Best Approximating Entire Functions to $|x|^{\alpha}$ in L_{2}

M. I. Ganzburg and D. S. Lubinsky

Abstract

Let $\alpha>0$ not be an even integer. We discuss two methods to derive an explicit representation for the entire function H_{α}^{*} of exponential type 1 that minimizes $$
\left\|\left||x|^{\alpha}-f(x) \|_{L_{2}(\mathbb{R})}\right.\right.
$$ amongst all entire functions f of exponential type at most 1 . These functions arise in the Bernstein constants problem, of best polynomial approximation of $|x|^{\alpha}$.

1. Introduction

One classical problem in approximation theory is that of the Bernstein constants of polynomial approximation. Let $1 \leq p \leq \infty$ and

$$
E_{n}\left[|x|^{\alpha} ; L_{p}[-1,1]\right]=\inf _{\operatorname{deg}(P) \leq n}\left\||x|^{\alpha}-P(x)\right\|_{L_{p}[-1,1]}
$$

denote the error in best L_{p} approximation of $|x|^{\alpha}$ by polynomials of degree $\leq n$, in the L_{p} norm. Starting with Bernstein [2], [3], a series of authors established the limit

$$
\begin{align*}
\Lambda_{p, \alpha}^{*} & =\lim _{n \rightarrow \infty} n^{\alpha+\frac{1}{p}} E_{n}\left[|x|^{\alpha} ; L_{p}[-1,1]\right] \\
& =\inf \left\{\left\||x|^{\alpha}-f(x)\right\|_{L_{p}(\mathbb{R})}: f \text { is entire of exponential type } \leq 1\right\}, \tag{1.1}
\end{align*}
$$

for $\alpha>0$, not an even integer.
Only for $p=1$ and $p=2$ is $\Lambda_{p, \alpha}^{*}$ known, due largely, respectively, to Nikolskii [16] and Raitsin [17]:

$$
\begin{aligned}
& \Lambda_{1, \alpha}^{*}=\frac{\left|\sin \frac{\alpha \pi}{2}\right|}{\pi} 8 \Gamma(\alpha+1) \sum_{k=0}^{\infty}(-1)^{k}(2 k+1)^{-\alpha-2} ; \\
& \Lambda_{2, \alpha}^{*}=\frac{\left|\sin \frac{\alpha \pi}{2}\right|}{\pi} 2 \Gamma(\alpha+1) \sqrt{\pi /(2 \alpha+1)} .
\end{aligned}
$$

The exact value of $\Lambda_{\infty, \alpha}^{*}$ is not known for any α, and the search for it has inspired much research. See $[\mathbf{7}],[\mathbf{1 2}],[\mathbf{1 3}]$ for references and $[\mathbf{6}]$ for a survey of the many extensions of this result. For $p=1$, the unique minimizing entire function of

[^0]exponential type 1 in (1.1) may be expressed as interpolation series at the points $\left\{\left(j-\frac{1}{2}\right) \pi\right\}_{j=1}^{\infty}$, a result established by the first author $[7]$. For $p=\infty$, an analogous interpolation series (at unknown interpolation points) was established in [14].

In this paper, we discuss two methods of deriving a representation for the best approximating entire function in the L_{2} case. Surprisingly, these are the first published representations in the L_{2} case, even though Raitsin's result goes back nearly 40 years. The first method involves elementary facts from distribution theory including Paley-Wiener theorems. The second method is based on the fact that best polynomial approximations in L_{2} are partial sums of orthonormal expansions, and that suitably scaled, these best polynomial approximants converge to the best approximating entire function.

Approximation by entire functions of exponential type is a much studied topic. Given $\sigma>0$, and a measurable function g, the error

$$
A_{\sigma}\left[g ; L_{p}(\mathbb{R})\right]=\inf \left\{\|g-f\|_{L_{p}(\mathbb{R})}: f \text { is entire of exponential type } \leq \sigma\right\}
$$

has been estimated especially when g is bounded or has bounded derivatives of some order $[\mathbf{1}],[\mathbf{4}],[\mathbf{1 8}],[\mathbf{2 1}],[\mathbf{2 2}]$. With a view to applications in number theory, there are also explicit representations of the best approximating entire function when $p=1$ and g is one of a special class of functions. For example for $g(x)=\operatorname{sign}(x)$, the best L_{1} entire function was determined by Vaaler [23]. For other special g, it can be determined using the theory of minimal extrapolations [18, Chapter 7], which involve Fourier transforms and Paley-Wiener theory. Quite recently Littman [11] has used these ideas, to determine a representation for the best L_{1} entire function when $g(x)=x_{+}^{n}$, that is $g(x)=x^{n}$ in $[0, \infty)$ and is 0 on the negative real axis. Then one can deduce from this the extremal entire function for $g(x)=|x|^{n}=2 x_{+}^{n}-x^{n}$.

To the best of our knowledge, this paper contains the first explicit representations for the best approximating entire functions of exponential type to $|x|^{\alpha}$ in L_{2}. Our first result is the representation for this function derived using Paley-Wiener theory:

THEOREM 1.1. Let $\alpha>-1 / 2$, not an even integer. The unique entire function H_{α}^{*} of exponential type 1 satisfying

$$
\begin{equation*}
\left\||x|^{\alpha}-H_{\alpha}^{*}(x)\right\|_{L_{2}(\mathbb{R})}=A_{1}\left[|x|^{\alpha} ; L_{2}(\mathbb{R})\right] \tag{1.2}
\end{equation*}
$$

admits the representation

$$
\begin{equation*}
H_{\alpha}^{*}(z)=-\frac{2}{\pi} \sin \frac{\alpha \pi}{2} \Gamma(\alpha+1) \sum_{k=0}^{\infty}(-1)^{k} \frac{z^{2 k}}{(2 k-\alpha)(2 k)!} \tag{1.3}
\end{equation*}
$$

Our second representation involves two kernels, the first of which is a Bessel kernel, familiar in universality laws in random matrix theory:

$$
\begin{align*}
\mathbb{J}(z, s) & =\frac{1}{2}\left[\frac{\sin (s+z)}{s+z}+\frac{\sin (z-s)}{z-s}\right] \\
& =\frac{z \sin z \cos s-s \sin s \cos z}{z^{2}-s^{2}} \tag{1.4}
\end{align*}
$$

and

$$
\begin{align*}
\mathbb{K}(z, s) & =s \mathbb{J}(z, s)-\sin s \cos z \\
& =\frac{s z \sin z \cos s-z^{2} \cos z \sin s}{z^{2}-s^{2}} . \tag{1.5}
\end{align*}
$$

Theorem 1.2. (I) If $-\frac{1}{2}<\alpha<1$, and $\alpha \neq 0$, then

$$
\begin{equation*}
H_{\alpha}^{*}(z)=\frac{2}{\pi} \int_{0}^{\infty} s^{\alpha} \mathbb{J}(z, s) d s \tag{1.6}
\end{equation*}
$$

If $-\frac{1}{2}<\alpha<2$, and $\alpha \neq 0$, then

$$
\begin{equation*}
H_{\alpha}^{*}(z)=\frac{2}{\pi} \int_{0}^{\infty} s^{\alpha-1} \mathbb{K}(z, s) d s+\frac{2^{\alpha} \Gamma\left(\frac{\alpha+1}{2}\right)}{\sqrt{\pi} \Gamma\left(1-\frac{\alpha}{2}\right)} \cos z \tag{1.7}
\end{equation*}
$$

