The Size of the set of μ-Irregular Points of a measure μ

Eli Levin ${ }^{1}$ and Doron S. Lubinsky ${ }^{2}$
${ }^{1}$ Mathematics Department
The Open University of Israel
P.O. Box 808
Raanana 43107
Israel.
${ }^{2}$ School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332-0160
USA.
${ }^{1}$ lubinsky@math.gatech.edu
${ }^{2}$ elile@openu.ac.il

October 25, 2010

Abstract

Let μ be a compactly suppported positive measure on the real line. A point $x \in \operatorname{supp}[\mu]$ is said to be μ-regular, if, as $n \rightarrow \infty$, $$
\sup _{\operatorname{deg}(P) \geq n}\left(\frac{|P(x)|}{\|P\|_{L_{2}(d \mu)}}\right)^{1 / n} \rightarrow 1
$$

Otherwise it is a μ-irregular point. We show that for any such measure, the set of μ-irregular points in $\left\{\mu^{\prime}>0\right\}$ (with a suitable definition of this set) has Hausdorff $m_{h_{\beta}}$ measure 0 , for $h_{\beta}(t)=\left(\log \frac{1}{t}\right)^{-\beta}$, any $\beta>1$.

Orthogonal Polynomials on the real line, regular measures, irregular points

1 Introduction ${ }^{1}$

Let μ be a positive measure on the real line, with compact support $\operatorname{supp}[\mu]$, and infinitely many points in its support. μ is said to be regular in the sense of

[^0]Stahl, Totik, and Ullman, or just regular, [9, p. 68] if

$$
\lim _{n \rightarrow \infty}\left(\sup _{\operatorname{deg}(P) \leq n} \frac{|P(x)|}{\|P\|_{L_{2}(d \mu)}}\right)^{1 / n} \leq 1
$$

q.e. in $\operatorname{supp}[\mu]$. Here q.e. (quasi-everywhere) means except on a set of logarithmic capacity 0 , while

$$
\|P\|_{L_{2}(d \mu)}=\left(\int|P|^{2} d \mu\right)^{1 / 2}
$$

This should not be confused with the notion of a regular Borel measure. Regular measures play an important role in asymptotics of orthogonal polynomials, and in questions of weighted approximation. See the comprehensive monograph [9], and also [5], [6], [7], [10], [11]. Regular measures are those that permit localization of a whole host of properties.

In the monograph [9, p. 140], local and pointwise regularity are also investigated. We say that $x \in \operatorname{supp}[\mu]$ is a μ-regular point (or, regular point for μ) if

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\sup _{\operatorname{deg}(P) \leq n} \frac{|P(x)|}{\|P\|_{L_{2}(d \mu)}}\right)^{1 / n}=1 \tag{1}
\end{equation*}
$$

Otherwise x is a μ-irregular point. It is known [9, $\mathrm{p}, 140$] that μ is regular iff the set of μ-irregular points in the support has logarithmic capacity 0 . Of course, this should not be confused with points that are irregular for the Dirichlet problem in classical potential theory.

Notice that since the polynomial $P=1$ is included in the sup, the left-hand side of (1) is ≥ 1. Thus x is a μ-irregular point iff

$$
\limsup _{n \rightarrow \infty}\left(\sup _{\operatorname{deg}(P) \leq n} \frac{|P(x)|}{\|P\|_{L_{2}(d \mu)}}\right)^{1 / n}>1
$$

This is easily formulated in terms of orthogonal polynomials. Let $\left\{p_{n}\right\}$ denote the orthonormal polynomials for μ, so that

$$
\int p_{n} p_{m} d \mu=\delta_{m n}
$$

Define the reproducing kernels

$$
K_{n}(x, t)=\sum_{j=0}^{n-1} p_{j}(x) p_{j}(t)
$$

It is an easy consequence of Cauchy-Schwarz' inequality, that for any polynomial $P(x)$ of degree $\leq n-1$, we have

$$
P^{2}(x) \leq K_{n}(x, x) \int P^{2} d \mu
$$

In fact,

$$
K_{n}(x, x)=\sup _{\operatorname{deg}(P) \leq n-1} \frac{P^{2}(x)}{\int P^{2} d \mu}
$$

the polynomial P attaining the supremum is $P(t)=K_{n}(x, t)$. We thus see that x is a μ-regular point iff

$$
\lim _{n \rightarrow \infty} K_{n}(x, x)^{1 / n}=1
$$

In turn, since $K_{n}(x, x)$ increases with n, x is μ-regular iff

$$
\begin{equation*}
\lim _{j \rightarrow \infty} K_{2^{j}}(x, x)^{1 / 2^{j}}=1 \tag{2}
\end{equation*}
$$

