NEW INTEGRAL IDENTITIES FOR ORTHOGONAL POLYNOMIALS ON THE REAL LINE

D. S. LUBINSKY

Abstract. Let μ be a positive measure on the real line, with associated or-
thogonal polynomials $\left\{p_{n}\right\}$ and leading coefficients $\left\{\gamma_{n}\right\}$. Let $h \in L_{1}(\mathbb{R})$. We
prove that for $n \geq 1$ and all polynomials P of degree $\leq 2 n-2$,

$$
\int_{-\infty}^{\infty} \frac{P(t)}{p_{n}^{2}(t)} h\left(\frac{p_{n-1}}{p_{n}}(t)\right) d t=\frac{\gamma_{n-1}}{\gamma_{n}}\left(\int_{-\infty}^{\infty} h(t) d t\right)\left(\int P(t) d \mu(t)\right) \text {. }
$$

As a consequence, we establish weak convergence of the measures in the lefthand side.
Orthogonal Polynomials on the real line, Geronimus type formula, Poisson integrals 42C05

1. Introduction ${ }^{1}$

Let μ be a positive measure on the real line with infinitely many points in its support, and $\int x^{j} d \mu(x)$ finite for $j=0,1,2, \ldots$. Then we may define orthonormal polynomials

$$
p_{n}(x)=\gamma_{n} x^{n}+\ldots, \gamma_{n}>0
$$

satisfying

$$
\int_{-\infty}^{\infty} p_{n} p_{m} d \mu=\delta_{m n}
$$

Let

$$
\begin{equation*}
L_{n}(x, y)=\frac{\gamma_{n-1}}{\gamma_{n}}\left(p_{n}(x) p_{n-1}(y)-p_{n-1}(x) p_{n}(y)\right) \tag{1.1}
\end{equation*}
$$

and for non-real a,

$$
\begin{equation*}
E_{n, a}(z)=\sqrt{\frac{2 \pi}{\left|L_{n}(a, \bar{a})\right|}} L_{n}(\bar{a}, z) \tag{1.2}
\end{equation*}
$$

In a recent paper [6], we used the theory of de Branges spaces [1] to show that for $\operatorname{Im} a>0$, and all polynomials P of degree $\leq 2 n-2$, we have

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{P(t)}{\left|E_{n, a}(t)\right|^{2}} d t=\int P(t) d \mu(t) \tag{1.3}
\end{equation*}
$$

This may be regarded as an analogue of Geronimus' formula for the unit circle, where instead of $E_{n, a}$, we have a multiple of the orthonormal polynomial on the
${ }^{1}$ Research supported by NSF grant DMS0700427 and US-Israel BSF grant 2008399
unit circle in the denominator [3, Thm. V.2.2, p. 198], [8, p. 95, 955]. There is an earlier real line analogue, due to Barry Simon [9, Theorem 2.1, p. 5], namely

$$
\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{P(t)}{\left(\frac{\gamma_{n-1}}{\gamma_{n}}\right)^{2} p_{n}^{2}(t)+p_{n-1}^{2}(t)} d t=\int P(t) d \mu(t)
$$

Simon calls this a real line orthogonal polynomial analogue of Carmona's formula and refers also to earlier work of Krutikov and Remling [5] and Carmona [2]. The latter is the special case of (1.3) with $\left(p_{n-1} / p_{n}\right)(\bar{a})= \pm i \gamma_{n-1} / \gamma_{n}$. In a subsequent paper, we gave a self contained proof of (1.3), and deduced results on weak convergence, discrepancy, and Gauss quadrature.

