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Abstract. Let � be a positive measure on the real line, with orthogonal
polynomials fpng and leading coe¢ cients fng. The Geronimus type identity
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valid for all polynomials P of degree � 2n � 2 has known analogues within
the theory of orthogonal rational functions, though apparently unknown in
the theory of orthogonal polynomials. We present new proofs of this and its
generalization,Z 1

�1

P (t)

p2n (t)
h

�
pn�1
pn

(t)

�
dt =

n�1
n

�Z 1

�1
h (t) dt

��Z
P (t) d� (t)

�
;

valid for any h 2 L1 (R) :

Orthogonal Polynomials on the real line, Geronimus type formula, Poisson inte-
grals 42C05

1. Introduction1

In the theory of orthogonal polynomials on the unit circle, Geronimus�identity [5,
p. 198] plays an important role. Recall that if � is a �nite positive Borel measure
on the unit circle, with in�nitely many points in its support, and orthonormal
polynomials f�ng, so that

1

2�

Z 2�

0

�n
�
ei�
�
�m (ei�)d� (�) = �mn;

then Geronimus�identity asserts thatZ 2�

0

P
�
ei�
�

j�n (ei�)j2
d� =

Z
P
�
ei�
�
d�
�
ei�
�
;

for all polynomials P of degree � n. By symmetry, this extends to P that is a Lau-
rent polynomial. Geronimus�identity is very useful in asymptotics for orthogonal
polynomials on the unit circle, see the books of Freud [5] and Simon [12].
As far as the author was aware, there was no known analogue for orthogonal

polynomials on the real line. At least, none is mentioned in the classical textbooks
on orthogonal polynomials. While using the theory of de Branges spaces in the
context of universality limits for random matrices, the author discovered such an
identity.
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2 D. S. LUBINSKY

Let � be a positive measure on the real line with in�nitely many points in its
support, and

R
xjd� (x) �nite for j = 0; 1; 2; ::: . Then we may de�ne orthonormal

polynomials
pn (x) = nx

n + :::, n > 0;
satisfying Z 1

�1
pnpmd� = �mn:

The nth reproducing kernel for � is

Kn (x; y) =
n�1X
k=0

pk (x) pk (y)

=
n�1
n

pn (x) pn�1 (y)� pn�1 (x) pn (y)
x� y ;

by the Christo¤el-Darboux formula. The nth Christo¤el function is

�n (x) =
1

Kn (x; x)
:

We give the numerator in the Christo¤el-Darboux formula its own symbol, namely,

(1.1) Ln (x; y) =
n�1
n

(pn (x) pn�1 (y)� pn�1 (x) pn (y))

and for non-real a, let

(1.2) En;a (z) =

s
2�

jLn (a; �a)j
Ln (�a; z) :

In [9], we used the theory of de Branges spaces [1] to show that for Im a > 0,
and all polynomials P of degree � 2n� 2, we have

(1.3)
Z 1

�1

P (t)

jEn;a (t)j2
dt =

Z
P (t) d� (t) :

In a subsequent paper [10], we gave a self contained elementary proof, and deduced
results on weak convergence, discrepancy, and Gauss quadrature. We soon found
out that there is an earlier real line analogue, due to Barry Simon [13, Theorem
2.1, p. 5], namely

1

�
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�1

P (t)�
n�1
n

�2
p2n (t) + p

2
n�1 (t)

dt =

Z
P (t) d� (t) :

Simon calls this a Carmona type formula because of its analogy to identities in the
theory of Schrodinger operators [3]. He also refers to earlier work of Krutikov and
Remling [7]. This Carmona formula is the special case of (1.3) with (pn�1=pn) (�a) =
�in�1=n.
A more explicit, and pleasing, form of (1.3) was established in [11]: if Im (z) 6= 0;

(1.4)
1

�
jIm zj

Z 1

�1

P (t)

jzpn (t)� pn�1 (t)j2
dt =

n�1
n

Z
P (t) d� (t) :

Of course, orthogonal polynomials is an old subject, and it is surprising to �nd
a new general identity. So the author performed an extensive literature search,
including in the theory of orthogonal rational functions. However, it was only at
the 2010 Jaen conference, that the author became aware that a close cousin of these
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identities is known within the theory of orthogonal rational functions - thank you
to Adhemar Bultheel, for the gentle discussion, and information. Let

P (t; w) = Imw

jt� wj2

denote the Poisson kernel for the upper half-plane. In their groundbreaking mono-
graph [2, Thm. 6.3.2, p. 136; Thm. 6.4.3, p. 145], Bultheel, Gonzalez-Vera,
Hendriksen and Njåstad, showed that the inner products generated by the mea-
sures d�(t)