We shall show that the set of μ-irregular points is thin, and "almost" has logarithmic capacity 0 , in the sense of Hausdorff measures. Let $h:[0, \infty) \rightarrow[0, \infty]$ be an increasing right-continuous function that has limit 0 at 0 . Given $E \subset \mathbb{R}$, its Hausdorff outer m_{h} measure is

$$
m_{h}(E)=\inf \left\{\sum_{j=1}^{\infty} h\left(\operatorname{meas}\left(I_{j}\right)\right): E \subset \bigcup_{j} I_{j}\right\}
$$

where the inf is taken over all coverings of E by intervals $\left\{I_{j}\right\}$ with lengths $\left\{\right.$ meas $\left.\left(I_{j}\right)\right\}$. For $h(t)=t^{\alpha}, \alpha>0$, this leads to α-dimensional Hausdorff measure. For $\beta>0$,

$$
h_{\beta}(t)=\left\{\begin{array}{cc}
\left(\log \frac{1}{t}\right)^{-\beta}, & t \in(0,1) \\
\infty, & t \geq 1
\end{array}\right.
$$

we obtain β-logarithmic Hausdorff measure. Note that if for some $\beta>0$,

$$
m_{h_{\beta}}(E)=0
$$

then E has α-dimensional Hausdorff measure 0 for all $\alpha>0$. When $\beta=1$, this in addition implies that E has logarithmic capacity 0 [1, p. 28], [2]. Even a set of σ-finite $m_{h_{1}}$ measure has zero logarithmic capacity. Roughly speaking, if a set has $m_{h_{\beta}}$ measure 0 for all $\beta>1$, it is close to having logarithmic capacity 0 , but not quite of logarithmic capacity 0 .

Now

$$
\left\{\mu^{\prime}>0\right\}=\left\{x: \mu^{\prime}(x)>0\right\}
$$

is a Lebesgue measurable set that is unique only up to a set of linear Lebesgue measure 0 . In defining this set, we use the absolutely continuous component $\mu_{a c}$ of μ. We say that $x \in\left\{\mu^{\prime}>0\right\}$ iff

$$
\mu_{a c}^{\prime}(x)=\lim _{\operatorname{meas}(I) \rightarrow 0, I \ni x} \frac{\mu_{a c}(I)}{\text { meas }(I)}>0
$$

where the limit is taken over intervals I. This ensures that for all $x \in\left\{\mu^{\prime}>0\right\}$, we have

$$
\begin{equation*}
\liminf _{\operatorname{meas}(I) \rightarrow 0, I \ni x} \frac{\mu(I)}{\operatorname{meas}(I)}>0 \tag{3}
\end{equation*}
$$

for the left-hand side of (3) is bounded below by $\mu_{a c}^{\prime}(x)$.

Theorem 1.1

Assume that μ is a compactly supported measure on the real line. Then the set of μ-irregular points in $\left\{\mu^{\prime}>0\right\}$ has $m_{h_{\beta}}$ measure 0 for all $\beta>1$.