In this paper, we first establish the following alternative form of (1.3):

Proposition 1.1

Let μ be a positive measure on the real line with infinitely many points in its support, and with $\int x^{j} d \mu(x)$ finite for $j=0,1,2, \ldots$. Let $z \in \mathbb{C} \backslash \mathbb{R}$. Then for all polynomials P of degree $\leq 2 n-2$,

$$
\begin{equation*}
\frac{1}{\pi}|\operatorname{Im} z| \int_{-\infty}^{\infty} \frac{P(t)}{\left|z p_{n}(t)-p_{n-1}(t)\right|^{2}} d t=\frac{\gamma_{n-1}}{\gamma_{n}} \int P(t) d \mu(t) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\pi}|\operatorname{Im} z| \int_{-\infty}^{\infty} \frac{P(t)}{\left|p_{n}(t)-z p_{n-1}(t)\right|^{2}} d t=\frac{\gamma_{n-1}}{\gamma_{n}} \int P(t) d \mu(t) \tag{1.5}
\end{equation*}
$$

The factor involving z inside the integral above is essentially the Poisson kernel for the upper-half plane. By using limiting properties of Poisson integrals, we deduce our main result, a new integral identity for orthogonal polynomials:

Theorem 1.2

Let μ be a positive measure on the real line with infinitely many points in its support, and with $\int x^{j} d \mu(x)$ finite for $j=0,1,2, \ldots$. Let $\left\{p_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ denote respectively, the orthogonal polynomials, and leading coefficients corresponding to μ. Let $h \in L_{1}(\mathbb{R})$. Then for all polynomials P of degree $\leq 2 n-2$,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{P(t)}{p_{n}(t)^{2}} h\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right) d t=\frac{\gamma_{n-1}}{\gamma_{n}}\left(\int_{-\infty}^{\infty} h(t) d t\right)\left(\int P(t) d \mu(t)\right) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{P(t)}{p_{n-1}(t)^{2}} h\left(\frac{p_{n}(t)}{p_{n-1}(t)}\right) d t=\frac{\gamma_{n-1}}{\gamma_{n}}\left(\int_{-\infty}^{\infty} h(t) d t\right)\left(\int P(t) d \mu(t)\right) \tag{1.7}
\end{equation*}
$$

Note that if we choose $P=p_{n-1}^{2}$ in (1.7), we obtain, if the denominator integral is not 0 ,

$$
\frac{\gamma_{n-1}}{\gamma_{n}}=\frac{\int_{-\infty}^{\infty} h\left(\frac{p_{n}(t)}{p_{n-1}(t)}\right) d t}{\int_{-\infty}^{\infty} h(t) d t}
$$

It might be possible to derive this special case in an alternative way - from the partial fraction expansion of $\frac{p_{n-1}}{p_{n}}(x)$ and known formulae for the distribution function, meas $\left\{x: \frac{p_{n-1}}{p_{n}}(x)>t\right\}$. We may replace $h(t) d t$ in (1.6) and (1.7) by a signed measure $d \nu(t)$ of finite total mass, provided one appropriately defines $d \nu\left(\frac{p_{n}(t)}{p_{n-1}(t)}\right)$ over
each interval in which $\frac{p_{n}(t)}{p_{n-1}(t)}$ is monotone. If we choose $h(x)=\frac{\log x^{-2}}{1-x^{2}}$, in Theorem 1.2, we obtain an entropy type integral:

Corollary 1.3

With the notation of Theorem 1.2,

$$
\begin{equation*}
\frac{2}{\pi^{2}} \int_{-\infty}^{\infty} P(t) \frac{\ln \left|p_{n-1}(t)\right|-\ln \left|p_{n}(t)\right|}{p_{n-1}(t)^{2}-p_{n}(t)^{2}} d t=\frac{\gamma_{n-1}}{\gamma_{n}} \int P(t) d \mu(t) \tag{1.8}
\end{equation*}
$$

We also obtain a weak convergence type result: recall that μ is said to be determinate if the moment problem

$$
\int x^{j} d \nu(x)=\int x^{j} d \mu(x), j=0,1,2, \ldots
$$

has the unique solution $\nu=\mu$ from the class of positive measures. We also say a function f has polynomial growth at ∞ if for some $L>0$ and for large enough $|x|$,

$$
|f(x)| \leq|x|^{L}
$$

Theorem 1.4

Assume the hypotheses of Theorem 1.2, and in addition that μ is determinate. Then for all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ having polynomial growth at ∞, and that are Riemann-Stieltjes integrable with respect to μ, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\frac{\gamma_{n-1}}{\gamma_{n}}\right)^{-1} \int_{-\infty}^{\infty} \frac{f(t)}{p_{n}(t)^{2}} h\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right) d t=\left(\int_{-\infty}^{\infty} h(t) d t\right)\left(\int f(t) d \mu(t)\right) \tag{1.9}
\end{equation*}
$$