(II) If $\alpha>2$ and is not an even integer, let ℓ be the even integer in $(\alpha-2, \alpha)$. Then

$$
\begin{equation*}
H_{\alpha}^{*}(z)=z^{\ell} H_{\alpha-\ell}^{*}(z)+Q_{1}(z) \cos z-Q_{2}(z) \sin z \tag{1.8}
\end{equation*}
$$

where

$$
\begin{align*}
& Q_{1}(z)=\frac{2^{\alpha}}{\sqrt{\pi}} \sum_{j=0}^{\ell / 2-1} \frac{\Gamma\left(\frac{\alpha+1}{2}-j\right)}{\Gamma\left(1-\frac{\alpha}{2}+j\right)}\left(\frac{z}{2}\right)^{2 j} \\
& Q_{2}(z)=\frac{2^{\alpha}}{\sqrt{\pi}} \sum_{j=0}^{\ell / 2-1} \frac{\Gamma\left(\frac{\alpha-1}{2}-j\right)}{\Gamma\left(1-\frac{\alpha}{2}+j\right)}\left(\frac{z}{2}\right)^{2 j+1} . \tag{1.9}
\end{align*}
$$

We note that the integral in (1.6) diverges if $\alpha \geq 1$. We shall prove Theorem 1.1 in Section 2, and Theorem 1.2 in Sections 3 and 4. We close off this section with some notation. In the sequel, C, C_{1}, C_{2}, \ldots denote constants independent of n, x, z. The same symbol does not necessarily denote the same constant, even in successive occurrences. We let $P_{n, \alpha}^{*}$ denote the best L_{2} approximant of degree $\leq n$ to $|x|^{\alpha}$ on $[-1,1]$, that is, the unique polynomial of degree $\leq n$ that satisfies

$$
\left\||x|^{\alpha}-P_{n, \alpha}^{*}\right\|_{L_{2}[-1,1]}=\inf _{\operatorname{deg}(P) \leq n}\left\||x|^{\alpha}-P\right\|_{L_{2}[-1,1]} .
$$

The Fourier transform and the inverse Fourier transform of a function or a tempered distribution f is denoted by $\mathcal{F}(f)$ and $\mathcal{F}^{-1}(f)$, respectively. In particular, for $f \in L_{1}(\mathbb{R})$,

$$
\begin{aligned}
\mathcal{F}(f)(y) & =(2 \pi)^{-1 / 2} \int_{\mathbb{R}} f(x) e^{-i x y} d x \\
\mathcal{F}^{-1}(f)(y) & =(2 \pi)^{-1 / 2} \int_{\mathbb{R}} f(x) e^{i x y} d x
\end{aligned}
$$

and for $f \in L_{2}(\mathbb{R})$,

$$
\begin{aligned}
\mathcal{F}(f)(y) & =\underset{A \rightarrow \infty}{\operatorname{li.m.}}(2 \pi)^{-1 / 2} \int_{-A}^{A} f(x) e^{-i x y} d x, \\
\mathcal{F}^{-1}(f)(y) & =\underset{A \rightarrow \infty}{\operatorname{li.m.}}(2 \pi)^{-1 / 2} \int_{-A}^{A} f(x) e^{i x y} d x .
\end{aligned}
$$

2. The Paley-Wiener Approach

In this section, we prove Theorem 1.1 in a more general setting (for complex α with $\operatorname{Re} \alpha>-1 / 2$) using a classical Fourier approach to L_{2}-approximation of $f_{\alpha}(x):=|x|^{\alpha}$ by entire functions of exponential type ≤ 1. The proof of Theorem 1.1 is based on the following generalized Paley-Wiener theorem (see for example $[\mathbf{1 9}$, Them. 7.2.3, p. 122]):

Lemma 2.1. Let h_{1} and h_{2} be tempered distributions supported in $[-\sigma, \sigma], \sigma>$ 0. Then $g_{1}:=F\left(h_{1}\right)$ and $g_{2}:=F^{-1}\left(h_{2}\right)$ are entire functions of exponential type σ satisfying for all $z \in C$

$$
\left|g_{1}(z)\right| \leq C(1+|z|)^{N} \exp (\sigma|\operatorname{Im} z|), \quad\left|g_{2}(z)\right| \leq C(1+|z|)^{N} \exp (\sigma|\operatorname{Im} z|)
$$

for some constants $C>0$ and $N \geq 0$. Conversely, if entire functions g_{1} and g_{2} of exponential type $\sigma>0$ satisfy such growth estimates, then there exist tempered distributions h_{1} and h_{2} supported in $[-\sigma, \sigma]$ such that $g_{1}:=F\left(h_{1}\right)$ and $g_{2}:=F^{-1}\left(h_{2}\right)$.
Proof of Theorem 1.1
Step 1. Since $f_{\alpha} \notin L_{2}(\mathbb{R})$, we first prove that

$$
\begin{equation*}
A_{1}\left(|x|^{\alpha}, L_{2}(\mathbb{R})\right)<\infty, \quad \operatorname{Re} \alpha>-1 / 2, \quad \alpha \neq 0,2, \ldots \tag{2.1}
\end{equation*}
$$

This fact for real $\alpha>-1 / 2$ was established in $[\mathbf{1 7}]$ by using the limit theorem for L_{2}-polynomial approximation. Our proof is based on a different idea.

It is known [8, eqn. (12), p. 173] that for $y \in \mathbb{R} \backslash\{0\}$ and $\operatorname{Re} \alpha>-1 / 2, \alpha \neq$ $0,2, \ldots$, the Fourier transform of the tempered distribution f_{α} is

$$
\begin{equation*}
\mathcal{F}\left(f_{\alpha}\right)(y)=\mathcal{F}^{-1}\left(f_{\alpha}\right)(y)=-(2 / \pi)^{1 / 2} \sin \frac{\alpha \pi}{2} \Gamma(\alpha+1)|y|^{-\alpha-1} \tag{2.2}
\end{equation*}
$$

Next, we extend $\mathcal{F}\left(f_{\alpha}\right)(y)$ from $\mathbb{R} \backslash(-1,1)$ to \mathbb{R} by the formula:

$$
F(y):= \begin{cases}F\left(f_{\alpha}\right)(y), & y \in \mathbb{R} \backslash(-1,1) \\ F\left(f_{\alpha}\right)(1), & y \in(-1,1)\end{cases}
$$

Then $F \in L_{2}(\mathbb{R})$ and $\mathcal{F}^{-1}(F) \in L_{2}(\mathbb{R})$. Further, it is easy to see that $H:=$ $\mathcal{F}\left(f_{\alpha}\right)-F$ is a tempered distribution supported in $[-1,1]$. Hence by Lemma 2.1,

$$
g_{1}:=\mathcal{F}^{-1}(H)=f_{\alpha}-\mathcal{F}^{-1}(F)
$$

is an entire function of exponential type ≤ 1. Therefore, $f_{\alpha}-g_{1} \in L_{2}(\mathbb{R})$ and (2.1) follows.

Step 2. Next we find a representation for the entire function H_{α}^{*} of L_{2}-best approximation to f_{α} involving the distributional Fourier transform of f_{α}.