Remarks

(a) It seems unlikely that the set of irregular points can have zero capacity in $\left\{\mu^{\prime}>0\right\}$ for irregular measures. It certainly cannot be of zero capacity in the larger set $\operatorname{supp}[\mu]$, for otherwise μ is regular [9, p. 140].
(b) If the set of irregular points in $\left\{\mu^{\prime}>0\right\}$ has finite (or even σ-finite) $m_{h_{1}}$ measure, then it has zero capacity by a result of Kametani [1, p. 28], [2], and again, this is not possible in the larger set $\operatorname{supp}[\mu]$, unless μ is regular.
(c) In a similar vein, any compact set E of finite positive (or σ-finite) $m_{h_{1}}$ measure will have zero capacity. It is possible to construct regular measures that have E as their set of irregular points [12]. This again suggests that one cannot expect $m_{h_{1}}$ measure 0 in Theorem 1.1.
(d) Let $h:[0, \infty) \rightarrow[0, \infty]$ be an increasing right continuous function such that for each $\varepsilon>0$,

$$
\sum_{j} 2^{j} h\left(e^{-\varepsilon 2^{j}}\right)<\infty
$$

Then the same proof shows that the set of μ-irregular points has Hausdorff m_{h} measure 0 . As an example, we can let $\rho>1$,

$$
h(t)=\left(\log \frac{1}{t}\right)^{-1}\left(\log \log \frac{1}{t}\right)^{-\rho}
$$

for $t \in\left[0, e^{-e}\right]$, and define h to be constant in $\left[e^{-e}, \infty\right)$.
Theorem 1.1 is a special case of:

Theorem 1.2

Let $A \geq 1$. Assume that μ is a compactly supported measure on the real line. Let F be the set of points x satisfying

$$
\begin{equation*}
\liminf _{\text {meas }(I) \rightarrow 0, I \ni x} \frac{\mu(I)}{(\text { meas }(I))^{A}}>0 \tag{4}
\end{equation*}
$$

the limit being taken over intervals I. Then the set of μ-irregular points in F has $h_{\beta}-$ measure 0 for all $\beta>1$.

Note that the condition (4) holds at every point mass of the measure μ, with $A=1$, and can hold in sets where μ is singularly continuous. Theorem 1.2 easily yields a result reminiscent of Criterion Λ for regularity of Stahl and Totik
[9, p. 108]:

Theorem 1.3

Assume that μ is a compactly supported measure on the real line. Let \mathcal{F} be the set of points x satisfying

$$
\begin{equation*}
\limsup _{\operatorname{meas}(I) \rightarrow 0, I \ni x}\left|\frac{\log \mu(I)}{\log \text { meas }(I)}\right|<\infty \tag{5}
\end{equation*}
$$

Then the set of μ-irregular points in \mathcal{F} has h_{β}-measure 0 for all $\beta>1$.
The condition (2) asserts subexponential growth of $K_{n}(x, x)$. For slower sorts of growth of K_{n}, the exceptional set is of course larger. Let $\left\{\delta_{j}\right\}$ be a decreasing sequence of positive numbers with $\sum_{j} \delta_{j}<\infty$. Then it is easily proven that for a.e. $x \in\left\{\mu^{\prime}>0\right\}$,

$$
\lim _{n \rightarrow \infty} \frac{\delta_{\left[\log _{2} n\right]}}{n} K_{n}(x, x)=0
$$

Here $[x]$ denotes the greatest integer $\leq x$. A much more difficult question is whether

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} K_{n}(x, x)<\infty
$$

for a.e. $x \in\left\{\mu^{\prime}>0\right\}$ or even in subintervals of this set, even when we impose additional conditions such as regularity of the measure μ, and a local condition - see the work of Totik [10], [11] and Simon [8].

Acknowledgement

We acknowledge the comments of Vilmos Totik that substantially improved the formulations of results, and presentation of, the paper.

2 Proofs

Proof of Theorem 1.2

Step 1: Reduction to a special case
Fix $\beta>1$, positive integers ℓ, m, and let $G=G(\ell, m)$ denote the set of points x in F such that

$$
\begin{equation*}
\mathrm{x} \in I \text { and } 0<\operatorname{meas}(I) \leq \frac{1}{m} \Rightarrow \frac{\mu(I)}{(\operatorname{meas}(I))^{A}}>\frac{1}{\ell} \tag{6}
\end{equation*}
$$

Since

$$
F=\bigcup_{\ell, m} G(\ell, m)
$$

is a countable union, it suffices to show that $m_{h_{\beta}}(G(\ell, m))=0$ for a single ℓ, m. So in the sequel, we fix ℓ, m and let $G=G(\ell, m)$.