and
$\lim _{n \rightarrow \infty}\left(\frac{\gamma_{n-1}}{\gamma_{n}}\right)^{-1} \int_{-\infty}^{\infty} \frac{f(t)}{p_{n-1}(t)^{2}} h\left(\frac{p_{n}(t)}{p_{n-1}(t)}\right) d t=\left(\int_{-\infty}^{\infty} h(t) d t\right)\left(\int f(t) d \mu(t)\right)$.
Of course, if f is continuous on the real line, it will be locally Riemann-Stieltjes integrable with respect to μ. Simon [9] proved weak convergence involving his Carmona type formula.

2. Proof of the results

Proof of Proposition 1.1

Fix $z \in \mathbb{C} \backslash \mathbb{R}$. Choose $a \in \mathbb{C}$ such that

$$
p_{n-1}(\bar{a})=z p_{n}(\bar{a}) .
$$

There are n choices for a, counting multiplicity. Then from (1.1), we see that

$$
L_{n}(\bar{a}, t)=-\frac{\gamma_{n-1}}{\gamma_{n}} p_{n}(\bar{a})\left(z p_{n}(t)-p_{n-1}(t)\right)
$$

and

$$
L_{n}(a, \bar{a})=2 i \frac{\gamma_{n-1}}{\gamma_{n}} \operatorname{Im}(z)\left|p_{n}(a)\right|^{2}
$$

Hence

$$
\begin{aligned}
\left|E_{n, a}(t)\right|^{2} & =\frac{2 \pi}{\left|L_{n}(a, \bar{a})\right|}\left|L_{n}(\bar{a}, t)\right|^{2} \\
& =\frac{\pi}{|\operatorname{Im} z|} \frac{\gamma_{n-1}}{\gamma_{n}}\left|z p_{n}(t)-p_{n-1}(t)\right|^{2}
\end{aligned}
$$

Substituting into (1.3) gives (1.4), while replacing z by $\frac{1}{z}$ in (1.4), gives (1.5).
Proof of (1.6) of Theorem 1.2

Step 1: A Poisson integral identity

Let $z=x+i y$, where $y>0$. We can recast (1.4) as

$$
\begin{equation*}
\int_{-\infty}^{\infty} P(t) \frac{1}{\pi} \frac{y}{\left(p_{n}(t) x-p_{n-1}(t)\right)^{2}+y^{2} p_{n}^{2}(t)} d t=\frac{\gamma_{n-1}}{\gamma_{n}} \int P(t) d \mu(t) \tag{2.1}
\end{equation*}
$$

Let $h \in L_{1}(\mathbb{R})$. We multiply (2.1) by $h(x)$, integrate over the real line, and interchange integrals, obtaining

$$
\begin{align*}
& \int_{-\infty}^{\infty} P(t)\left[\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y h(x)}{\left(p_{n}(t) x-p_{n-1}(t)\right)^{2}+y^{2} p_{n}^{2}(t)} d x\right] d t \\
= & \frac{\gamma_{n-1}}{\gamma_{n}}\left(\int_{-\infty}^{\infty} h(t) d t\right)\left(\int P(t) d \mu(t)\right) \tag{2.2}
\end{align*}
$$

This is justified, if the integral on the left converges absolutely, namely,

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} \frac{|P(t)||h(x)|}{\left(p_{n}(t) x-p_{n-1}(t)\right)^{2}+y^{2} p_{n}^{2}(t)} d x\right] d t<\infty \tag{2.3}
\end{equation*}
$$

To prove this, choose A such that all zeros of p_{n} lie in $(-A, A)$. Let

$$
c=\inf _{t, x \in \mathbb{R}}\left[\left(p_{n}(t) x-p_{n-1}(t)\right)^{2}+y^{2} p_{n}^{2}(t)\right]
$$

