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Abstract. Let � be a positive measure on the real line, with associated or-
thogonal polynomials fpng and leading coe¢ cients fng. Let h 2 L1 (R) . We
prove that for n � 1 and all polynomials P of degree � 2n� 2,Z 1

�1

P (t)

p2n (t)
h

�
pn�1
pn

(t)

�
dt =

n�1
n

�Z 1

�1
h (t) dt

��Z
P (t) d� (t)

�
:

As a consequence, we establish weak convergence of the measures in the left-
hand side.

Orthogonal Polynomials on the real line, Geronimus type formula, Poisson inte-
grals 42C05

1. Introduction1

Let � be a positive measure on the real line with in�nitely many points in its
support, and

R
xjd� (x) �nite for j = 0; 1; 2; ::: . Then we may de�ne orthonormal

polynomials

pn (x) = nx
n + :::, n > 0;

satisfying Z 1

�1
pnpmd� = �mn:

Let

(1.1) Ln (x; y) =
n�1
n

(pn (x) pn�1 (y)� pn�1 (x) pn (y))

and for non-real a;

(1.2) En;a (z) =

s
2�

jLn (a; �a)j
Ln (�a; z) :

In a recent paper [6], we used the theory of de Branges spaces [1] to show that
for Im a > 0, and all polynomials P of degree � 2n� 2, we have

(1.3)
Z 1

�1

P (t)

jEn;a (t)j2
dt =

Z
P (t) d� (t) :

This may be regarded as an analogue of Geronimus� formula for the unit circle,
where instead of En;a, we have a multiple of the orthonormal polynomial on the
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2 D. S. LUBINSKY

unit circle in the denominator [3, Thm. V.2.2, p. 198], [8, p. 95, 955]. There is an
earlier real line analogue, due to Barry Simon [9, Theorem 2.1, p. 5], namely

1

�

Z 1

�1

P (t)�
n�1
n

�2
p2n (t) + p

2
n�1 (t)

dt =

Z
P (t) d� (t) :

Simon calls this a real line orthogonal polynomial analogue of Carmona�s formula
and refers also to earlier work of Krutikov and Remling [5] and Carmona [2]. The
latter is the special case of (1.3) with (pn�1=pn) (�a) = �in�1=n. In a subse-
quent paper, we gave a self contained proof of (1.3), and deduced results on weak
convergence, discrepancy, and Gauss quadrature.
In this paper, we �rst establish the following alternative form of (1.3):

Proposition 1.1
Let � be a positive measure on the real line with in�nitely many points in its sup-
port, and with

R
xjd� (x) �nite for j = 0; 1; 2; ::: . Let z 2 CnR. Then for all

polynomials P of degree � 2n� 2;

(1.4)
1

�
jIm zj

Z 1

�1

P (t)

jzpn (t)� pn�1 (t)j2
dt =

n�1
n

Z
P (t) d� (t) :

and

(1.5)
1

�
jIm zj

Z 1

�1

P (t)

jpn (t)� zpn�1 (t)j2
dt =

n�1
n

Z
P (t) d� (t) :

The factor involving z inside the integral above is essentially the Poisson kernel
for the upper-half plane. By using limiting properties of Poisson integrals, we de-
duce our main result, a new integral identity for orthogonal polynomials:

Theorem 1.2
Let � be a positive measure on the real line with in�nitely many points in its sup-
port, and with

R
xjd� (x) �nite for j = 0; 1; 2; ::: . Let fpng and fng denote

respectively, the orthogonal polynomials, and leading coe¢ cients corresponding to
�. Let h 2 L1 (R). Then for all polynomials P of degree � 2n� 2;

(1.6)
Z 1

�1

P (t)

pn (t)
2h

�
pn�1 (t)

pn (t)

�
dt =

n�1
n

�Z 1

�1
h (t) dt

��Z
P (t) d� (t)

�
:

and

(1.7)
Z 1

�1

P (t)

pn�1 (t)
2h

�
pn (t)

pn�1 (t)

�
dt =

n�1
n

�Z 1

�1
h (t) dt

��Z
P (t) d� (t)

�
:

Note that if we choose P = p2n�1 in (1.7), we obtain, if the denominator integral
is not 0;

n�1
n

=

R1
�1 h

�
pn(t)
pn�1(t)

�
dtR1

�1 h (t) dt
:

It might be possible to derive this special case in an alternative way - from the par-
tial fraction expansion of pn�1pn