Let g be an entire function of exponential type 1 such that $f_{\alpha}-g \in L_{2}(\mathbb{R})$, where $\operatorname{Re} \alpha>-1 / 2, \alpha \neq 0,2, \ldots$ The existence of such a function follows from (2.1). Then by the Plancherel formula,

$$
\begin{align*}
\int_{R}\left|f_{\alpha}-g\right|^{2} d x & =\int_{R}\left|\mathcal{F}^{-1}\left(f_{\alpha}-g\right)\right|^{2} d y \\
& =\int_{|y| \leq 1}\left|\mathcal{F}^{-1}\left(f_{\alpha}-g\right)\right|^{2} d y+\int_{|y|>1}\left|\mathcal{F}^{-1}\left(f_{\alpha}-g\right)\right|^{2} d y \tag{2.3}
\end{align*}
$$

Further, we show that for a.e. $y \in(-\infty,-1) \cup(1, \infty)$,

$$
\begin{equation*}
\mathcal{F}^{-1}\left(f_{\alpha}-g\right)(y)=\mathcal{F}^{-1}\left(f_{\alpha}\right)(y) \tag{2.4}
\end{equation*}
$$

where $\mathcal{F}^{-1}\left(f_{\alpha}\right)$ is given in (2.2). Indeed, setting

$$
f_{\alpha}^{*}(x):= \begin{cases}f_{\alpha}(x), & x \in \mathbb{R}, \quad \operatorname{Re} \alpha>0, \quad \alpha \neq 0,2, \ldots \\ f_{\alpha}(x), & |x|>1, \quad-1 / 2<\operatorname{Re} \alpha<0 \\ f_{\alpha}(1), & |x| \leq 1, \quad-1 / 2<\operatorname{Re} \alpha<0\end{cases}
$$

we have $f_{\alpha}^{*}-g \in L_{2}(\mathbb{R})$ and $\left|f_{\alpha}^{*}(x)\right| \leq C(1+|x|)^{N}$ for all $x \in \mathbb{R}$, where $N:=$ $\max (\operatorname{Re} \alpha, 0)$. It is known [5] (see also [6, Lemma 11.4, p. 539]) that these conditions imply the inequality $|g(x)| \leq C(1+|x|)^{N}, x \in \mathbb{R}$. Hence [9] for any $z \in \mathbb{C}$,

$$
|g(z)| \leq(1+|z|)^{N} \exp (|\operatorname{Im} z|)
$$

Therefore by Lemma 2.1, $\mathcal{F}^{-1}(g)$ is a tempered distribution supported in $[-1,1]$. In other words, the functional $\left(\mathcal{F}^{-1}(g), \psi\right)=0$ for every rapidly decreasing function ψ from the Schwartz class $S(\mathbb{R})$ with support in $\mathbb{R}-[-1,1]$. Consequently, for every $\psi \in S(\mathbb{R})$ with support in $\mathbb{R}-[-1,1]$ we have

$$
\begin{align*}
\int_{\mathbb{R}} \mathcal{F}^{-1}\left(f_{\alpha}-g\right)(s) \psi(s) d s & =\left(\mathcal{F}^{-1}\left(f_{\alpha}\right), \psi\right)-\left(\mathcal{F}^{-1}(g), \psi\right) \\
& =\int_{\mathbb{R}} \mathcal{F}^{-1}\left(f_{\alpha}\right)(s) \psi(s) d s \tag{2.5}
\end{align*}
$$

Choosing ψ as a peak delta-like function from $S(\mathbb{R})$ with support in the interval [y- $\varepsilon, y+\varepsilon$], where $0<\varepsilon<|y|-1$, and letting $\varepsilon \rightarrow 0$, we conclude that (2.4) follows from (2.5).

Combining now (2.3) and (2.4) with (2.2), we have that for every entire function g of exponential type 1 such that $f_{\alpha}-g \in L_{2}(\mathbb{R})$, the following inequalities hold:

$$
\begin{align*}
\left(\int_{R}\left|f_{\alpha}-g\right|^{2} d x\right)^{1 / 2} & \geq\left(\int_{|y| \geq 1}\left|\mathcal{F}^{-1}\left(f_{\alpha}-g\right)\right|^{2} d y\right)^{1 / 2} \\
& =\left(\int_{|y| \geq 1}\left|\mathcal{F}^{-1}\left(f_{\alpha}\right)\right|^{2} d y\right)^{1 / 2} \\
& =(2 / \sqrt{\pi})\left|\sin \frac{\alpha \pi}{2} \Gamma(\alpha+1)\right|(2 \operatorname{Re} \alpha+1)^{-1 / 2} \tag{2.6}
\end{align*}
$$

In addition, if there exists an entire function H_{α}^{*} of exponential type 1 such that $f_{\alpha}-H_{\alpha}^{*} \in L_{2}(\mathbb{R})$ and

$$
\begin{equation*}
F^{-1}\left(f_{\alpha}-H_{\alpha}^{*}\right)(y)=0 \quad \text { a.e. on }[-1,1] \tag{2.7}
\end{equation*}
$$

then (2.3) and (2.6) imply the equations

$$
\begin{align*}
A_{1}\left(|x|^{\alpha}, L_{2}(\mathbb{R})\right) & =\left(\int_{R}\left|f_{\alpha}-H_{\alpha}^{*}\right|^{2} d x\right)^{1 / 2} \\
& =(2 / \sqrt{\pi})\left|\sin \frac{\alpha \pi}{2} \Gamma(\alpha+1)\right|(2 \operatorname{Re} \alpha+1)^{-1 / 2} \tag{2.8}
\end{align*}
$$

Therefore, H_{α}^{*} is a function of best approximation to f_{α} in $L_{2}(\mathbb{R})$, and it is unique since $L_{2}(\mathbb{R})$ is a strictly convex space.

Step 3. We now show the existence of H_{α}^{*} such that (2.7) holds and $f_{\alpha}-H_{\alpha}^{*} \in$ $L_{2}(\mathbb{R})$. We first note that the function

$$
\begin{equation*}
h_{\alpha}(y):=\mathcal{F}^{-1}\left(f_{\alpha}\right)(y) \chi_{[-1,1]}(y), \tag{2.9}
\end{equation*}
$$

where χ_{E} is the characteristic function of a set E, is a tempered distribution for $\alpha \neq 0,2, \ldots$ with support in $[-1,1]$. Indeed, this fact follows from the following
representation of the functional $\left(|y|^{-\alpha-1} \chi_{-1,1]}(y), \psi\right)$ on $S(\mathbb{R})$ for $\operatorname{Re} \alpha<2 m, \alpha \neq$ $0,2, \ldots, 2 m-2$:

$$
\begin{aligned}
\left(|y|^{-\alpha-1} \chi_{[-1,1]}(y), \psi\right)= & \int_{0}^{1} y^{-\alpha-1}(\psi(y)+\psi(-y) \\
& \left.-2 \sum_{k=0}^{m-1} \frac{y^{2 k} \psi^{(2 k)}(0)}{(2 k-\alpha)(2 k)!}\right) d y+\sum_{k=0}^{m-1} \frac{\psi^{(2 k)}(0)}{(2 k-\alpha)(2 k)!}
\end{aligned}
$$

(see [8, eqn. (3), p. 48]). Therefore by Lemma 2.1, $H_{\alpha}^{*}:=\mathcal{F}\left(h_{\alpha}\right)$ is an entire function of exponential type 1. Moreover,

$$
\mathcal{F}^{-1}\left(f_{\alpha}-H_{\alpha}^{*}\right)(y)= \begin{cases}0, & |y| \leq 1 \tag{2.10}\\ \mathcal{F}^{-1}\left(f_{\alpha}\right)(y), & |y|>1\end{cases}
$$

Thus (2.7) holds and by (2.2) and (2.10), $\mathcal{F}^{-1}\left(f_{\alpha}-H_{\alpha}^{*}\right) \in L_{2}(\mathbb{R})$, which implies that $f_{\alpha}-H_{\alpha}^{*} \in L_{2}(\mathbb{R})$. Then it follows from Step 2 that H_{α}^{*} is the unique entire function of best approximation in $L_{2}(\mathbb{R})$ to f_{α}.