This is positive as p_{n-1} and p_{n} don't have common zeros. Then we can bound the left-hand side in (2.3) above by

$$
\begin{aligned}
& \int_{|t| \geq A} \frac{|P(t)|}{y^{2} p_{n}^{2}(t)}\left(\int_{-\infty}^{\infty}|h(x)| d x\right) d t \\
& +\int_{|t| \leq A}|P(t)|\left(\int_{-\infty}^{\infty}|h(x)| d x\right) d t / c \\
< & \infty
\end{aligned}
$$

Thus (2.3) is valid. Recall that if $h \in L_{1}(\mathbb{R})$, its Poisson integral for the upper-half plane is

$$
\mathcal{P}[h](\alpha+i \beta)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\beta}{(x-\alpha)^{2}+\beta^{2}} h(x) d x
$$

We can recast (2.2) as

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{P(t)}{p_{n}^{2}(t)} \mathcal{P}[h]\left(\frac{p_{n-1}(t)}{p_{n}(t)}+i y\right) d t=\frac{\gamma_{n-1}}{\gamma_{n}}\left(\int_{-\infty}^{\infty} h(t) d t\right)\left(\int P(t) d \mu(t)\right) \tag{2.4}
\end{equation*}
$$

Step 2: The case where h is bounded and has compact support
Firstly, as h is bounded, we have the elementary bound

$$
\left|\mathcal{P}[h]\left(\frac{p_{n-1}(t)}{p_{n}(t)}+i y\right)\right| \leq\|h\|_{L_{\infty}(\mathbb{R})}
$$

valid for all y and t. Next, if $\frac{p_{n-1}(t)}{p_{n}(t)}$ is a Lebesgue point of h, we have the classic result

$$
\begin{equation*}
\lim _{y \rightarrow 0+} \mathcal{P}[h]\left(\frac{p_{n-1}(t)}{p_{n}(t)}+i y\right)=h\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right) . \tag{2.5}
\end{equation*}
$$

Now, if u is not a Lebesgue point of h, (and such points have measure 0), the equation $\frac{p_{n-1}(t)}{p_{n}(t)}=u$ has at most n solutions for t, and locally these vary differentiably with u. It follows that (2.5) holds for a.e. t.

Let $\varepsilon>0$ and $\mathcal{E}_{\varepsilon}$ denote the union of n closed intervals of radius ε, centered on the zeros of p_{n}. Since $P(t) / p_{n}^{2}(t)=O\left(t^{-2}\right)$ at ∞, we may use Lebesgue's Dominated Convergence Theorem to deduce that

$$
\begin{align*}
& \lim _{y \rightarrow 0+} \int_{\mathbb{R} \backslash \mathcal{E}_{\varepsilon}} \frac{P(t)}{p_{n}^{2}(t)} \mathcal{P}[h]\left(\frac{p_{n-1}(t)}{p_{n}(t)}+i y\right) d t \\
= & \int_{\mathbb{R} \backslash \mathcal{E}_{\varepsilon}} \frac{P(t)}{p_{n}^{2}(t)} h\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right) d t . \tag{2.6}
\end{align*}
$$

It remains to estimate

$$
I_{\varepsilon, y}=\int_{\mathcal{E}_{\varepsilon}} \frac{P(t)}{p_{n}^{2}(t)} \mathcal{P}[h]\left(\frac{p_{n-1}(t)}{p_{n}(t)}+i y\right) d t
$$

and

$$
I_{\varepsilon, 0}=\int_{\mathcal{E}_{\varepsilon}} \frac{P(t)}{p_{n}^{2}(t)} h\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right) d t
$$

As p_{n-1} and p_{n} have no common zeros, if $\varepsilon>0$ is small enough,

$$
\inf _{\mathcal{E}_{\varepsilon}}\left|p_{n-1}\right|>0
$$

Moreover, as h has compact support, we may choose $\varepsilon>0$ so small that for x in the support of h and $t \in \mathcal{E}_{\varepsilon}$, we have

$$
\left|p_{n}(t) x-p_{n-1}(t)\right| \geq \frac{1}{2}\left|p_{n-1}(t)\right| .
$$

