=S on (�1;1). We present an explicit formula for the
nth orthogonal polynomial and related quantities for the weight w. This is an
analogue for the real line of the classical Bernstein-Szeg½o formula for (�1; 1).

Orthogonal Polynomials, Bernstein-Szeg½o formulas. 42C05

1. The Result1

The Bernstein-Szeg½o formula provides an explicit formula for orthogonal polyno-
mials for a weight of the form

p
1� x2=S (x) ; x 2 (�1; 1) ; where S is a polynomial

positive in (�1; 1), possibly with at most simple zeros at �1. It plays a key role in
asymptotic analysis of orthogonal polynomials.
In this paper, we present an explicit formula for the nth degree orthogonal poly-

nomial for weights w on the whole real line of the form

(1.1) w = 1=S;

where S is a polynomial of degree 2n+2, positive on R. In addition, we give repre-
sentations for the (n+1)st reproducing kernel and Christo¤el function. We present
elementary proofs, although they follow partly from the theory of de Branges spaces
[1]. The formulae do not seem to be recorded in de Branges�book, nor in the or-
thogonal polynomial literature [2], [3], [7], [8], [9]. We believe they will be useful in
analyzing orthogonal polynomials for weights on R.
Recall that we may de�ne orthonormal polynomials fpmgnm=0, where

(1.2) pm (x) = 
mx
m + :::, 
m > 0;

satisfying Z 1

�1
pjpkw = �jk:

Because the denominator S in w has degree 2n + 2, orthogonal polynomials of
degree higher than n are not de�ned. The (n+ 1) st reproducing kernel for w is

(1.3) Kn+1 (x; y) =
nX
j=0

pj (x) pj (y) :

Inasmuch as S is a positive polynomial, we can write

(1.4) S (z) = E (z)E (�z);
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2 D. S. LUBINSKY

where E is a polynomial of degree n + 1, with all zeros in the lower-half plane
fz : Im z < 0g. We ensure E is unique by normalizing E so that

(1.5) E (i) is real and positive.

Write

(1.6) E (z) =
n+1X
j=0

ejz
j ; S (z) =

2n+2X
j=0

sjz
j

and

(1.7) E� (z) = E (�z):

Denote the �rst di¤erence of a function f by

(1.8) [f; t; x] =
f (t)� f (x)

t� x :

We shall need various Cauchy principal value integrals: for real x; and suitable
functions h;

PVx

Z 1

�1

h (t)

t� xdt = lim
"!0+

Z
jt�xj�"

h (t)

t� xdt;

PV1

Z 1

�1
h (t) dt = lim

R!1

Z R

�R
h (t) dt;

PVx;1

Z 1

�1

h (t)

t� xdt = lim
"!0+;R!1

Z
jtj�R;jt�xj�"

h (t)

t� xdt:

With the above assumptions on w, we prove:

Theorem 1 (a) For Im z > 0;

(1.9) E (z) = exp

�
� 1

2�i

Z 1

�1

1 + tz

t� z
logw (t)

1 + t2
dt

�
;

and

(1.10) en+1 = s
1=2
2n+2 (�i)

n+1
exp

�
1

2�i
PV1

Z 1

�1

logw (t)

1 + t2
t dt

�
:

(b) For z 6= v;

(1.11) Kn+1 (z; v) =
i

2�

E (z)E� (v)� E� (z)E (v)
z � v ;

(1.12) Kn+1 (z; z) =
i

2�
(E0 (z)E� (z)� E (z)E�0 (z)) :

(c)

(1.13) 
n =

�
1

�
Im (en+1en)

�1=2
and

(1.14) pn (z) = �
1


n

i

2�
(en+1E (z)� en+1E� (z)) :
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Theorem 2 For x 2 R;
(a)

(1.15) pn (x)w (x)
1=2

=
s
1=2
2n+2

�
n
cos

�
n�

2
+
1

2�
PVx;1

Z 1

�1

logw (t)

t� x dt

�
:

(b)

�Kn+1 (x; x)w (x) = �
1

2�

Z 1

�1
[logw; t; x]

t

1 + t2
dt

� 1

2�

Z 1

�1

@

@x
[logw; t; x]

1 + tx

1 + t2
dt:(1.16)

(c) If s2n+1 = 0;

(1.17) 
n =
1

�

�
s2n+2
2

Z 1

�1
log

�
S (t)

s2n+2t2n+2

�
dt

�1=2
:

Remarks (a) The function E is a Szeg½o/ outer function associated with w for the
upper-half plane. It has been used in the relative asymptotics of G. Lopez [6] and
in the orthogonal rational functions of Bultheel et al [2].
(b) It is easily seen that for Im z > 0;

