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Abstract

Let � be a compactly suppported positive measure on the real line. A
point x 2supp[�] is said to be �-regular, if, as n!1;

sup
deg(P )�n

 
jP (x)j

kPkL2(d�)

!1=n
! 1:

Otherwise it is a �-irregular point. We show that for any such measure,
the set of �-irregular points in f�0 > 0g (with a suitable de�nition of this
set) has Hausdor¤mh� measure 0, for h� (t) =

�
log 1

t

���
, any � > 1.

Orthogonal Polynomials on the real line, regular measures, irregular points

1 Introduction1

Let � be a positive measure on the real line, with compact support supp[�],
and in�nitely many points in its support. � is said to be regular in the sense of
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Stahl, Totik, and Ullman, or just regular, [9, p. 68] if

lim
n!1

 
sup

deg(P )�n

jP (x)j
kPkL2(d�)

!1=n
� 1;

q.e. in supp[�]. Here q.e. (quasi-everywhere) means except on a set of logarith-
mic capacity 0, while

kPkL2(d�) =
�Z

jP j2 d�
�1=2

:

This should not be confused with the notion of a regular Borel measure. Regular
measures play an important role in asymptotics of orthogonal polynomials, and
in questions of weighted approximation. See the comprehensive monograph
[9], and also [5], [6], [7], [10], [11]. Regular measures are those that permit
localization of a whole host of properties.
In the monograph [9, p. 140], local and pointwise regularity are also inves-

tigated. We say that x 2supp[�] is a �-regular point (or, regular point for �)
if

lim
n!1

 
sup

deg(P )�n

jP (x)j
kPkL2(d�)

!1=n
= 1: (1)

Otherwise x is a �-irregular point. It is known [9, p, 140] that � is regular i¤ the
set of �-irregular points in the support has logarithmic capacity 0. Of course,
this should not be confused with points that are irregular for the Dirichlet
problem in classical potential theory.
Notice that since the polynomial P = 1 is included in the sup, the left-hand

side of (1) is � 1. Thus x is a �-irregular point i¤

lim sup
n!1

 
sup

deg(P )�n

jP (x)j
kPkL2(d�)

!1=n
> 1:

This is easily formulated in terms of orthogonal polynomials. Let fpng denote
the orthonormal polynomials for �, so thatZ

pnpmd� = �mn:

De�ne the reproducing kernels

Kn (x; t) =
n�1X
j=0

pj (x) pj (t) :

It is an easy consequence of Cauchy-Schwarz�inequality, that for any polynomial
P (x) of degree � n� 1, we have

P 2 (x) � Kn (x; x)

Z
P 2d�:
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In fact,

Kn (x; x) = sup
deg(P )�n�1

P 2 (x)R
P 2d�

;

the polynomial P attaining the supremum is P (t) = Kn (x; t). We thus see that
x is a �-regular point i¤

lim
n!1

Kn (x; x)
1=n

= 1:

In turn, since Kn (x; x) increases with n, x is �-regular i¤

lim
j!1

K2j (x; x)
1=2j

= 1: (2)

We shall show that the set of �-irregular points is thin, and "almost" has loga-
rithmic capacity 0, in the sense of Hausdor¤ measures. Let h : [0;1)! [0;1]
be an increasing right-continuous function that has limit 0 at 0. Given E � R,
its Hausdor¤ outer mh measure is

mh (E) = inf

8<:
1X
j=1

h (meas (Ij)) : E �
[
j

Ij

9=; ;
where the inf is taken over all coverings of E by intervals fIjg with lengths
fmeas (Ij)g. For h (t) = t�; � > 0, this leads to ��dimensional Hausdor¤
measure. For � > 0;

h� (t) =

� �
log 1t

���
; t 2 (0; 1)

1; t � 1;

we obtain ��logarithmic Hausdor¤ measure. Note that if for some � > 0;

mh� (E) = 0

then E has ��dimensional Hausdor¤measure 0 for all � > 0. When � = 1, this
in addition implies that E has logarithmic capacity 0 [1, p. 28], [2]. Even a set
of ���nite mh1 measure has zero logarithmic capacity. Roughly speaking, if a
set has mh� measure 0 for all � > 1, it is close to having logarithmic capacity
0, but not quite of logarithmic capacity 0:
Now

f�0 > 0g = fx : �0 (x) > 0g

is a Lebesgue measurable set that is unique only up to a set of linear Lebesgue
measure 0. In de�ning this set, we use the absolutely continuous component
�ac of �. We say that x 2 f�0 > 0g i¤