Step 4. It remains to prove representation (1.3). We first assume that $-1 / 2<$ $\operatorname{Re} \alpha<0$. Then the function h_{α} given in (2.9) is integrable on \mathbb{R} whence it follows that

$$
\begin{align*}
H_{\alpha}^{*}(x) & =\mathcal{F}\left(-(2 / \pi)^{1 / 2} \sin \frac{\alpha \pi}{2} \Gamma(\alpha+1)|y|^{-\alpha-1} \chi_{[-1,1]}\right)(x) \\
& =-\frac{1}{\pi} \sin \frac{\alpha \pi}{2} \Gamma(\alpha+1) \int_{-1}^{1} \frac{\cos (x y)}{|y|^{\alpha+1}} d y \\
& =-\frac{2}{\pi} \sin \frac{\alpha \pi}{2} \Gamma(\alpha+1) \sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k-\alpha)(2 k)!} \tag{2.11}
\end{align*}
$$

Therefore, (1.3) holds for $-1 / 2<\operatorname{Re} \alpha<0$.
Next we use an idea of analytic extension of the distributional Fourier transform developed in [8, p. 171]. The function

$$
H_{\alpha}^{*}(x):=-\frac{2}{\pi} \sin \frac{\alpha \pi}{2} \Gamma(\alpha+1) \sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k-\alpha)(2 k)!}
$$

and the distribution h_{α} depend analytically on α in the sense that for every $\psi \in$ $S(\mathbb{R})$, the functionals $\left(H_{\alpha}^{*}, \psi\right)$ and $\left(h_{\alpha}, \psi\right)$ are analytic functions of α in the domain $D:=\{\alpha \in \mathbb{C}: \alpha \neq 0,2, \ldots, \operatorname{Re} \alpha>-1 / 2\}$. Since by $(2.11), \mathcal{F}\left(h_{\alpha}\right)=H_{\alpha}^{*}$ for $-1 / 2<\operatorname{Re} \alpha<0$, the uniqueness of the analytic extension implies that this identity is valid for all $\alpha \in D$ (see [$\mathbf{8}]$ for more details).

Therefore, (1.3) is established and this completes the proof of Theorem 1.1.
Remark. The exact value of $A_{1}\left(|x|^{\alpha}, L_{2}(\mathbb{R})\right)$, $\operatorname{Re} \alpha>-1 / 2, \alpha \neq 0,2, \ldots$, is given in (2.8). In case of real α, this provides a new and shorter proof of Raitsin's result.

Moreover, our approach allows us to find $A_{1}\left(f, L_{2}(\mathbb{R})\right)$ and elements $H^{*}(f, x)$ of L_{2}-best approximation to f for some other functions f. For example, we can
prove similarly that for $\alpha \neq 1,3, \ldots, \operatorname{Re} \alpha>-1 / 2$,

$$
\begin{aligned}
A_{1}\left(|x|^{\alpha} \operatorname{sign} x, L_{2}(\mathbb{R})\right) & =(2 / \sqrt{\pi})\left|\cos \frac{\alpha \pi}{2} \Gamma(\alpha+1)\right|(2 \operatorname{Re} \alpha+1)^{-1 / 2} \\
H^{*}\left(|x|^{\alpha} \operatorname{sign} x, x\right) & =\frac{2}{\pi} \cos \frac{\alpha \pi}{2} \Gamma(\alpha+1) \sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1-\alpha)(2 k+1)!}
\end{aligned}
$$

In particular,

$$
\begin{aligned}
A_{1}\left(\operatorname{sign} x, L_{2}(\mathbb{R})\right) & =2 / \sqrt{\pi} \\
H^{*}(\operatorname{sign} x, x) & =\frac{2}{\pi} \sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)(2 k+1)!}
\end{aligned}
$$

In addition, the similar relations can be obtained for the functions $|x|^{\alpha} \log |x|$ and $|x|^{\alpha} \log |x| \operatorname{sign} x, \operatorname{Re} \alpha>-1 / 2, \alpha \neq 0,1, \ldots$

3. The Orthonormal Expansions Approach for $\alpha<2$

In this section, we analyze the L_{2} case for $\alpha<2$, using the fact that best approximations in L_{2} are partial sums of orthonormal expansions. We denote by $\left\{p_{n}\right\}_{n=0}^{\infty}$ the orthonormal polynomials for the Legendre weight 1 on $[-1,1]$, so that

$$
\int_{-1}^{1} p_{n}(t) p_{m}(t) d t=\delta_{m n}
$$

Moreover, we let γ_{n} denote the leading coefficient of p_{n}, and $K_{n}(x, t)$ denote the reproducing kernel, so that

$$
K_{n}(x, t)=\frac{\gamma_{n-1}}{\gamma_{n}} \frac{p_{n}(x) p_{n-1}(t)-p_{n-1}(x) p_{n}(t)}{x-t}
$$

by the Christoffel-Darboux formula. The classical Legendre polynomials are denoted by $\left\{P_{n}\right\}_{n=0}^{\infty}$, normalized by the condition $P_{n}(1)=1$. Their relation to the orthonormal polynomials is given by

$$
\begin{equation*}
p_{n}(x)=\sqrt{n+\frac{1}{2}} P_{n}(x) \tag{3.1}
\end{equation*}
$$

We let $P_{n, \alpha}^{*}$ denote the best approximation to $|x|^{\alpha}$ from the polynomials of degree $\leq n$ in the $L_{2}[-1,1]$ norm. In the sequel, for $m=n, n+1$, and $x>0$, let

$$
\begin{equation*}
I_{n}(m, \beta, x)=n^{\beta} \int_{0}^{1} \frac{t^{\beta+1} p_{m}(t)}{\left(\frac{x}{n}\right)^{2}-t^{2}} d t \tag{3.2}
\end{equation*}
$$

The integral is taken in a principal value sense if $x \in(0, n)$. We also set

$$
\begin{equation*}
J_{n}(\beta)=(n-1)^{\beta+1} \int_{0}^{1} t^{\beta} p_{n}(t) d t \tag{3.3}
\end{equation*}
$$

The basic idea is to combine the scaled limit in Lemma 3.1(a) below, with the asymptotics in (3.7) and (3.8):

Lemma 3.1. (a) Let $\alpha>-\frac{1}{2}$, not an even integer. Then uniformly in compact subsets of \mathbb{C},

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{\alpha} P_{n, \alpha}^{*}(z / n)=H_{\alpha}^{*}(z) \tag{3.4}
\end{equation*}
$$