(1.18) E� (z) = CE (z)
Y

a:E(a)=0

z � �a
z � a;

where

C =
en+1
en+1

= (�1)n+1 exp
�
� 1
�i
PV1

Z 1

�1

logw (t)

1 + t2
t dt

�
:

(c) Of course if S is even, then s2n+1 is 0. The latter condition ensures that the
integral in (1.17) converges.
(d) Explicit formulae for the Christo¤el function Kn (x; x)

�1 for Bernstein-Szeg½o
weights appear in [3], [5], [7], [8], [9], [10]. We will present one application of
(1.11-12) in Section 3.

2. Proofs

As we noted above, our original proofs arose from de Branges spaces, but we
present elementary proofs. Let us choose E satisfying (1.4) and (1.5).

Proof of (1.9) of Theorem 1(a) Let H denote the right side of (1.9), so that

H (z) = exp

�
� 1

2�i

Z 1

�1

1 + tz

t� z
logw (t)

1 + t2
dt

�
:

Then for z = x+ iy;

log jH (z)j = �Re
�
1

2�i

Z 1

�1

1 + tz

t� z
logw (t)

1 + t2
dt

�
=

y

�

Z 1

�1

log jE (t)j
(t� x)2 + y2

dt

= log jE (z)j ;(2.1)

by a Theorem in [4, p. 47]. This may be applied as E (z) is analytic and non-zero
in the closed upper-half plane, and log jE (z)j is O (log jzj) as jzj ! 1. Since H=E
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is analytic there, we deduce that for some C with jCj = 1, E = CH. Now by
hypothesis, E (i) is real and positive, while

H (i) = exp

�
� 1

2�

Z 1

�1

logw (t)

1 + t2
dt

�
> 0

so C = 1.
Proof of (1.10) of Theorem 1(a) We �rst show that

(2.2) 1� iz = exp
 
1

2�i

Z 1

�1

log
�
1 + t2

�
1 + t2

1 + tz

t� z dt
!
, Im z > 0:

Indeed, 1 � iz serves as the Szeg½o function for the weight 1=
�
1 + t2

�
, so (1.9) of

Theorem 1 applied to the weight 1=
�
1 + t2

�
gives this identity. Then for Im z > 0;

(2.3) E (z) = (1� iz)n+1 = exp (I1 + I2) ;
where

I1 = � 1

2�i

Z 1

�1

log
h
w (t) s2n+2

�
1 + t2

�n+1i
1 + t2

1 + tz

t� z dt;

I2 =
log s2n+2
2�i

Z 1

�1

1

1 + t2
1 + tz

t� z dt:

The integrand in I2 has simple poles in the upper-half plane at i and z, and is
O
�
t�2
�
as jtj ! 1, so the residue calculus gives

(2.4) I2 =
log s2n+2

2
:

Next, log
h
w (t) s2n+2

�
1 + t2

�n+1i
= O

�
1
t

�
as jtj ! 1. Thus the integrand in I1

is bounded in absolute value for z = iy; y � 1 and all t by

C
1

(1 + t2) (1 + jtj)
1 + jtj y
jtj+ y � C

1 + t2
:

Here C is independent of t and z. We may then apply Lebesgue�s Dominated
Convergence Theorem to I1, with z = iy, y !1, to deduce that

I1 ! 1

2�i

Z 1

�1

log
h
w (t) s2n+2

�
1 + t2

�n+1i
1 + t2

t dt

=
1

2�i
PV1

Z 1

�1

logw (t)

1 + t2
t dt;(2.5)

as

PV1

Z 1

�1

t

1 + t2
dt = 0 = PV1

Z 1

�1

log
�
1 + t2

�
1 + t2

t dt;

the integrands being odd. Substituting (2.5) and (2.4) into (2.3) and letting also
z = iy; y !1, in the left-hand side there, gives (1.10). �

Proof of Theorem 1(b) We need prove only (1.11), for (1.12) then follows by
l�Hospital�s rule. Set

G (u; v) =
i

2�

E (u)E� (v)� E� (u)E (v)
u� v :
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Observe that for �xed v, G (u; v) is a polynomial of degree at most n in u. Assume
that P is a polynomial of degree � n and that Imu > 0. Now for real t, w (t) =
1= (E (t)E� (t)), soZ 1

�1
P (t)G (u; t)w (t) dt

=
i

2�

�
E� (u)

Z 1

�1

P (t)

E� (t) (t� u)dt� E (u)
Z 1

�1

P (t)