Then

$$
\begin{aligned}
\left|I_{\varepsilon, y}\right| & =\left|\frac{1}{\pi} \int_{\mathcal{E}_{\varepsilon}}\left[\int_{-\infty}^{\infty} \frac{P(t) h(x)}{\left(p_{n}(t) x-p_{n-1}(t)\right)^{2}+y^{2} p_{n}^{2}(t)} d x\right] d t\right| \\
& \leq \frac{1}{\pi} \int_{\mathcal{E}_{\varepsilon}}\left[\int_{-\infty}^{\infty} \frac{|P(t)||h(x)|}{\left(\frac{1}{2}\left|p_{n-1}(t)\right|\right)^{2}} d x\right] d t \\
& \leq \frac{4}{\pi} \sup _{t \in \mathcal{E}_{\varepsilon}}\left|\frac{P(t)}{p_{n-1}^{2}(t)}\right|\left(\int_{-\infty}^{\infty}|h(x)| d x\right) \int_{\mathcal{E}_{\varepsilon}} 1 d t .
\end{aligned}
$$

This is a bound independent of y, and decreases to 0 , as ε decreases to 0 . Finally, if $\varepsilon>0$ is small enough $h\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right)=0$ for $t \in \mathcal{E}_{\varepsilon}$, (recall h has compact support),
so for $\operatorname{such} \varepsilon$,

$$
I_{\varepsilon, 0}=0
$$

Combining the above, we obtain

$$
\begin{align*}
& \lim _{y \rightarrow 0+} \int_{-\infty}^{\infty} \frac{P(t)}{p_{n}^{2}(t)} \mathcal{P}[h]\left(\frac{p_{n-1}(t)}{p_{n}(t)}+i y\right) d t \\
= & \int_{-\infty}^{\infty} \frac{P(t)}{p_{n}^{2}(t)} h\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right) d t, \tag{2.7}
\end{align*}
$$

and hence, from (2.4),

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{P(t)}{p_{n}^{2}(t)} h\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right) d t=\frac{\gamma_{n-1}}{\gamma_{n}}\left(\int_{-\infty}^{\infty} h(t) d t\right)\left(\int P(t) d \mu(t)\right) \tag{2.8}
\end{equation*}
$$

Thus we have (1.6), for the case where h is bounded and has compact support.
Step 3 The case where h is bounded but has non-compact support
Let

$$
h_{m}=h \chi_{[-m, m]}, m \geq 1
$$

We have (1.6) for h_{m}, that is,

$$
\begin{equation*}
\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{P(t)}{p_{n}(t)^{2}} h_{m}\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right) d t=\frac{\gamma_{n-1}}{\gamma_{n}}\left(\int_{-\infty}^{\infty} h_{m}\right) \int P d \mu \tag{2.9}
\end{equation*}
$$

Now for each t with $p_{n}(t) \neq 0$, and all large enough m,

$$
h_{m}\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right)=h\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right) .
$$

Next,

$$
\left|\frac{P(t)}{p_{n}(t)^{2}} h_{m}\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right)\right| \leq\left|\frac{P(t)}{p_{n}(t)^{2}} h\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right)\right| .
$$

This upper bound is independent of m, and moreover is integrable over $(-\infty, \infty)$, since it is $O\left(t^{-2}\right)$ at ∞, and has an integrable singularity at each zero of p_{n}. To see the latter, we proceed as follows. Let $x_{j n}$ be a zero of p_{n}. We can write, in $\left(x_{j n}, x_{j n}+\varepsilon\right]$, with small enough $\varepsilon>0$,

$$
\frac{p_{n-1}(t)}{p_{n}(t)}=\frac{g(t)}{t-x_{j n}}
$$

where g is non-vanishing and continuously differentiable. If $\varepsilon>0$ is small enough, we have for some appropriate constant C, and $t \in\left(x_{j n}, x_{j n}+\varepsilon\right]$,

$$
\begin{aligned}
& \left|\frac{P(t)}{p_{n}(t)^{2}} h\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right)\right| \\
\leq & C \frac{1}{\left(t-x_{j n}\right)^{2}}\left|h\left(\frac{g(t)}{t-x_{j n}}\right)\right| \\
\leq & C\left|\frac{g^{\prime}(t)\left(t-x_{j n}\right)-g(t)}{\left(t-x_{j n}\right)^{2}}\right|\left|h\left(\frac{g(t)}{t-x_{j n}}\right)\right| \\
= & C\left|\frac{d}{d t}\left(\frac{g(t)}{t-x_{j n}}\right)\right|\left|h\left(\frac{g(t)}{t-x_{j n}}\right)\right|
\end{aligned}
$$