Step 2: The set E_{n} on which K_{n} is large
Next let $\eta>0$ and

$$
\begin{equation*}
E_{n}=\left\{t: K_{n}(t, t)>e^{\eta n}\right\} . \tag{7}
\end{equation*}
$$

As $K_{n}(t, t)$ is a polynomial of degree $2 n-2$, the equation $K_{n}(t, t)-e^{\eta n}=0$ has at most $2 n-2$ roots. Then E_{n} consists of at most n disjoint open intervals $\left\{I_{n j}\right\}$. Write

$$
\begin{equation*}
E_{n}=\bigcup_{j} I_{n j} \tag{8}
\end{equation*}
$$

We have

$$
\mu\left(E_{n}\right) e^{\eta n} \leq \int_{E_{n}} K_{n}(t, t) d \mu(t) \leq n
$$

so

$$
\begin{equation*}
\mu\left(E_{n}\right) \leq n e^{-\eta n} \tag{9}
\end{equation*}
$$

Step 3: Divide $I_{n j}$ into disjoint intervals of equal length $\leq \frac{1}{m}$
Fix j, and divide $I_{n j}$ into finitely many, but as few as possible, disjoint open or half open intervals $\left\{J_{n j k}\right\}$ of equal length, subject to the restriction

$$
\begin{equation*}
\operatorname{meas}\left(J_{n j k}\right) \leq \frac{1}{m} \tag{10}
\end{equation*}
$$

Clearly if meas $\left(I_{n j}\right) \leq \frac{1}{m}$, there will be one interval $J_{n j k}$ for the given n and j. Otherwise, there will be at most meas $\left(I_{n j}\right) m+1$ such intervals. If there is more than one $J_{n j k}$, the rightmost interval will have form (c, d), and the rest will all have form $(c, d]$.

Let $\left\{J_{n j k}^{*}\right\}$ denote that subset of $\left\{J_{n j k}\right\}$ which have non-empty intersection with G. Then the intervals $\left\{J_{n j k}^{*}\right\}$ cover $I_{n j} \cap G$. Moreover, each $x \in I_{n j}$ can lie in at most three of the $J_{n j k}^{*}$. Then

$$
\sum_{k} \mu\left(J_{n j k}^{*}\right) \leq 3 \mu\left(I_{n j}\right)
$$

while (6) gives

$$
\sum_{k} \mu\left(J_{n j k}^{*}\right) \geq \frac{1}{\ell} \sum_{k}\left(\operatorname{meas}\left(J_{n j k}^{*}\right)\right)^{A}
$$

Combining these inequalities gives

$$
\begin{equation*}
\sum_{k}\left(\operatorname{meas}\left(J_{n j k}^{*}\right)\right)^{A} \leq 3 \ell \mu\left(I_{n j}\right) \tag{11}
\end{equation*}
$$

Step 4 Counting the number of $\left\{J_{n j k}^{*}\right\}_{j, k}$

Adding this last inequality over j, gives

$$
\begin{equation*}
\sum_{j, k} \operatorname{meas}\left(J_{n j k}^{*}\right)^{A} \leq 3 \ell \mu\left(E_{n}\right) \leq 3 \ell n e^{-\eta n} \tag{12}
\end{equation*}
$$

by (9). Let us now suppose that n is so large that

$$
\begin{equation*}
\frac{1}{(2 m)^{A}}>3 \ell n e^{-\eta n} \tag{13}
\end{equation*}
$$

If there is an index j for which there is more than one $J_{n j k}^{*}$, then by choice of the $J_{n j k}$, at least one will have length at least $\frac{1}{2 m}$, and (12) gives a contradiction to (13). It follows that when (12) is satisfied, there is at most one interval $J_{n j k}^{*}$ per j. Consequently, there are at most n such $J_{n j k}^{*}$ in all. Let us relabel the $\left\{J_{n j k}^{*}\right\}$ as simply $\left\{J_{n j}^{\#}\right\}$ and summarize their properties:
(i) There are at most n intervals $\left\{J_{n j}^{\#}\right\}$;
(ii)

$$
\begin{equation*}
\sum_{j} \operatorname{meas}\left(J_{n j}^{\#}\right)^{A} \leq 3 \ell n e^{-\eta n} \tag{14}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
E_{n} \cap G \subset \bigcup_{j} J_{n j}^{\#} \tag{15}
\end{equation*}
$$

