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Abstract. Let α > 0 and ψ (x) = xα. Let Sn,α be a polynomial of
degree n determined by the biorthogonality conditions

Z 1

0

Sn,αψ
j = 0, j = 0, 1, . . . , n− 1.

We explicitly determine Sn,α and discuss some other properties,
including their zero distribution. We also discuss their relation to
the Sidi polynomials.

§1. Introduction and Results

Let ψ : (0, 1) → R be a strictly increasing continuous function. Then
provided ψj ∈ L1 [0, 1] for all j ≥ 0, we may uniquely determine a monic
polynomial Pn of degree n by the biorthogonality conditions

∫ 1

0

Pn (x)ψ (x)
j
dx =

{

0, j = 0, 1, 2, . . . , n− 1,
In 6= 0, j = n

.

Biorthogonal polynomials of a more general form have been studied in
several contexts - see [2]. The special form we consider here, arose for

ψ (x) = log x,

in problems of quadrature and convergence acceleration [4], [5], [7], [8].
Then

Pn (x) = Sn,0 (x) :=

n
∑

j=0

(

n

j

)

(j + 1)
n

(−x)j
, (1)

are the Sidi polynomials, and one may represent them as a contour inte-
gral. Using steepest descent, the strong asymptotics of Pn, and their zero
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distribution, were established in [5]. Asymptotics for more general poly-
nomials of this type were analyzed by Elbert [3]. The zero distribution of
more general biorthogonal polynomials has been investigated in [6].

In this paper, we derive explicit expressions for Pn (x) when ψ (x) = xα,
any α > 0. We deduce that as α → 0, our polynomials reduce to the
Sidi polynomials, and also give a contour integral representation. This
will allow steepest descent analysis of these polynomials. Our analysis is
based on a Rodrigues type approach.

Our main result is:

Theorem 1. Let α > 0, n ≥ 1 and

Sn,α (x) =
n
∑

j=0

(

n

j

)

[

n−1
∏

k=0

(

k +
j + 1

α

)

]

(−x)j
. (2)

(a) Rodrigues Type Formula

Sn,α

(

u1/α
)

= u1−1/α

(

d

du

)n
[

un−1+1/α
(

1 − u1/α
)n]

. (3)

(b) Biorthogonality Relation
For 0 ≤ j < n,

∫ 1

0

Sn,α (x)xαjdx = 0. (4)

(c) Confluence Relation

lim
α→0+

αnSn,α (x) = Sn,0 (x) . (5)

(d) Contour Integral Representation
Let z ∈ C\(−∞, 0] and Γ be a simple closed contour in C\(−∞, 0] enclos-
ing z. Then

Sn,α

(

z1/α
)

=
n!z1−1/α

2πi

∫

Γ

u−1+1/α

u− z

[

u
(

1 − u1/α
)

u− z

]n

du. (6)

Here the branch of z1/α and u1/αis the principal one.

In the case α = 1, Sn,α is the classical Legendre polynomial for [0, 1],
and the Rodrigues formula (3) is the classical one,

Sn,1 (u) =

(

d

du

)n

[u (1 − u)]
n
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apart from normalization. By contrast, the Sidi polynomials admit the
Rodrigues type formula

Sn,0 (eu) = e−u

(

d

du

)n

[eu (1 − eu)]
n
.

The contour integral representation should allow one to apply steepest
descent, yielding strong asymptotics for Sn,α. One consequence of such
asymptotics is the asymptotic zero distribution, which is studied for more
general ψ in [6]. In this note, we show how the explicit form of the co-
efficients in Sn,α can be combined with results of VanAssche, Fano and
Ortolani [1] to deduce information on their zero distribution. To apply
those results, we consider the monic polynomials

S∗

n,α (x) = Sn,α (−x) /
[

n−1
∏

k=0

(

k +
n+ 1

α

)

]

=
n
∑

j=0

aj,nx
n−j , (7)

where for 0 ≤ j ≤ n,

aj,n =

(

n

j

)

[

n−1
∏

k=0

(

k + n−j+1
α

k + n+1
α

)]

. (8)

The biorthogonality relation (4) implies that Sn,α has n simple zeros in
(0, 1) and hence S∗

n,α has n simple zeros in (−1, 0). Thus

S∗

n,α (x) =
n
∏

j=1

(x− xjn) ,

where
−1 < xnn < xn−1,n < · · · < x1n < 0.

Form the zero counting function

µn (x) =
1

n
# {j : xjn ∈ (−1, x)} ,

for x ∈ (−1, 0). For orthogonal polynomials, there is a vast array of results
on zero distribution - see for example [9]. For the biorthogonal polynomials
Sn,α, results in [6] show that these zero counting measures converge weakly
as n → ∞ to an absolutely continuous distribution. That is, there exists
an increasing absolutely continuous function F : [−1, 0] → R such that

lim
n→∞

∫ 0

−1

f dµn =

∫ 0

−1

f dF =

∫ 0

−1

f F ′, (9)
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for all continuous f : [−1, 0] → R. The results of VanAssche, Fano and
Ortolani [1] then give a representation for F ′. This involves the Hilbert
transform

H [g] (x) =
1

π
PV

∫

∞

−∞

g (t)

t− x
dt,

where PV stands for principal value and the integral converges a.e. if
g ∈ L1 (R). We prove:

Theorem 2. Let α > 0 and

f (x) = (1 − x)
1+ 1

α x−1 (α+ 1 − x)
−

1

α , x ∈ (0, 1) . (10)

(a) If n→ ∞ and j → ∞ in such a way that j/n→ x ∈ (0, 1), then

aj,n

aj−1,n
→ f (x) .