1+t2 and
P(t;w)Kn(w; �w)

jKn(t; �w)j2
dt on the real line, are identical on a suitable �nite

dimensional space of rational functions. Here Kn is a related, but di¤erent, repro-
ducing kernel to the one in this paper. On choosing appropriate values of the poles,
parameters and measures, one could in principle recover (1.3), and hence (1.4).
Formally, the results in [2, Thm. 6.3.2, p. 136; Thm. 6.4.3, p. 145] do not include
the case of all poles at1, so (1.4) is apparently not there - but an elaboration of the
methods there, does yield (1.4). It is instructive that for orthogonal polynomials
on the unit circle, Bultheel et al refer to analogues within systems theory [4], as
well as within classical orthogonal polynomials.
Observe that in (1.4),

Im z

jzpn (t)� pn�1 (t)j2
=

1

pn (t)
2P
�
pn�1 (t)

pn (t)
; z

�
:

Using this, and classical results on boundary behavior of Poisson integrals for the
upper-half plane, the author proved [11] that

(1.5)
Z 1

�1

P (t)

pn (t)
2h

�
pn�1 (t)

pn (t)

�
dt =

n�1
n

�Z 1

�1
h (t) dt

��Z
P (t) d� (t)

�
:

for all polynomials P of degree � 2n� 2 and any h 2 L1 (R). When, for example,

h (x) =
log x�2

1� x2 ;

one obtains an entropy type integral

(1.6)
2

�2

Z 1

�1
P (t)

ln jpn�1 (t)j � ln jpn (t)j
pn�1 (t)

2 � pn (t)2
dt =

n�1
n

Z
P (t) d� (t) :

We note that this circle of ideas also leads to explicit formulae for orthogonal
polynomials associated with a reciprocal polynomial weight [8].
In Sections 2 and 3, we present respectively new proofs of (1.4) and (1.5). In

Section 4, we outline the proof from [10], inspired by de Branges spaces, which has
some points of contact with that used by Bultheel et al.

2. A New Proof of (1.4)

Fix a polynomial P of degree � 2n� 2. For Im (z) > 0, let

G (z) =
1

�
PV

Z 1

�1

P (t)

pn (t)

1

pn�1 (t)� zpn (t)
dt:
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Here PV stands for Cauchy principal value integral, because of the non-integrable
singularities at the zeros fxjng of pn. Thus

G (z) =
1

�
lim

"j!0+;
1�j�n

Z
(�1;1)n

n[
j=1

(xjn�"j ;xjn+"j)

P (t)

pn (t)

1

pn�1 (t)� zpn (t)
dt:

This limit exists because of the smoothness of the integrand after the extraction
of the singularities. Note that the factor pn�1 (t) � zpn (t) cannot vanish when
Im (z) 6= 0, as pn�1 and pn have no common zeros.
The function G (z) is also analytic for z in the upper-half plane, and for such z;

(2.1) G0 (z) =
1

�

Z 1

�1

P (t)

(pn�1 (t)� zpn (t))2
dt;

an ordinary Lebesgue integral. Indeed,

G (z + h)�G (z)
h

=
1

�

Z 1

�1

P (t)

(pn�1 (t)� zpn (t)) (pn�1 (t)� (z + h) pn (t))
dt:

We can use Lebesgue�s Dominated Convergence Theorem to justify the limit as
h! 0. All one needs is a bound on the integrand independent of h, that holds for
small enough jhj. Assume jhj < 1

2 jIm zj. Now outside small neighborhoods of the
zeros of pn, we can bound jpn�1 (t)� (z + h) pn (t)j below by 1

2 jIm zj jpn (t)j, and in
those neighborhoods of these zeros, we can use instead the lower bound 1

2 jpn�1 (t)j,
at least for small enough jhj :

We next claim that for all Im (z) > 0;

(2.2) G0 (z) = 0:

To see this, �x z with Im (z) > 0. We �rst show that the polynomial in t, pn�1 (t)�
zpn (t) has no zeros in the upper half-plane. Indeed, as the zeros of pn and pn�1
interlace, all residues in the partial fraction representation of pn�1

pn
are positive.