(b) Assume that n is even. Then

$$
\begin{align*}
& n^{\alpha} P_{n, \alpha}^{*}(x / n) \\
& \quad=2 \frac{\gamma_{n}}{\gamma_{n+1}}\left[x p_{n+1}\left(\frac{x}{n}\right) I_{n}(n, \alpha-1, x)-p_{n}\left(\frac{x}{n}\right) I_{n}(n+1, \alpha, x)\right] . \tag{3.5}
\end{align*}
$$

If $\alpha>0$, we may also write

$$
\begin{align*}
& n^{\alpha} P_{n, \alpha}^{*}(x / n) \\
& \quad=2 \frac{\gamma_{n}}{\gamma_{n+1}}\left[\begin{array}{c}
x p_{n+1}\left(\frac{x}{n}\right) I_{n}(n, \alpha-1, x) \\
+p_{n}\left(\frac{x}{n}\right) J_{n+1}(\alpha-1)-x^{2} p_{n}\left(\frac{x}{n}\right) I_{n}(n+1, \alpha-2, x)
\end{array}\right] . \tag{3.6}
\end{align*}
$$

(c) As $n \rightarrow \infty$ through even integers,

$$
\begin{gather*}
J_{n}(\beta)=(-1)^{\frac{n}{2}} 2^{\beta+\frac{1}{2}} \frac{\Gamma\left(\frac{1+\beta}{2}\right)}{\Gamma\left(-\frac{\beta}{2}\right)}+o(1) \tag{3.7}\\
J_{n+1}(\beta)=(-1)^{\frac{n}{2}} 2^{\beta+\frac{1}{2}} \frac{\Gamma\left(1+\frac{\beta}{2}\right)}{\Gamma\left(\frac{1}{2}-\frac{\beta}{2}\right)}+o(1) \tag{3.8}
\end{gather*}
$$

Proof. (a) This is part of Theorem 1.1 in [13]. (b) As $P_{n, \alpha}^{*}$ is the $(n+1)$ st partial sum of the orthonormal expansion of t^{α} in $\left\{p_{j}\right\}_{j=0}^{\infty}$, and as p_{n} is even, while p_{n+1} is odd,

$$
\begin{aligned}
P_{n, \alpha}^{*}(x) & =\int_{-1}^{1}|t|^{\alpha} K_{n+1}(x, t) d t \\
& =\int_{0}^{1} t^{\alpha}\left[K_{n+1}(x, t)+K_{n+1}(x,-t)\right] d t \\
& =2 \frac{\gamma_{n}}{\gamma_{n+1}}\left[\begin{array}{c}
x p_{n+1}(x) \int_{0}^{1} \frac{t^{\alpha} p_{n}(t)}{x^{2}-t^{2}} d t \\
-p_{n}(x) \int_{0}^{1} \frac{t^{\alpha+1} p_{n+1}(t)}{x^{2}-t^{2}} d t
\end{array}\right]
\end{aligned}
$$

The first identity (3.5) now follows by a substitution $x \rightarrow \frac{x}{n}$ in this last equation. For the second, we write

$$
\begin{aligned}
I_{n}(n+1, \alpha, x) & =n^{\alpha} \int_{0}^{1} \frac{t^{\alpha+1} p_{n+1}(t)}{\left(\frac{x}{n}\right)^{2}-t^{2}} d t \\
& =n^{\alpha} \int_{0}^{1}\left[-1+\frac{\left(\frac{x}{n}\right)^{2}}{\left(\frac{x}{n}\right)^{2}-t^{2}}\right] t^{\alpha-1} p_{n+1}(t) d t \\
& =-n^{\alpha} \int_{0}^{1} t^{\alpha-1} p_{n+1}(t) d t+x^{2} n^{\alpha-2} \int_{0}^{1} \frac{t^{\alpha-1} p_{n+1}(t)}{\left(\frac{x}{n}\right)^{2}-t^{2}} d t \\
& =-J_{n+1}(\alpha-1)+x^{2} I_{n}(n+1, \alpha-2, x)
\end{aligned}
$$

Substitute this into (3.5) to get (3.6).
(c) If $n=2 k$, then $[\mathbf{1 0}$, p. $822,(7.231 .1)]$

$$
\begin{aligned}
J_{n}(\beta) & =(n-1)^{\beta+1} \sqrt{n+\frac{1}{2}}(-1)^{k} \frac{\Gamma\left(k-\frac{\beta}{2}\right) \Gamma\left(\frac{1}{2}+\frac{\beta}{2}\right)}{2 \Gamma\left(-\frac{\beta}{2}\right) \Gamma\left(k+\frac{3}{2}+\frac{\beta}{2}\right)} \\
& =(-1)^{n / 2} 2^{\beta+\frac{1}{2}} \frac{\Gamma\left(\frac{\beta+1}{2}\right)}{\Gamma\left(-\frac{\beta}{2}\right)}+o(1)
\end{aligned}
$$

by Stirling's formula. Similarly, [10, p. 822, (7.231.2)]

$$
\begin{aligned}
J_{n+1}(\beta) & =n^{\beta+1} \sqrt{n+\frac{3}{2}}(-1)^{k} \frac{\Gamma\left(k+\frac{1}{2}-\frac{\beta}{2}\right) \Gamma\left(1+\frac{\beta}{2}\right)}{2 \Gamma\left(\frac{1}{2}-\frac{\beta}{2}\right) \Gamma\left(k+2+\frac{\beta}{2}\right)} \\
& =(-1)^{n / 2} 2^{\beta+\frac{1}{2}} \frac{\Gamma\left(1+\frac{\beta}{2}\right)}{\Gamma\left(\frac{1}{2}-\frac{\beta}{2}\right)}+o(1)
\end{aligned}
$$

Our main task will be to estimate $I_{n}(m, \beta, x)$. We start by recording asymptotics of Legendre polynomials:

Lemma 3.2. (a) Uniformly for $b \in[0,1]$,

$$
\begin{equation*}
\int_{0}^{b} p_{m}=O\left(m^{-1}\right) \tag{3.9}
\end{equation*}
$$

(b) As $n \rightarrow \infty$ through even integers, we have uniformly for $0 \leq s \leq n^{1 / 2}$ and $m=n, n+1$,

$$
\begin{equation*}
p_{m}\left(\frac{s}{n}\right)=\sqrt{\frac{2}{\pi}}(-1)^{n / 2}\left[\phi_{m}(s)+O\left(\frac{s+1}{n}\right)\right] \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{m}(t)=\cos t \text { if } m=n \quad \text { and } \quad \phi_{m}(t)=\sin t \quad \text { if } m=n+1 \tag{3.11}
\end{equation*}
$$

Proof. (a) Let, as in Szegö, [20, p. 194],

$$
\begin{equation*}
g_{n}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdots(2 n)}=\frac{(2 n)!}{\left(2^{n} n!\right)^{2}}=\frac{1}{\sqrt{\pi n}}\left(1+O\left(\frac{1}{n}\right)\right) \tag{3.12}
\end{equation*}
$$

Let $\varepsilon \in\left(0, \frac{\pi}{2}\right)$. Then using asymptotics for $P_{m},[\mathbf{2 0}$, Theorem 8.21.4, p. 195], and (3.1), we have uniformly for $\theta \in[\varepsilon, \pi-\varepsilon]$,

$$
\begin{equation*}
p_{m}(\cos \theta)=\sqrt{2 m+1} g_{m} \frac{\cos \left\{\left(m+\frac{1}{2}\right) \theta-\frac{\pi}{4}\right\}}{(\sin \theta)^{1 / 2}}+O\left(m^{-1}\right) \tag{3.13}
\end{equation*}
$$