(b) Assume that the zero counting measures {µn} converge weakly to an
absolutely continuous function F , as in (9). Then

F ′ (x) = − 1

πx
H
[

f [−1]
]

(x) , x ∈ (−1, 0) , (11)

where f [−1] denotes the inverse of the strictly decreasing function f .

In the special case α = 1, that is the Legendre case,

f (x) =
(1 − x)

2

x (2 − x)
=

(1 − x)
2

1 − (1 − x)
2 ,

which (comfortingly) is the form obtained in [1, p. 1609]. There

f [−1] (x) = 1 − x√
x2 + x

, x ∈ (0,∞)

and F is the familiar arcsine distribution,

F ′ (x) =
1

π

1
√

x (1 + x)
, x ∈ (−1, 0) .

We prove the results in the next section.
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§2. Proofs

Proof of Theorem 1(a)
We see that

(

d

du

)n
[

un−1+1/α
(

1 − u1/α
)n]

=

(

d

du

)n


un−1+1/α
n
∑

j=0

(

n

j

)

(−1)
j
uj/α





=
n
∑

j=0

(

n

j

)

(−1)
j

(

n− 1 +
j + 1

α

)(

n− 2 +
j + 1

α

)

· · ·
(

j + 1

α

)

u−1+(j+1)/α

= u−1+1/αSn,α

(

u1/α
)

,

by (2).

Proof of Theorem 1(b)
We use the Rodrigues formula from (a). Note that un−1+1/α

(

1 − u1/α
)n

has a zero of multiplicity n at 1, and a zero of multiplicity n− 1 + 1/α at

0. Then if n > k and n− 1 + 1/α > k ≥ 0,
(

d
du

)k
[

un−1+1/α
(

1 − u1/α
)n
]

has a zero of multiplicity n− k at 1 and multiplicity n− k− 1 + 1/α at 0.
Let 0 ≤ j < n, and

Ij :=

∫ 1

0

Sn,α (x)xαjdx

=

∫ 1

0

Sn,α

(

u1/α
)

uj+1/α−1du

=

∫ 1

0

uj

(

d

du

)n
[

un−1+1/α
(

1 − u1/α
)n]

du.

Integrating by parts j times, (with trivial modifications if j = 0) and using
the order of the zeros, gives

Ij = −j
∫ 1

0

uj−1

(

d

du

)n−1
[

un−1+1/α
(

1 − u1/α
)n]

du

= (−1)
2
j (j − 1)

∫ 1

0

uj−2

(

d

du

)n−2
[

un−1+1/α
(

1 − u1/α
)n]

du

= · · ·

= (−1)
j
j!

∫ 1

0

(

d

du

)n−j
[

un−1+1/α
(

1 − u1/α
)n]

du = 0,
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since n− j − 1 < n− 1 + 1/α.

Proof of Theorem 1(c), (d)
The confluence relation follows from (1) and (2). The contour integral
error formula is an immediate consequence of Cauchy’s integral formula
for derivatives and the Rodrigues formula (3).

Proof of Theorem 2(a)
A little manipulation of (8) gives

aj,n

aj−1,n
=
n− j + 1

j

n−1
∏

k=0

(

1 − 1

αk + n− j + 2

)

.

Then for large j, n such that j/n→ x ∈ (0, 1)

log
aj,n

aj−1,n
= log

1 − j/n

j/n
−

n−1
∑

k=0

1

αk + n− j + 2
+O

(

1

n

)

= log
1 − j/n

j/n
−
∫ n−1

0

1

αy + n− j + 2
dy +O

(

1

n

)

= log
1 − j/n

j/n
− 1

α
log

(

α (n− 1) + n− j + 2

n− j + 2

)

+O

(

1

n

)

→ log
1 − x

x
− 1

α
log

(

α+ 1 − x

1 − x

)

= log f (x) .

Proof of Theorem 2(b)
Note that for x ∈ (−1, 0) ,

f ′ (x)

f (x)
=

d

dx
log f (x)

= −
[

1

x
+

1 + 1
α

1 − x
−

1
α

1 + α− x

]

≤ −
[

1

x
+

1

1 − x

]

< 0,

so f is a strictly decreasing function that maps (0, 1) onto (0,∞). Thus
f [−1] is well defined in (0,∞) - and continuously differentiable. By Theo-
rem 1 of [1, p. 1598],

f [−1] (x) = −
∫ 0

−1

y

x− y
dF (y)

= H [g] (x) ,
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where
g (y) = πχ[−1,0] (y) yF

′ (y)

and χ denotes a characteristic function. By the invertibility relation

H [H [g]] = −g,

we then obtain
g = −H

[

f [−1]
]

,

and then (11) follows.
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