(x) and known formulae for the distribution function,

meas
n
x : pn�1pn

(x) > t
o
. We may replace h (t) dt in (1.6) and (1.7) by a signed mea-

sure d� (t) of �nite total mass, provided one appropriately de�nes d�
�

pn(t)
pn�1(t)

�
over
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each interval in which pn(t)
pn�1(t)

is monotone. If we choose h (x) = log x�2

1�x2 ; in Theorem
1.2, we obtain an entropy type integral:

Corollary 1.3
With the notation of Theorem 1.2,

(1.8)
2

�2

Z 1

�1
P (t)

ln jpn�1 (t)j � ln jpn (t)j
pn�1 (t)

2 � pn (t)2
dt =

n�1
n

Z
P (t) d� (t) :

We also obtain a weak convergence type result: recall that � is said to be deter-
minate if the moment problemZ

xjd� (x) =

Z
xjd� (x) , j = 0; 1; 2; :::;

has the unique solution � = � from the class of positive measures. We also say a
function f has polynomial growth at 1 if for some L > 0 and for large enough jxj ;

jf (x)j � jxjL :

Theorem 1.4
Assume the hypotheses of Theorem 1.2, and in addition that � is determinate.
Then for all functions f : R ! R having polynomial growth at 1, and that are
Riemann-Stieltjes integrable with respect to �, we have
(1.9)

lim
n!1

�
n�1
n

��1 Z 1

�1

f (t)

pn (t)
2h

�
pn�1 (t)

pn (t)

�
dt =

�Z 1

�1
h (t) dt

��Z
f (t) d� (t)

�
;

and
(1.10)

lim
n!1

�
n�1
n

��1 Z 1

�1

f (t)

pn�1 (t)
2h

�
pn (t)

pn�1 (t)

�
dt =

�Z 1

�1
h (t) dt

��Z
f (t) d� (t)

�
:

Of course, if f is continuous on the real line, it will be locally Riemann-Stieltjes
integrable with respect to �. Simon [9] proved weak convergence involving his
Carmona type formula.

2. Proof of the results

Proof of Proposition 1.1
Fix z 2 CnR. Choose a 2 C such that

pn�1 (�a) = zpn (�a) :

There are n choices for a, counting multiplicity. Then from (1.1), we see that

Ln (�a; t) = �
n�1
n

pn (�a) (zpn (t)� pn�1 (t))

and

Ln (a; �a) = 2i
n�1
n

Im (z) jpn (a)j2 :
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Hence

jEn;a (t)j2 =
2�

jLn (a; �a)j
jLn (�a; t)j2

=
�

jIm zj
n�1
n

jzpn (t)� pn�1 (t)j2 :

Substituting into (1.3) gives (1.4), while replacing z by 1
z in (1.4), gives (1.5). �

Proof of (1.6) of Theorem 1.2
Step 1: A Poisson integral identity
Let z = x+ iy, where y > 0. We can recast (1.4) as

(2.1)
Z 1

�1
P (t)

1

�

y

(pn (t)x� pn�1 (t))2 + y2p2n (t)
dt =

n�1
n

Z
P (t) d� (t) :

Let h 2 L1 (R). We multiply (2.1) by h (x) ; integrate over the real line, and
interchange integrals, obtainingZ 1

�1
P (t)

"
1

�

Z 1

�1

yh (x)

(pn (t)x� pn�1 (t))2 + y2p2n (t)
dx

#
dt

=
n�1
n

�Z 1

�1
h (t) dt

��Z
P (t) d� (t)

�
:(2.2)

This is justi�ed, if the integral on the left converges absolutely, namely,

(2.3)
Z 1

�1

"Z 1

�1

jP (t)j jh (x)j
(pn (t)x� pn�1 (t))2 + y2p2n (t)

dx

#
dt <1:

To prove this, choose A such that all zeros of pn lie in (�A;A). Let

c = inf
t;x2R

h
(pn (t)x� pn�1 (t))2 + y2p2n (t)

i
:

This is positive as pn�1 and pn don�t have common zeros. Then we can bound the
left-hand side in (2.3) above byZ

jtj�A

jP (t)j
y2p2n (t)

�Z 1

�1
jh (x)j dx

�
dt

+

Z
jtj�A

jP (t)j
�Z 1

�1
jh (x)j dx

�
dt=c

< 1:

Thus (2.3) is valid. Recall that if h 2 L1 (R), its Poisson integral for the upper-half
plane is

P [h] (�+ i�) = 1

�

Z 1

�1

�

(x� �)2 + �2
h (x) dx:

We can recast (2.2) as
(2.4)Z 1

�1

P (t)

p2n (t)
P [h]