Integrating

$$
\int_{0}^{b} p_{m}=\int_{\arccos (b)}^{\frac{\pi}{2}} p_{m}(\cos \theta) \sin \theta d \theta
$$

by parts gives (3.9) for $b \in\left[0, \frac{1}{2}\right]$. Since (3.7) and (3.8) with $\beta=0$ show that

$$
\int_{0}^{1} p_{m}=(m-1)^{-1} J_{m}(0)=O\left(m^{-1}\right)
$$

we then obtain (3.9) for all $b \in[0,1]$.
(b) Let $\theta=\arccos \left(\frac{s}{n}\right)$. Then

$$
\theta=\arccos \left(\frac{s}{n}\right)=\frac{\pi}{2}-\frac{s}{n}+O\left(\frac{s}{n}\right)^{3}
$$

so

$$
\left(n+\frac{1}{2}\right) \theta-\frac{\pi}{4}=\frac{n}{2} \pi-s+O\left(\frac{s}{n}\right)
$$

recall that $s \leq \sqrt{n}$. From this, as n is even, we deduce that

$$
\begin{aligned}
& \cos \left(\left(n+\frac{1}{2}\right) \theta-\frac{\pi}{4}\right)=(-1)^{\frac{n}{2}} \cos (s)+O\left(\frac{s}{n}\right) \\
& \cos \left(\left(n+\frac{3}{2}\right) \theta-\frac{\pi}{4}\right)=(-1)^{\frac{n}{2}} \sin (s)+O\left(\frac{s}{n}\right)
\end{aligned}
$$

We substitute these into the asymptotic (3.13) and use $(\sin \theta)^{-\frac{1}{2}}=1+O\left(\frac{s^{2}}{n^{2}}\right)$, as well as (3.12) to get the result.

The most difficult calculation is contained in
Lemma 3.3. Let $-2<\beta<1, x>0$ be fixed, and $m=n$ or $n+1$, and ϕ_{m} be given by (3.11). Then as $n \rightarrow \infty$ through even integers,

$$
\begin{equation*}
I_{n}(m, \beta, x)=(-1)^{n / 2} \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{s^{\beta+1} \phi_{m}(s)}{x^{2}-s^{2}} d s+o(1) \tag{3.14}
\end{equation*}
$$

For $m=n+1$, we may also allow $-3<\beta<1$.
Proof. We split

$$
\begin{align*}
I_{n}(m, \beta, x) & =n^{\beta}\left[\int_{0}^{\frac{2 x}{n}}+\int_{\frac{2 x}{n}}^{\frac{\log n}{n}}+\int_{\frac{\log n}{n}}^{1}\right] \frac{t^{\beta+1} p_{m}(t)}{\left(\frac{x}{n}\right)^{2}-t^{2}} d t \tag{3.15}\\
& =: I_{n}^{(1)}+I_{n}^{(2)}+I_{n}^{(3)}
\end{align*}
$$

Note that $I_{n}^{(1)}$ is a Cauchy principal value integral.
Step 1. We establish that

$$
\begin{equation*}
I_{n}^{(3)}=n^{\beta} \int_{\frac{\log n}{n}}^{1} \frac{t^{\beta+1} p_{m}(t)}{\left(\frac{x}{n}\right)^{2}-t^{2}} d t=o(1) \tag{3.16}
\end{equation*}
$$

Let

$$
f(t)=\frac{t^{\beta+1}}{\left(\frac{x}{n}\right)^{2}-t^{2}}
$$

For large n, we see that uniformly for $t \in\left[\frac{\log n}{n}, 1\right]$,

$$
|f(t)|=O\left(t^{\beta-1}\right)
$$

We integrate by parts:

$$
\begin{aligned}
I_{n}^{(3)} & =n^{\beta} \int_{\frac{\log n}{n}}^{1} f(t) p_{m}(t) d t \\
& =n^{\beta}\left[f(1) \int_{0}^{1} p_{m}-f\left(\frac{\log n}{n}\right) \int_{0}^{\frac{\log n}{n}} p_{m}-\int_{\frac{\log n}{n}}^{1} f^{\prime}(t)\left(\int_{0}^{t} p_{m}\right) d t\right] \\
& =O\left(n^{\beta-1}\right)+O\left((\log n)^{\beta-1}\right)+O\left(n^{\beta-1}\right) \int_{\frac{\log n}{n}}^{1}\left|f^{\prime}\right|
\end{aligned}
$$

by Lemma 3.2(a). Here

$$
f^{\prime}(t)\left[\left(\frac{x}{n}\right)^{2}-t^{2}\right]^{2}=t^{\beta}\left[(\beta+1)\left(\frac{x}{n}\right)^{2}+(1-\beta) t^{2}\right]
$$

For large n, we see that $f^{\prime}>0$ in $\left[\frac{\log n}{n}, 1\right]$, and hence

$$
\int_{\frac{\log n}{n}}^{1}\left|f^{\prime}\right|=\int_{\frac{\log n}{n}}^{1} f^{\prime}=O\left(\left|f\left(\frac{\log n}{n}\right)\right|\right)=O\left(\left(\frac{\log n}{n}\right)^{\beta-1}\right) .
$$

So as $\beta<1$,

$$
\left|I_{n}^{(3)}\right|=O\left(n^{\beta-1}\right)+O\left((\log n)^{\beta-1}\right)=o(1)
$$

Step 2. We establish that

$$
\begin{equation*}
I_{n}^{(2)}=n^{\beta} \int_{\frac{2 x}{n}}^{\frac{\log n}{n}} \frac{t^{\beta+1} p_{m}(t)}{\left(\frac{x}{n}\right)^{2}-t^{2}} d t=(-1)^{n / 2} \sqrt{\frac{2}{\pi}} \int_{2 x}^{\infty} \frac{s^{\beta+1} \phi_{m}(s)}{x^{2}-s^{2}} d s+o(1) \tag{3.17}
\end{equation*}
$$

By the substitution $t=s / n$, and then Lemma 3.2(b),

$$
\begin{aligned}
I_{n}^{(2)}= & \int_{2 x}^{\log n} \frac{s^{\beta+1} p_{m}(s / n)}{x^{2}-s^{2}} d s \\
= & (-1)^{n / 2} \sqrt{\frac{2}{\pi}} \int_{2 x}^{\log n} \frac{s^{\beta+1} \phi_{m}(s)}{x^{2}-s^{2}} d s \\
& +O\left(\frac{1}{n}\left\{\begin{array}{ll}
(\log n)^{\max \{\beta+1,0\}}, & \beta \neq-1 \\
\log (\log n), & \beta=-1
\end{array}\right\}\right)
\end{aligned}
$$

The integral over $(0, \infty)$ is conditionally convergent as $\beta+1<2$, and (3.17) follows.
Step 3. Finally, we deal with $I_{n}^{(1)}$, establishing

$$
\begin{equation*}
I_{n}^{(1)}=n^{\beta} \int_{0}^{\frac{2 x}{n}} \frac{t^{\beta+1} p_{m}(t)}{\left(\frac{x}{n}\right)^{2}-t^{2}} d t=(-1)^{n / 2} \sqrt{\frac{2}{\pi}} \int_{0}^{2 x} \frac{s^{\beta+1} \phi_{m}(s)}{x^{2}-s^{2}} d s+o(1) \tag{3.18}
\end{equation*}
$$