Step 5 Estimate the Hausdorff measure

Let $\beta>1$ and

$$
E_{\infty} \cap G=\limsup _{k \rightarrow \infty} E_{2^{k}} \cap G=\bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty}\left(E_{2^{k}} \cap G\right)
$$

Now by (iii), $\left\{J_{2^{k}, j}^{\#}\right\}_{j, k}$ are intervals that cover $E_{2^{k}} \cap G$. Moreover, for large enough n, (i), (ii) give

$$
\begin{aligned}
& \sum_{j} h_{\beta}\left(m e a s J_{n j}^{\#}\right) \\
\leq & n h_{\beta}\left(\left[3 \ell n e^{-\eta n}\right]^{1 / A}\right) \leq C n^{1-\beta},
\end{aligned}
$$

where C is independent of n, but depends on ε, ℓ. (This very crude estimate suffices for our purposes). Then for large enough N,

$$
\begin{aligned}
& m_{h_{\beta}}\left(E_{\infty} \cap G\right) \\
\leq & \sum_{k=N}^{\infty} \sum_{j} h_{\beta}\left(\text { meas }_{2^{k}, j}^{\#}\right) \\
\leq & C \sum_{k=N}^{\infty} 2^{k(1-\beta)} \rightarrow 0, N \rightarrow \infty
\end{aligned}
$$

so $m_{h_{\beta}}\left(E_{\infty} \cap G\right)=0$. Moreover, in $G \backslash E_{\infty}$, we have for large enough k,

$$
K_{2^{k}}(t, t) \leq e^{\eta\left(2^{k}\right)}
$$

Thus, in $G \backslash E_{\infty}$,

$$
\limsup _{k \rightarrow \infty} K_{2^{k}}(t, t)^{1 / 2^{k}} \leq e^{\eta}
$$

Here $\eta>0$ is arbitrary. The set E_{∞} depends on η but increases as η decreases. By taking suitable countable unions, we deduce that in G, outside a set of h_{β} measure 0, we have

$$
\limsup _{k \rightarrow \infty} K_{2^{k}}(t, t)^{1 / 2^{k}}=1
$$

Then Theorem 1.2 follows, recall the discussion after (2)

Proof of Theorem 1.1

The condition (3) implies (4) with $A=1$.

Proof of Theorem 1.3

It is easily seen that (5) holds iff (4) holds for large enough A. Then Theorem 1.3. follows from Theorem 1.2 by taking a countable union of exceptional sets, corresponding (for example) to integer values of A.

References

[1] L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand, 1967.
[2] S. Kametani, On Hausdorff's measures and generalized capacities with some of their applications to the theory of functions, Japan J. Math. 19(1945), 217-257.
[3] C.A. Rogers, Hausdorff Measures, Cambridge University Press, Cambridge, 1970.
[4] W. Rudin, Real and Complex Analysis, Wiley, McGraw Hill, Singapore, 1987.
[5] B. Simon, Orthogonal Polynomials on the Unit Circle, Parts 1 and 2, American Mathematical Society, Providence, 2005.
[6] B. Simon, Equilibrium Measures and Capacities in Spectral Theory, Inverse Problems and Imaging, 1(2007), 713-772.
[7] B. Simon, Regularity and the Cesaro-Nevai Class, J. Approx. Theory, 156(2009), 142-153.
[8] B. Simon, Weak convergence of CD kernels and applications, Duke Math. J. 146 (2009), 305-330
[9] H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge University Press, Cambridge, 1992.
[10] V. Totik, Asymptotics for Christoffel Functions for General Measures on the Real Line, J. d' Analyse de Mathematique, 81(2000), 283-303.
[11] V. Totik, Universality and fine zero spacing on general sets, Arkiv för Matematik, 47(2009), 361-391.
[12] V. Totik, Personal Communication.

[^0]: ${ }^{1}$ Research supported by NSF grant DMS1001182 and US-Israel BSF grant 2008399