In the second last line, we use the fact that if ε is small enough, $|g(t)| \gg$ $\left|g^{\prime}(t)\left(t-x_{j n}\right)\right|$, while $|g|$ is bounded below. Then, if $g\left(x_{j n}\right)>0$, the substitution $s=\frac{g(t)}{t-x_{j n}}$ gives

$$
\begin{aligned}
& \int_{x_{j n}}^{x_{j n}+\varepsilon}\left|\frac{P(t)}{p_{n}(t)^{2}} h\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right)\right| d t \\
\leq & C \int_{x_{j n}}^{x_{j n}+\varepsilon}\left|h\left(\frac{g(t)}{t-x_{j n}}\right)\right|\left|\frac{d}{d t}\left(\frac{g(t)}{t-x_{j n}}\right)\right| d t \\
= & C \int_{\frac{g\left(x_{j n}+\varepsilon\right)}{\varepsilon}}^{\infty}|h(s)| d s \leq C \int_{-\infty}^{\infty}|h(s)| d s .
\end{aligned}
$$

If $g\left(x_{j n}\right)<0$, we proceed similarly. Thus, indeed, the function $\left|\frac{P(t)}{p_{n}(t)^{2}} h\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right)\right|$ provides an integrable bound independent of m. Then Lebesgue's Dominated Convergence Theorem allows us to let $m \rightarrow \infty$ in (2.9) to obtain (1.6) for the case where h is bounded, but has non-compact support.

Step 4 The case where h is unbounded

Let us define

$$
H_{m}(t)=\left\{\begin{array}{cc}
h(t), & \text { if }|h(t)| \leq m \\
0, & \text { otherwise }
\end{array}\right.
$$

We have that (1.6) holds for $h=H_{m}$. Next, for each t with $p_{n}(t) \neq 0$, and $h\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right)$ finite, and all large enough m,

$$
H_{m}\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right)=h\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right) .
$$

Moreover, $\left|\frac{P(t)}{p_{n}(t)^{2}} H_{m}\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right)\right|$ admits the same integrable bound as in Step 3. Then Lebesgue's Dominated Convergence Theorem gives the result.

Proof of (1.7) of Theorem 1.2

For the given h, define a new function \tilde{h} by

$$
\tilde{h}(x)=x^{-2} h\left(x^{-1}\right) .
$$

A substitution shows that also $\tilde{h} \in L_{1}(\mathbb{R})$, and

$$
\frac{1}{p_{n}^{2}(t)} \tilde{h}\left(\frac{p_{n-1}(t)}{p_{n}(t)}\right)=\frac{1}{p_{n-1}^{2}(t)} h\left(\frac{p_{n}(t)}{p_{n-1}(t)}\right) .
$$

So applying (1.6) to \tilde{h}, gives (1.7) for h.

Proof of Corollary 1.3

Choose in (1.6) of Theorem 1.2,

$$
h(x)=\frac{\log x^{-2}}{1-x^{2}}
$$

which has $h \in L_{1}(\mathbb{R})$. Moreover, the fact that h is even and a substitution show that [4, p. 533, 4.231.13]

$$
\int_{-\infty}^{\infty} h=8 \int_{0}^{1} \frac{\log x^{-1}}{1-x^{2}} d x=\pi^{2}
$$