We emphasize that $x>0$ is fixed. We see that

$$
\begin{equation*}
I_{n}^{(1)}=\int_{0}^{2 x} \frac{s^{\beta+1}\left[p_{m}\left(\frac{s}{n}\right)-p_{m}\left(\frac{x}{n}\right)\right]}{x^{2}-s^{2}} d s+p_{m}\left(\frac{x}{n}\right) \int_{0}^{2 x} \frac{s^{\beta+1}}{x^{2}-s^{2}} d s \tag{3.19}
\end{equation*}
$$

Here if $0<\varepsilon<\frac{x}{2}$, and n is large enough,

$$
\left|\int_{x-\varepsilon}^{x+\varepsilon} \frac{s^{\beta+1}\left[p_{m}\left(\frac{s}{n}\right)-p_{m}\left(\frac{x}{n}\right)\right]}{x^{2}-s^{2}} d s\right| \leq C \varepsilon \max _{\left[0, \frac{1}{4}\right]}\left|p_{m}^{\prime}\right| \frac{1}{n}
$$

with C depending on x, but independent of m, n, ε. Now as p_{m} is bounded in $\left[-\frac{1}{2}, \frac{1}{2}\right]$, Bernstein's inequality implies that $\max _{\left[0, \frac{1}{4}\right]}\left|p_{m}^{\prime}\right|=O(n)$. Hence uniformly in ε and n,

$$
\begin{equation*}
\left|\int_{x-\varepsilon}^{x+\varepsilon} \frac{s^{\beta+1}\left[p_{m}\left(\frac{s}{n}\right)-p_{m}\left(\frac{x}{n}\right)\right]}{x^{2}-s^{2}} d s\right|=O(\varepsilon) \tag{3.20}
\end{equation*}
$$

Next, the asymptotic in Lemma 3.2(b) shows that

$$
\begin{aligned}
& \int_{[0,2 x] \backslash[x-\varepsilon, x+\varepsilon]} \frac{s^{\beta+1}\left[p_{m}\left(\frac{s}{n}\right)-p_{m}\left(\frac{x}{n}\right)\right]}{x^{2}-s^{2}} d s \\
& \quad=(-1)^{n / 2} \sqrt{\frac{2}{\pi}} \int_{[0,2 x] \backslash[x-\varepsilon, x+\varepsilon]} \frac{s^{\beta+1}\left[\phi_{m}(s)-\phi_{m}(x)\right]}{x^{2}-s^{2}} d s \\
& \quad+O\left(\frac{1}{n} \int_{[0,2 x] \backslash[x-\varepsilon, x+\varepsilon]} \frac{s^{\beta+2}+s^{\beta+1}}{\left|x^{2}-s^{2}\right|} d s\right) \\
& \quad=(-1)^{n / 2} \sqrt{\frac{2}{\pi}}\left[\int_{0}^{2 x} \frac{s^{\beta+1}\left[\phi_{m}(s)-\phi_{m}(x)\right]}{x^{2}-s^{2}} d s+O(\varepsilon)\right]+O\left(\frac{1}{n \varepsilon}\right) .
\end{aligned}
$$

We now choose $\varepsilon=\frac{1}{\sqrt{n}}$. Combining this, (3.19), (3.20) and Lemma 3.2(b) again gives

$$
\begin{aligned}
& I_{n}^{(1)} \\
& =(-1)^{n / 2} \sqrt{\frac{2}{\pi}}\left[\int_{0}^{2 x} \frac{s^{\beta+1}\left[\phi_{m}(s)-\phi_{m}(x)\right]}{x^{2}-s^{2}} d s+\phi_{m}(x) \int_{0}^{2 x} \frac{s^{\beta+1}}{x^{2}-s^{2}} d s\right]+o(1) .
\end{aligned}
$$

So we have established (3.18). Finally, combining (3.15) to (3.18) gives the result. When $-3<\beta<2$ and $m=n+1$, one splits off part of the integral in $I_{n}^{(1)}$ near 0 , say over $[0, \varepsilon]$ and estimates it separately. We leave this case to the reader.

Finally we deduce a special case of Theorem 1.2:
Proof of (1.6) of Theorem 1.2 for $-\frac{1}{2}<\alpha<1$. Recall that [15], [20, eqn. (4.21), p. 63]

$$
\frac{\gamma_{n}}{\gamma_{n+1}}=\frac{1}{2}+o(1), n \rightarrow \infty
$$

Then (3.4), (3.5) and (3.10) give for $x>0$,

$$
\begin{aligned}
H_{\alpha}^{*}(x) & =\lim _{n \rightarrow \infty, n \text { even }}\left[x p_{n+1}\left(\frac{x}{n}\right) I_{n}(n, \alpha-1, x)-p_{n}\left(\frac{x}{n}\right) I_{n}(n+1, \alpha, x)\right] \\
& =\frac{2}{\pi}\left[x \sin x \int_{0}^{\infty} \frac{s^{\alpha} \cos (s)}{x^{2}-s^{2}} d s-\cos x \int_{0}^{\infty} \frac{s^{\alpha+1} \sin (s)}{x^{2}-s^{2}} d s\right] \\
& =\frac{2}{\pi} \int_{0}^{\infty} s^{\alpha} \mathbb{J}(x, s) d s
\end{aligned}
$$

Note that in all the applications of Lemma 3.3, $\beta=\alpha-1$ or $\alpha<1$. Since both sides are entire, this identity remains valid in the entire plane.

Proof of (1.7) of Theorem 1.2 for $-\frac{1}{2}<\alpha<2$. Here (3.4) and (3.6) give

$$
\begin{aligned}
H_{\alpha}^{*}(x)= & \lim _{n \rightarrow \infty, n \text { even }}\left[\begin{array}{c}
x p_{n+1}\left(\frac{x}{n}\right) I_{n}(n, \alpha-1, x) \\
+p_{n}\left(\frac{x}{n}\right) J_{n+1}(\alpha-1)-x^{2} p_{n}\left(\frac{x}{n}\right) I_{n}(n+1, \alpha-2, x)
\end{array}\right] \\
= & \frac{2}{\pi}\left[x \sin x \int_{0}^{\infty} \frac{s^{\alpha} \cos (s)}{x^{2}-s^{2}} d s+\frac{\sqrt{\pi} 2^{\alpha-1} \Gamma\left(\frac{1+\alpha}{2}\right)}{\Gamma\left(1-\frac{\alpha}{2}\right)} \cos x\right. \\
& \left.-x^{2} \cos x \int_{0}^{\infty} \frac{s^{\alpha-1} \sin s}{x^{2}-s^{2}} d s\right]
\end{aligned}
$$

by (3.8), (3.10) and (3.14). Then (1.7) follows.
4. The L_{2} Case for $\alpha>2$