�0ac (x) = lim
meas(I)!0;I3x

�ac (I)

meas (I)
> 0;
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where the limit is taken over intervals I. This ensures that for all x 2 f�0 > 0g,
we have

lim inf
meas(I)!0;I3x

� (I)

meas (I)
> 0; (3)

for the left-hand side of (3) is bounded below by �0ac (x).

Theorem 1.1
Assume that � is a compactly supported measure on the real line. Then the set
of �-irregular points in f�0 > 0g has mh� measure 0 for all � > 1.

Remarks
(a) It seems unlikely that the set of irregular points can have zero capacity in
f�0 > 0g for irregular measures. It certainly cannot be of zero capacity in the
larger set supp[�], for otherwise � is regular [9, p. 140].
(b) If the set of irregular points in f�0 > 0g has �nite (or even �-�nite) mh1

measure, then it has zero capacity by a result of Kametani [1, p. 28], [2], and
again, this is not possible in the larger set supp[�], unless � is regular.
(c) In a similar vein, any compact set E of �nite positive (or ���nite) mh1

measure will have zero capacity. It is possible to construct regular measures
that have E as their set of irregular points [12]. This again suggests that one
cannot expect mh1 measure 0 in Theorem 1.1.
(d) Let h : [0;1)! [0;1] be an increasing right continuous function such that
for each " > 0; X

j

2jh
�
e�"2

j
�
<1:

Then the same proof shows that the set of �-irregular points has Hausdor¤mh

measure 0. As an example, we can let � > 1;

h (t) =

�
log

1

t

��1
(log log

1

t
)��

for t 2 [0; e�e], and de�ne h to be constant in [e�e;1).
Theorem 1.1 is a special case of:

Theorem 1.2
Let A � 1. Assume that � is a compactly supported measure on the real line.
Let F be the set of points x satisfying

lim inf
meas(I)!0;I3x

� (I)

(meas (I))
A
> 0; (4)

the limit being taken over intervals I. Then the set of �-irregular points in F
has h��measure 0 for all � > 1.
Note that the condition (4) holds at every point mass of the measure �, with

A = 1, and can hold in sets where � is singularly continuous. Theorem 1.2
easily yields a result reminiscent of Criterion � for regularity of Stahl and Totik
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[9, p. 108]:

Theorem 1.3
Assume that � is a compactly supported measure on the real line. Let F be the
set of points x satisfying

lim sup
meas(I)!0;I3x

���� log� (I)

logmeas (I)

���� <1: (5)

Then the set of �-irregular points in F has h��measure 0 for all � > 1.
The condition (2) asserts subexponential growth of Kn (x; x). For slower

sorts of growth of Kn, the exceptional set is of course larger. Let f�jg be a
decreasing sequence of positive numbers with

P
j �j < 1. Then it is easily

proven that for a.e. x 2 f�0 > 0g,

lim
n!1

�[log2 n]

n
Kn (x; x) = 0:

Here [x] denotes the greatest integer � x. A much more di¢ cult question is
whether

lim sup
n!1

1

n
Kn (x; x) <1

for a.e. x 2 f�0 > 0g or even in subintervals of this set, even when we impose
additional conditions such as regularity of the measure �, and a local condition
- see the work of Totik [10], [11] and Simon [8].

Acknowledgement
We acknowledge the comments of Vilmos Totik that substantially improved the
formulations of results, and presentation of, the paper.