�
pn�1 (t)

pn (t)
+ iy

�
dt =

n�1
n

�Z 1

�1
h (t) dt

��Z
P (t) d� (t)

�
:
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Step 2: The case where h is bounded and has compact support
Firstly, as h is bounded, we have the elementary bound����P [h]�pn�1 (t)pn (t)

+ iy

����� � khkL1(R) ;
valid for all y and t. Next, if pn�1(t)pn(t)

is a Lebesgue point of h, we have the classic
result

(2.5) lim
y!0+

P [h]
�
pn�1 (t)

pn (t)
+ iy

�
= h

�
pn�1 (t)

pn (t)

�
:

Now, if u is not a Lebesgue point of h, (and such points have measure 0), the equa-
tion pn�1(t)

pn(t)
= u has at most n solutions for t, and locally these vary di¤erentiably

with u. It follows that (2.5) holds for a.e. t.

Let " > 0 and E" denote the union of n closed intervals of radius ", centered
on the zeros of pn. Since P (t) =p2n (t) = O

�
t�2
�
at 1, we may use Lebesgue�s

Dominated Convergence Theorem to deduce that

lim
y!0+

Z
RnE"

P (t)

p2n (t)
P [h]

�
pn�1 (t)

pn (t)
+ iy

�
dt

=

Z
RnE"

P (t)

p2n (t)
h

�
pn�1 (t)

pn (t)

�
dt:(2.6)

It remains to estimate

I";y =

Z
E"

P (t)

p2n (t)
P [h]

�
pn�1 (t)

pn (t)
+ iy

�
dt

and

I";0 =

Z
E"

P (t)

p2n (t)
h

�
pn�1 (t)

pn (t)

�
dt:

As pn�1 and pn have no common zeros, if " > 0 is small enough,

inf
E"
jpn�1j > 0:

Moreover, as h has compact support, we may choose " > 0 so small that for x in
the support of h and t 2 E", we have

jpn (t)x� pn�1 (t)j �
1

2
jpn�1 (t)j :

Then

jI";yj =

����� 1�
Z
E"

"Z 1

�1

P (t)h (x)

(pn (t)x� pn�1 (t))2 + y2p2n (t)
dx

#
dt

�����
� 1

�

Z
E"

"Z 1

�1

jP (t)j jh (x)j�
1
2 jpn�1 (t)j

�2 dx
#
dt

� 4

�
sup
t2E"

���� P (t)p2n�1 (t)

���� �Z 1

�1
jh (x)j dx

�Z
E"
1 dt:

This is a bound independent of y, and decreases to 0, as " decreases to 0. Finally,

if " > 0 is small enough h
�
pn�1(t)
pn(t)

�
= 0 for t 2 E", (recall h has compact support),
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so for such ";
I";0 = 0:

Combining the above, we obtain

lim
y!0+

Z 1

�1

P (t)

p2n (t)
P [h]

�
pn�1 (t)

pn (t)
+ iy

�
dt

=

Z 1

�1

P (t)

p2n (t)
h

�
pn�1 (t)

pn (t)

�
dt;(2.7)

and hence, from (2.4),

(2.8)
Z 1

�1

P (t)

p2n (t)
h

�
pn�1 (t)

pn (t)

�
dt =

n�1
n

�Z 1

�1
h (t) dt

��Z
P (t) d� (t)

�
:

Thus we have (1.6), for the case where h is bounded and has compact support.
Step 3 The case where h is bounded but has non-compact support
Let

hm = h�[�m;m]; m � 1:
We have (1.6) for hm, that is,

(2.9)
1

�

Z 1

�1

P (t)

pn (t)
2hm

�
pn�1 (t)

pn (t)

�
dt =

n�1
n

�Z 1

�1
hm

�Z
Pd�:

Now for each t with pn (t) 6= 0, and all large enough m;

hm

�
pn�1 (t)

pn (t)

�
= h

�
pn�1 (t)

pn (t)

�
:

Next, ����� P (t)pn (t)
2hm

�
pn�1 (t)

pn (t)

������ �
����� P (t)pn (t)

2h

�
pn�1 (t)

pn (t)

������ :
This upper bound is independent of m, and moreover is integrable over (�1;1),
since it is O

�
t�2
�
at 1, and has an integrable singularity at each zero of pn. To

see the latter, we proceed as follows. Let xjn be a zero of pn. We can write, in
(xjn; xjn + "], with small enough " > 0;

pn�1 (t)

pn (t)
=

g (t)

t� xjn
;

where g is non-vanishing and continuously di¤erentiable. If " > 0 is small enough,
we have for some appropriate constant C, and t 2 (xjn; xjn + "];����� P (t)pn (t)