Recall that ℓ is the even integer in $(\alpha-2, \alpha)$.
Lemma 4.1. Let n be even. Then

$$
\begin{aligned}
P_{n, \alpha}^{*}(x)= & x^{\ell} P_{n, \alpha-\ell}^{*}(x) \\
& +2 \frac{\gamma_{n}}{\gamma_{n+1}} \sum_{j=0}^{\ell / 2-1} x^{2 j}\left[p_{n}(x) \int_{0}^{1} t^{\alpha-2 j-1} p_{n+1}(t) d t\right. \\
& \left.-x p_{n+1}(x) \int_{0}^{1} t^{\alpha-2-2 j} p_{n}(t) d t\right]
\end{aligned}
$$

Proof. We substitute the identity

$$
t^{\ell}=x^{\ell}+\left(t^{2}-x^{2}\right) \sum_{j=0}^{\ell / 2-1} x^{2 j} t^{\ell-2-2 j}
$$

in

$$
P_{n, \alpha}^{*}(x)=\int_{-1}^{1}|t|^{\alpha-\ell} t^{\ell} K_{n+1}(x, t) d t
$$

to deduce

$$
\begin{align*}
P_{n, \alpha}^{*}(x)= & x^{\ell} P_{n, \alpha-\ell}^{*}(x) \\
& +\sum_{j=0}^{\ell / 2-1} x^{2 j} \int_{-1}^{1}|t|^{\alpha-2-2 j}\left(t^{2}-x^{2}\right) K_{n+1}(x, t) d t \tag{4.1}
\end{align*}
$$

Here

$$
\begin{aligned}
& \int_{-1}^{1}|t|^{\alpha-2-2 j}\left(t^{2}-x^{2}\right) K_{n+1}(x, t) d t \\
& \quad=\int_{0}^{1} t^{\alpha-2-2 j}\left(t^{2}-x^{2}\right)\left[K_{n+1}(x, t)+K_{n+1}(x,-t)\right] d t \\
& \quad=2 \frac{\gamma_{n}}{\gamma_{n+1}}\left[p_{n}(x) \int_{0}^{1} t^{\alpha-1-2 j} p_{n+1}(t) d t-x p_{n+1}(x) \int_{0}^{1} t^{\alpha-2-2 j} p_{n}(t) d t\right]
\end{aligned}
$$

by the Christoffel-Darboux formula. Now substitute in (4.1).

Proof of Theorem 1.2(II) for $\alpha>2$. From Lemma 4.1 we deduce

$$
\begin{aligned}
n^{\alpha} P_{n, \alpha}^{*}\left(\frac{x}{n}\right)= & x^{\ell} n^{\alpha-\ell} P_{n, \alpha-\ell}^{*}\left(\frac{x}{n}\right) \\
& +2 \frac{\gamma_{n}}{\gamma_{n+1}} \sum_{j=0}^{\ell / 2-1} x^{2 j}\left[\begin{array}{c}
p_{n}\left(\frac{x}{n}\right) J_{n+1}(\alpha-2 j-1) \\
-\left(\frac{n}{n-1}\right)^{\alpha-2 j-1} \\
x p_{n+1}\left(\frac{x}{n}\right) J_{n}(\alpha-2 j-2)
\end{array}\right] .
\end{aligned}
$$

From Lemma 3.1(a)

$$
\lim _{n \rightarrow \infty} n^{\alpha-\ell} P_{n, \alpha}^{*}\left(\frac{x}{n}\right)=H_{\alpha-\ell}^{*}(x)
$$

Now just substitute in this and the limits (3.7), (3.8), (3.10).

References

[1] N.I. Achieser, Theory of Approximation, (translated by C.J. Hyman), Dover, New York, 1992.
[2] S.N. Bernstein, Sur la Meilleure Approximation de $|x|$ par des Polynomes de Degre Donnes, Acta Math., 37(1913), 1-57.
[3] S.N. Bernstein, Sur la Meilleure Approximation de $|x|^{p}$ par des polynomes de degres tres eleves, Bull. Acad. Sc. USSR, Ser. Math., 2(1938), 181-190.
[4] D.P. Dryanov, M.A. Qazi, and Q.I. Rahman, Entire Functions of Exponential Type in Approximation Theory, (in) Constructive Theory of Functions, (ed. B. Bojanov), DARBA, Sofia, 2003, pp. 86-135.
[5] M.I. Ganzburg, Limit Theorems in Approximation Theory, Anal. Math., 18(1992), 37-57.
[6] M.I. Ganzburg, Limit Theorems and Best Constants of Approximation Theory (in), Handbook on Analytic Computational Methods in Applied Mathematics, (G. Anastassiou, ed.), CRC Press, Boca Raton, Fl. 2000.
[7] M.I. Ganzburg, The Bernstein Constant and Polynomial Interpolation at the Chebyshev Nodes, J. Approx. Theory, 119 (2002), 193-213.
[8] I.M. Gelfand and G.E. Shilov, Generalized Functions, vol. I: Properties and Operators,(translated by E. Saletan), Academic Press, New York-London, 1964.
[9] T. G. Genchev, Entire Functions of Exponential Type with Polynomial Growth on \mathbf{R}_{x}^{n}, J. Math. Anal. and Appl., 60 (1977), 103-119.
[10] I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, San Diego, 1980.
[11] F. Littman, Entire Approximations to the Truncated Powers, Constructive Approximation, 22 (2005), 273-295.
[12] D.S. Lubinsky, Towards a Representation of the Bernstein Constant, (in) Advances in Constructive Approximation, (M. Neamtu, E.B. Saff, eds.), Nashboro Press, Nashville, 2004, pp. 325-332.
[13] D.S. Lubinsky, On the Bernstein Constants of Polynomial Approximation, to appear in Constructive Approximation.
[14] D.S. Lubinsky, Series Representations for Best Approximating Entire Functions of Exponential Type, to appear in Proceedings of the International Conference on the Interactions between Wavelets and Splines, Athens, GA.
[15] P. Nevai, Orthogonal Polynomials, Memoirs of the American Mathematical Society, Providence, RI, 1979.
[16] S.M. Nikolskii, On the Best Mean Approximation by Polynomials of the Functions $|x-c|^{s}$, Izvestia Akad. Nauk SSSR, 11 (1947), 139-180 (in Russian).
[17] R.A. Raitsin, On the Best Approximation in the Mean by Polynomials and Entire Functions of Finite Degree of Functions having an Algebraic Singularity, Izv. Vysch. Uchebn. Zaved. Mat., 13 (1969), 59-61.
[18] H.S. Shapiro, Topics in Approximation Theory, Lecture Notes in Math, Vol. 187, Springer, New York, 1971.
[19] R.S. Strichartz, A Guide to Distribution Theory and Fourier Transforms, World Scientific, Singapore, 2003.
[20] G. Szego, Orthogonal Polynomials, 4th edn., American Mathematical Society, Providence, 1975.
[21] A.F. Timan, Theory of Approximation of Functions of a Real Variable (translated by J. Berry), , Dover, New York, 1994.
[22] R.M. Trigub, E.S. Belinsky, Fourier Analysis and Approximation of Functions, Kluwer, Dordrecht, 2004.
[23] J. Vaaler, Some Extremal Functions in Fourier Analysis, Bulletin of the American Mathematical Society, 12 (1985), 183-216.

Department of Mathematics, Hampton University, Hampton, VA 23668
E-mail address: Michael.Ganzburg@hamptonu.edu
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160
E-mail address: lubinsky@math.gatech.edu

[^0]: The authors research was supported by US-Israel BSF grant 2004353 and NSF grant DMS0400446, respectively.