Proof of Theorem 1.4

We may prove the result for non-negative h, because every h satisfying the hypotheses of Theorem 1.2 is the difference of two non-negative functions satisfying the same hypotheses. Let f be Riemann-Stieltjes integrable with respect to μ and of polynomial growth at ∞, and let $\varepsilon>0$. Since μ is determinate, there exist upper and lower polynomials P_{u} and P_{ℓ} such that

$$
P_{\ell} \leq f \leq P_{u} \text { in }(-\infty, \infty)
$$

and

$$
\int\left(P_{u}-P_{\ell}\right) d \mu<\varepsilon
$$

See, for example, [3, Theorem 3.3, p. 73]. Then for n so large that $2 n-2$ exceeds the degree of P_{u} and $P_{\ell},(1.3)$ gives

$$
\begin{aligned}
& \left(\frac{\gamma_{n-1}}{\gamma_{n}}\right)^{-1} \int_{-\infty}^{\infty} \frac{f}{p_{n-1}^{2}} h\left(\frac{p_{n}}{p_{n-1}}\right)-\int f d \mu \\
= & \left(\frac{\gamma_{n-1}}{\gamma_{n}}\right)^{-1} \int_{-\infty}^{\infty} \frac{f-P_{\ell}}{p_{n-1}^{2}} h\left(\frac{p_{n}}{p_{n-1}}\right)-\int\left(f-P_{\ell}\right) d \mu \\
\leq & \left(\frac{\gamma_{n-1}}{\gamma_{n}}\right)^{-1} \int_{-\infty}^{\infty} \frac{P_{u}-P_{\ell}}{p_{n-1}^{2}} h\left(\frac{p_{n}}{p_{n-1}}\right)-0 \\
= & \int\left(P_{u}-P_{\ell}\right) d \mu<\varepsilon
\end{aligned}
$$

Similarly, for large enough n,

$$
\begin{aligned}
& \left(\frac{\gamma_{n-1}}{\gamma_{n}}\right)^{-1} \int_{-\infty}^{\infty} \frac{f}{p_{n-1}^{2}} h\left(\frac{p_{n}}{p_{n-1}}\right)-\int f d \mu \\
= & \left(\frac{\gamma_{n-1}}{\gamma_{n}}\right)^{-1} \int_{-\infty}^{\infty} \frac{f-P_{u}}{p_{n-1}^{2}} h\left(\frac{p_{n}}{p_{n-1}}\right)-\int\left(f-P_{u}\right) d \mu \\
\geq & \left(\frac{\gamma_{n-1}}{\gamma_{n}}\right)^{-1} \int_{-\infty}^{\infty} \frac{P_{\ell}-P_{u}}{p_{n-1}^{2}} h\left(\frac{p_{n}}{p_{n-1}}\right)-0 \\
= & \int\left(P_{\ell}-P_{u}\right) d \mu>-\varepsilon .
\end{aligned}
$$

References

[1] L. de Branges, Hilbert Spaces of Entire Functions, Prentice Hall, New Jersey, 1968.
[2] R. Carmona, One-dimensional Schrödinger operators with random or deterministic potentials: New spectral types, J. Funct. Anal. 51 (1983), 229-258.
[3] G. Freud, Orthogonal Polynomials, Pergamon Press/ Akademiai Kiado, Budapest, 1971.
[4] I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, New York, 1980.
[5] D. Krutikov, Denis, C. Remling, Schrödinger operators with sparse potentials: asymptotics of the Fourier transform of the spectral measure, Comm. Math. Phys. 223 (2001), 509-532.
[6] D.S. Lubinsky, Universality Limits for Random Matrices and de Branges Spaces of Entire Functions, Journal of Functional Analysis, 256(2009), 3688-3729.
[7] D.S. Lubinsky, Applications of New Geronimus Type Identities for Real Orthogonal Polynomials, Proc. Amer. Math. Soc., 138 (2010), 2125-2134.
[8] B. Simon, Orthogonal Polynomials on the Unit Circle, Parts 1 and 2, American Mathematical Society, Providence, 2005.
[9] B. Simon, Orthogonal Polynomials with Exponentially Decaying Recursion Coefficients, (in) Probability and Mathematical Physics (eds. D. Dawson, V. Jaksic and B. Vainberg), CRM Proc. and Lecture Notes 42 (2007), 453-463.

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA., LUBINSKY@MATH.GATECH.EDU