2h

�
pn�1 (t)

pn (t)

������
� C

1

(t� xjn)2

����h� g (t)

t� xjn

�����
� C

�����g0 (t) (t� xjn)� g (t)(t� xjn)2

�����
����h� g (t)

t� xjn

�����
= C

���� ddt
�
g (t)

t� xjn

����� ����h� g (t)

t� xjn

����� :
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In the second last line, we use the fact that if " is small enough, jg (t)j >>
jg0 (t) (t� xjn)j, while jgj is bounded below. Then, if g (xjn) > 0, the substitu-
tion s = g(t)

t�xjn gives Z xjn+"

xjn

����� P (t)pn (t)
2h

�
pn�1 (t)

pn (t)

������ dt
� C

Z xjn+"

xjn

����h� g (t)

t� xjn

����� ���� ddt
�
g (t)

t� xjn

����� dt
= C

Z 1

g(xjn+")
"

jh (s)j ds � C
Z 1

�1
jh (s)j ds:

If g (xjn) < 0, we proceed similarly. Thus, indeed, the function
��� P (t)
pn(t)

2h
�
pn�1(t)
pn(t)

����
provides an integrable bound independent of m. Then Lebesgue�s Dominated Con-
vergence Theorem allows us to let m ! 1 in (2.9) to obtain (1.6) for the case
where h is bounded, but has non-compact support.
Step 4 The case where h is unbounded
Let us de�ne

Hm (t) =

�
h (t) ; if jh (t)j � m;
0; otherwise.

We have that (1.6) holds for h = Hm. Next, for each t with pn (t) 6= 0, and

h
�
pn�1(t)
pn(t)

�
�nite, and all large enough m;

Hm

�
pn�1 (t)

pn (t)

�
= h

�
pn�1 (t)

pn (t)

�
:

Moreover,
��� P (t)
pn(t)

2Hm

�
pn�1(t)
pn(t)

���� admits the same integrable bound as in Step 3.
Then Lebesgue�s Dominated Convergence Theorem gives the result. �

Proof of (1.7) of Theorem 1.2
For the given h, de�ne a new function ~h by

~h (x) = x�2h
�
x�1

�
:

A substitution shows that also ~h 2 L1 (R), and
1

p2n (t)
~h

�
pn�1 (t)

pn (t)

�
=

1

p2n�1 (t)
h

�
pn (t)

pn�1 (t)

�
:

So applying (1.6) to ~h, gives (1.7) for h. �

Proof of Corollary 1.3
Choose in (1.6) of Theorem 1.2,

h (x) =
log x�2

1� x2
which has h 2 L1 (R). Moreover, the fact that h is even and a substitution show
that [4, p. 533, 4.231.13] Z 1

�1
h = 8

Z 1

0

log x�1

1� x2 dx = �
2:
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�

Proof of Theorem 1.4
We may prove the result for non-negative h, because every h satisfying the hy-
potheses of Theorem 1.2 is the di¤erence of two non-negative functions satisfying
the same hypotheses. Let f be Riemann-Stieltjes integrable with respect to � and
of polynomial growth at1, and let " > 0. Since � is determinate, there exist upper
and lower polynomials Pu and P` such that

P` � f � Pu in (�1,1)
and Z

(Pu � P`) d� < ":

See, for example, [3, Theorem 3.3, p. 73]. Then for n so large that 2n� 2 exceeds
the degree of Pu and P`; (1.3) gives�

n�1
n

��1 Z 1

�1

f

p2n�1
h

�
pn
pn�1

�
�
Z
f d�

=

�
n�1
n

��1 Z 1

�1

f � P`
p2n�1

h

�
pn
pn�1

�
�
Z
(f � P` ) d�

�
�
n�1
n

��1 Z 1

�1

Pu � P`
p2n�1

h

�
pn
pn�1

�
� 0

=

Z
(Pu � P`) d� < ":

Similarly, for large enough n;�
n�1
n

��1 Z 1

�1

f

p2n�1
h

�
pn
pn�1

�
�
Z
f d�

=

�
n�1
n

��1 Z 1

�1

f � Pu
p2n�1

h

�
pn
pn�1

�
�
Z
(f � Pu ) d�

�
�
n�1
n

��1 Z 1

�1

P` � Pu
p2n�1

h

�
pn
pn�1

�
� 0

=

Z
(P` � Pu) d� > �":

�
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