E (t) (t� u)dt
�
:(2.6)

Recall that E has all its zeros in the lower-half plane, so E� has all its zeros in
the upper-half plane. Then the integrand P (t)

E�(t)(t�u) in the �rst integral is analytic

in the closed lower-half plane, and is O
�
jtj�2

�
as jtj ! 1. By Cauchy�s integral

theorem, the �rst integral is 0. Next, the integrand P (t)
E(t)(t�u) in the second integral

is analytic in the closed upper-half plane, except for a simple pole at u (unless

P (u) = 0) and is O
�
jtj�2

�
as jtj ! 1. The residue theorem shows thatZ 1

�1

P (t)

E (t) (t� u)dt = 2�i
P (u)

E (u)
:

Substituting this into (2.6) givesZ 1

�1
P (t)G (u; t)w (t) dt = P (u)

for Imu > 0. As both sides are polynomials in u, analytic continuation gives it for
all u. Finally, (1.11) follows from uniqueness of reproducing kernels:

Kn+1 (u; v) =

Z 1

�1
Kn+1 (t; v)G (u; t)w (t) dt = G (u; v) :

Proof of Theorem 1(c) We note that since pn+1 is not de�ned, we cannot use
the Christo¤el-Darboux formula for Kn+1. However, we can use it for Kn :

Kn+1 (u; v) =

n�1

n

pn (u) pn�1 (v)� pn (v) pn�1 (u)
u� v + pn (u) pn (v) :

Multiplying by u� v leads to

n�1

n

(pn (u) pn�1 (v)� pn (v) pn�1 (u)) + (u� v) pn (u) pn (v)

= (u� v)Kn+1 (u; v) =
i

2�
(E (u)E� (v)� E� (u)E (v)) ;

by (1.11). Now we compare coe¢ cients of un+1 on both sides above:

(2.7) 
npn (v) =
i

2�
(en+1E

� (v)� en+1E (v)) ;

giving (1.14). For (1.13), we compare the coe¢ cients of vn on both sides above:


2n =
i

2�
(en+1en � en+1en) :

(Note that the coe¢ cient of vn+1 on the right-hand side in (2.7) is zero). �

Proof of Theorem 2(a) From (1.14), for real x;

�
npn (x) = Im (en+1E (x)) :
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We take non-tangential boundary values z ! x from the upper-half plane in (1.9).
The Sokhotsky-Plemelj formulae give

(2.8) E (x) = exp

�
� 1

2�i
PVx

Z 1

�1

logw (t)

1 + t2
1 + tx

t� x dt�
1

2
logw (x)

�
;

and this and (1.10) give

�
npn (x)w (x)
1=2

= s
1=2
2n+2 Im[i

n+1 exp

�
� 1

2�i
PV1

Z 1

�1

logw (t)

1 + t2
t dt� 1

2�i
PVx

Z 1

�1

logw (t)

1 + t2
1 + tx

t� x dt
�
]

= s
1=2
2n+2 Im[i

n+1 exp

�
� 1

2�i
PVx;1

Z 1

�1

logw (t)

t� x dt

�
]:

Proof of Theorem 2(b) For real x, and E as above, we de�ne a phase function
' (cf. [1, p. 54]) by

(2.9) E (x) = jE (x)j e�i'(x):

Here, as in [1, p. 54], ' is an increasing di¤erentiable function. We have, as there

(2.10) Kn+1 (x; x) =
1

�
jE (x)j2 '0 (x) = 1

�
w (x)

�1
'0 (x) :

Indeed, for real x,
E� (x) = jE (x)j ei'(x);

so for real t 6= x, (1.11) gives

Kn+1 (x; t) =
jE (x)j jE (t)j

�

sin (' (x)� ' (t))
x� t :

L�Hospital�s rule gives the �rst equality in (2.10). Next, from (2.8) and the de�nition
of ', we have for some constant C independent of x;

(2.11) ' (x) = � 1

2�
PVx

Z 1

�1

logw (t)

1 + t2
1 + tx

t� x dt+ C:

The residue theorem shows that for Im z > 0;

(2.12)
1

2�i

Z 1

�1

1

1 + t2
1 + tz

t� z dt =
1

2
;

so also for real x, the Sokhotsky-Plemelj formulae give

1

2�i
PVx

Z 1

�1

1

1 + t2
1 + tx

t� x dt+
1

2
=
1

2
;

thus

(2.13)
1

2�i
PVx

Z 1

�1

1

1 + t2
1 + tx

t� x dt = 0:

Hence we may write

' (x) = � 1

2�

Z 1

�1

logw (t)� logw (x)
t� x

1 + tx

1 + t2
dt+ C

= � 1

2�

Z 1

�1
[logw; t; x]

1 + tx

1 + t2
dt+ C;
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where the integral is now a Lebesgue integral. Then

'0 (x) = � 1

2�

Z 1

�1
[logw; t; x]

t

1 + t2
dt� 1

2�

Z 1

�1

@

@x
[logw; t; x]

1 + tx

1 + t2
dt:

The interchange of derivative and integral is justi�ed by uniform in x (and absolute)
convergence of the di¤erentiated integrals. Finally, apply (2.10). �
Proof of Theorem 2(c) We compute 
n by comparing both sides of (2.10) as
x!1. First observe that if a > 0, and

wa (x) =
�
x2 + a2

��(n+1)
;

then the Szeg½o/ outer function Ea for the weight wa is given by

Ea (z) = (a� iz)n+1 and E�a (z) = (a+ iz)
n+1

:

If Kn+1 (wa; �; �) denotes the kernel for wa, (1.11) leads to

Kn+1 (wa;x+ iy; x� iy) =
�
x2 + (a+ y

�2
)n+1 �

�
x2 + (a� y

�2
)n+1

4�y
:

Letting y ! 0+, and using l�Hospital�s rule gives

Kn+1 (wa; x; x) =
n+ 1

�
a
�
x2 + a2

�n
and

(2.14) Kn+1 (wa; x; x)wa (x) =
(n+ 1) a

� (x2 + a2)
:

Next, if we write
Ea (x) = jEa (x)j e�i'a(x);

then, as at (2.11),

(2.15) 'a (x) = �
1

2�
PVx

Z 1

�1

logwa (t)

1 + t2
1 + tx

t� x dt+ Ca:

Let

ga (t) = log [w (t) s2n+2=wa (t)] = log

"
s2n+2

�
t2 + a2

�n+1
S (t)

#
:

In view of (2.11), (2.13) and (2.15), we may then write

(2.16) ' (x)� 'a (x) = �
1

2�
PVx

Z 1

�1

ga (t)

1 + t2
1 + tx

t� x dt+ C � Ca

and then (2.14), followed by (2.10) and (2.16) give

�Kn+1 (x; x)w (x)�
(n+ 1) a

x2 + a2

= �Kn+1 (x; x)w (x)� �Kn+1 (wa; x; x)wa (x)

= '0 (x)� '0a (x)

=
d

dx

�
� 1

2�
PVx

Z 1

�1

ga (t)

1 + t2
1 + tx

t� x dt
�
:(2.17)

Since s2n+1 = 0, it is easily seen that for each j � 0,

(2.18) g(j)a (t) = O(jtj�j�2) as jtj ! 1:
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As
1

1 + t2
1 + tx

t� x =
1

t� x �
t

1 + t2
;

the decay of ga at 1 enables us to deduce that

�Kn+1 (x; x)w (x)�
(n+ 1) a

x2 + a2

=
d

dx

�
� 1

2�
PVx

Z 1

�1

ga (t)

t� x dt
�
:(2.19)

It is well known that the derivative of a Cauchy principal value is a Hadamard �nite
part integral, but we sketch what we need here. Fix x, let R > jxj ; and split

PVx

Z 1

�1

ga (t)

t� x dt = PVx

 Z R

�R
+

Z
Rn[�R;R]

!
ga (t)

t� x dt =: FR (x) +GR (x) :

Here, because the di¤erentiated integrand has uniformly convergent integral,

G0R (x) =

Z
Rn[�R;R]

ga (t)

(t� x)2
dt:

Note too that G0R (x) ! 0 as R ! 1. Next, adding and subtracting a principal
value integral gives

FR (x) =

Z R

�R

ga (t)� ga (x)
t� x dt+ ga (x) ln

����R� xR+ x

���� ;
so, again, as the di¤erentiated integrand has uniformly convergent integral,

F 0R (x) =

Z R

�R

ga (t)� ga (x)� g0a (x) (t� x)
(t� x)2

dt+ g0a (x) ln

����R� xR+ x

����+ ga (x)� 1

x�R �
1

x+R

�
= PVx

Z R

�R

ga (t)� ga (x)
(t� x)2

dt+ ga (x)

�
1

x�R �
1

x+R

�
:

As x!1; the decay of ga at 1 ensures that

F 0R (x)! PVx

Z 1

�1

ga (t)� ga (x)
(t� x)2

dt:

We deduce that
d

dx

�
PVx

Z 1

�1

ga (t)

t� x dt
�
= PVx

Z 1

�1

ga (t)� ga (x)
(t� x)2

dt:

Thus, from (2.19),

�x2Kn+1 (x; x)w (x)�
(n+ 1) ax2

x2 + a2
= �x

2

2�
PVx

Z 1

�1

ga (t)� ga (x)
(t� x)2

dt

= � 1

2�

Z 1

�1
ha (t; x) dt;(2.20)

where

ha (t; x) =

8<:
x2[ga(t)�ga(x)]

(t�x)2 ; t =2
�
x
2 ;

3x
2

�
x2[ga(t)�ga(x)�g0a(x)(t�x)]

(t�x)2 ; t 2
�
x
2 ;

3x
2

� :

Observe that for each �xed t;

lim
x!1

ha (t; x) = ga (t) :
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(We use (2.18) for this). We next obtain an integrable bound on ha (t; x) that is
independent of large x. If t 2

�
�1; x2

�
;

jha (t; x)j � C jga (t)j+
C

1 + t2
:

Similarly if t 2
�
3x
2 ;1

�
, this bound holds. If t 2

�
x
2 ;

3x
2

�
, then for some � in this

interval, (2.18) shows that

jha (t; x)j =
x2

2
jg00a (�)j �

C

1 + t2
:

In all occurrences, C is independent of x and t. It follows that we may apply
Lebesgue�s Dominated Convergence Theorem to the integral in the right-hand side
of (2.20) and let x!1 on both sides to deduce that

�
2n
s2n+2

� (n+ 1) a = � 1

2�

Z 1

�1
ga (t) dt:

Now we let a ! 0+, and use the de�nition of ga (and an easier Dominated Con-
vergence) to deduce that

�
2n
s2n+2

= � 1

2�

Z 1

�1
log

�
s2n+2t

2n+2

S (t)

�
dt: �

3. An Application to Reciprocal Entire Weights

Suppose zj = xj + iyj , j � 1, with all yj < 0 and

(3.1)
1X
j=1

�
xj
jzj j

�2
<1:

Let

E (z) =

1Y
j=1

�
1� z

zj

�
and En (z) =

n+1Y
j=1

�
1� z

zj

�
, n � 1:

Assume that E is entire, and let

W =
1

jEj2
and wn =

1

jEnj2
, n � 1:

For real x, it is easily seen that

wn
W
(x) �

1Y
j=n+2

 
1�

�
xj
jzj j

�2!
=: �n:

Let Kn+1 (W; �; �) and Kn+1 (wn; �; �) denote the nth reproducing kernels for W and
wn respectively. This last inequality and extremal properties of Kn+1 yield

Kn+1 (W; z; �z) � ��1n Kn+1 (wn; z; �z) for all z 2 C:

In view of (3.1), �n ! 1 as n!1. Then the explicit formula (1.11) forKn+1 (wn; z; �z)
and the fact that En ! E as n!1 give, for non-real z,

(3.2) lim inf
n!1

Kn+1 (W; z; �z) �
i

2�

E (z)E� (�z)� E� (z)E (�z)
z � �z :
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For real z, we instead use (1.12). Now let H (E) be the de Branges space corre-
sponding to E. This consists [1, p. 50 ¤.] of all entire functions g for which both
g=E and g�=E belong to the Hardy 2 space of the upper-half plane H2 (C+), withZ 1

�1

��� g
E

���2 <1:
The reproducing kernel for this space is [1, p. 51]

K (z; v) =
i

2�

E (z)E� (v)� E� (z)E (v)
z � v ; z 6= v;

with a con�uent form when z = v. Moreover, for such g, we have [1, p. 53]

jg (z)j2 � K (z; �z)
Z 1

�1

��� g
E

���2 ; z 2 C:
Since H (E) contains all polynomials, we may apply this last inequality to g (t) =
Kn+1 (W; t; �z) for �xed z, and deduce that

Kn+1 (W; z; �z)
2 � K (z; �z)

Z 1

�1
jKn+1 (W; t; �z)j2W (t) dt = K (z; �z)Kn+1 (W; z; �z) ;

so
Kn+1 (W; z; �z) � K (z; �z) :

Together with (3.2), this yields, for non-real z;

lim
n!1

Kn (W; z; �z) = K (z; �z) =
i

2�

E (z)E� (�z)� E� (z)E (�z)
z � �z :

Similarly, for x real,

lim
n!1

Kn (W;x; x) = K (x; x) =
i

2�
(E0 (x)E� (x)� E (x)E�0 (x)) :

In particular, as this is �nite, the moment problem corresponding to W is indeter-
minate (cf. [3]).
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