2 Proofs

Proof of Theorem 1.2
Step 1: Reduction to a special case
Fix � > 1, positive integers `;m, and let G = G (`;m) denote the set of points
x in F such that

x 2 I and 0 < meas (I) � 1

m
) � (I)

(meas (I))
A
>
1

`
: (6)

Since
F =

[
`;m

G (`;m)

is a countable union, it su¢ ces to show that mh� (G (`;m)) = 0 for a single `;m.
So in the sequel, we �x `;m and let G = G (`;m).
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Step 2: The set En on which Kn is large
Next let � > 0 and

En = ft : Kn (t; t) > e
�ng : (7)

As Kn (t; t) is a polynomial of degree 2n � 2, the equation Kn (t; t) � e�n = 0
has at most 2n� 2 roots. Then En consists of at most n disjoint open intervals
fInjg. Write

En =
[
j

Inj : (8)

We have

� (En) e
�n �

Z
En

Kn (t; t) d� (t) � n;

so
� (En) � ne��n: (9)

Step 3: Divide Inj into disjoint intervals of equal length � 1
m

Fix j, and divide Inj into �nitely many, but as few as possible, disjoint open or
half open intervals fJnjkg of equal length, subject to the restriction

meas (Jnjk) �
1

m
: (10)

Clearly if meas (Inj) � 1
m , there will be one interval Jnjk for the given n and

j. Otherwise, there will be at most meas (Inj)m + 1 such intervals. If there
is more than one Jnjk, the rightmost interval will have form (c; d), and the rest
will all have form (c; d].

Let
n
J�njk

o
denote that subset of fJnjkg which have non-empty intersection

with G. Then the intervals
n
J�njk

o
cover Inj \G. Moreover, each x 2 Inj can

lie in at most three of the J�njk. ThenX
k

�
�
J�njk

�
� 3� (Inj) ;

while (6) gives X
k

�
�
J�njk

�
� 1

`

X
k

�
meas

�
J�njk

��A
:

Combining these inequalities givesX
k

�
meas

�
J�njk

��A � 3`� (Inj) : (11)

Step 4 Counting the number of
n
J�njk

o
j;k

Adding this last inequality over j, givesX
j;k

meas
�
J�njk

�A � 3`� (En) � 3`ne��n; (12)
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by (9). Let us now suppose that n is so large that

1

(2m)
A
> 3`ne��n: (13)

If there is an index j for which there is more than one J�njk, then by choice of
the Jnjk, at least one will have length at least 1

2m , and (12) gives a contradiction
to (13). It follows that when (12) is satis�ed, there is at most one interval J�njk
per j. Consequently, there are at most n such J�njk in all. Let us relabel then
J�njk

o
as simply

n
J#nj

o
and summarize their properties:

(i) There are at most n intervals
n
J#nj

o
;

(ii) X
j

meas
�
J#nj

�A
� 3`ne��n; (14)

(iii)
En \G �

[
j

J#nj : (15)

Step 5 Estimate the Hausdor¤measure
Let � > 1 and

E1 \G = lim sup
k!1

E2k \G =
1\
j=1

1[
k=j

(E2k \G) :

Now by (iii),
n
J#
2k;j

o
j;k
are intervals that cover E2k \ G. Moreover, for large

enough n, (i), (ii) give X
j

h�

�
measJ#nj

�
� nh�

��
3`ne��n

�1=A� � Cn1�� ;
where C is independent of n, but depends on "; `. (This very crude estimate
su¢ ces for our purposes). Then for large enough N;

mh� (E1 \G)

�
1X
k=N

X
j

h�

�
measJ#

2k;j

�
� C

1X
k=N

2k(1��) ! 0, N !1;

so mh� (E1 \G) = 0: Moreover, in GnE1, we have for large enough k;

K2k (t; t) � e�(2
k):
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Thus, in GnE1;
lim sup
k!1

K2k (t; t)
1=2k � e�:

Here � > 0 is arbitrary. The set E1 depends on � but increases as � decreases.
By taking suitable countable unions, we deduce that in G, outside a set of h�
measure 0, we have

lim sup
k!1

K2k (t; t)
1=2k

= 1

Then Theorem 1.2 follows, recall the discussion after (2).�

Proof of Theorem 1.1
The condition (3) implies (4) with A = 1. �

Proof of Theorem 1.3
It is easily seen that (5) holds i¤ (4) holds for large enough A. Then Theorem
1.3. follows from Theorem 1.2 by taking a countable union of exceptional sets,
corresponding (for example) to integer values of A. �
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