More precisely,
pn�1
pn

(t) =
nX
j=1

cj
t� xjn

;

with all cj > 0. (It is well known that cj = �n (xjn) p
2
n�1 (xjn), but we shall not

need this.) So if pn�1 (t)� zpn (t) = 0, we have

0 < Im z = Im

0@ nX
j=1

cj
t� xjn

1A = Im (�t)
nX
j=1

cj

jt� xjnj2
;

and necessarily t lies in the lower-half plane. Then, as a function of t, P (t)

(pn�1�zpn(t))2

is analytic in the upper-half plane, and is O
�
t�2
�
as jtj ! 1, so Cauchy�s integral

theorem (or, the residue theorem) shows that G0 (z) = 0:

It follows that for some constant C, we have

ImG (z) = C for Im (z) > 0:
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That is,

(2.3)
Im z

�

Z 1

�1

P (t)

jzpn (t)� pn�1 (t)j2
dt = C for Im (z) > 0:

We evaluate C by computing

C = lim
y!1

ImG (iy)

= lim
y!1

y

�

Z 1

�1

P (t)

p2n�1 (t) + y
2p2n (t)

dt:(2.4)

Write

�1 = xn+1;n < xn;n < ::: < x1n < x0n =1;
and let

Ij = (xj+1;n; xjn) ; 0 � j � n;

 j (t) =
pn�1 (t)

pn (t)
; t 2 Ij :

Note that for 1 � j � n,  j is strictly decreasing in Ij , from 1 to �1, so has an
inverse  [�1]j : (�1;1)! Ij . For j = 0, instead  j is strictly decreasing from 1
to 0, so  [�1]0 : (0;1) ! I0. For j = n, instead  j is strictly decreasing from 0 to

�1, so  [�1]n : (�1; 0)! In. Also,

 0j (t) = �
�
p0npn�1 � p0n�1pn

�
(t)

p2n (t)

= �
�
n�1
n

��1
Kn (t; t) =p

2
n (t) ;

recall the con�uent form of the Christo¤el-Darboux formula,

Kn (t; t) =
n�1
n

�
p0npn�1 � p0n�1pn

�
(t) :

Now let 1 � j � n � 1, and g (t) = P (t) =Kn (t; t), and make the substitution
s =  j (t) = pn�1 (t) =pn (t). We see that

Tj : =
y

�

Z
Ij

P (t)

p2n�1 (t) + y
2p2n (t)

dt(2.5)

=
�y
�

�
n�1
n

�Z
Ij

P (t)

Kn (t; t)

 0j (t)

y2 +  2j (t)
dt

=
1

�

�
n�1
n

�Z 1

�1
g
�
 
[�1]
j (s)

� y

y2 + s2
ds:

We continue this as

Tj =
1

�

�
n�1
n

�Z 1

�1
g
�
 
[�1]
j (ty)

� 1

1 + t2
dt:

Now

lim
y!1

 
[�1]
j (ty) =

�
xj+1;n; t > 0;
xjn; t < 0
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and g is bounded on the real line, so Lebesgue�s Dominated Convergence Theorem
gives

lim
y!1

Tj =
1

�

�
n�1
n

��
g (xj+1;n)

Z 0

�1

dt

1 + t2
+ g (xjn)

Z 1

0

dt

1 + t2

�
=

1

2

�
n�1
n

�
[g (xj+1;n) + g (xjn)] :

Similarly,

lim
y!1

T0 = lim
y!1

1

�

�
n�1
n

�Z 1

0

g
�
 
[�1]
0 (ty)

� 1

1 + t2
dt =

1

2

�
n�1
n

�
g (x1n) ;

and

lim
y!1

Tn = lim
y!1

1

�

�
n�1
n

�Z 0

�1
g
�
 [�1]n (ty)

� 1

1 + t2
dt =

1

2

�
n�1
n

�
g (xnn) :

Recalling (2.4), (2.5), and adding over 0 � j � n gives

lim
y!1

ImG (iy)

= lim
y!1

nX
j=0

Tj

=
n�1
n

nX
j=1

g (xjn)

=
n�1
n

nX
j=1

P (xjn) =Kn (xjn; xjn) =
n�1
n

Z
P d�;

by the classical Gauss quadrature formula. This, (2.3) and (2.4), give the result.�

3. A New Proof of (1.5)

We start by recalling that given s 6= 0, there are n simple zeros ftjg of pn�1 (t)�
spn (t), and a corresponding Gauss quadrature

nX
j=1

�n (tj)P (tj) =

Z
P d�;

valid for all polynomials P of degree � 2n� 2. Here, recall,

�n (t) = 1=Kn (t; t)

is the nth Christo¤el function. The ftjg interlace the zeros of pn. See [5, p.19 ¤.].
If
�
 j
	
are as in the previous section, we see that ftjgj =

n
 
[�1]
j (s)

o
j
. Thus we

can write the quadrature formula as
nX
j=0

(�nP )
�
 
[�1]
j (s)

�
=

Z
P d�:

Here if s > 0, the term for j = n is dropped as there is no root of  n (t) = s
in (�1; xnn). Similarly, if s < 0, the term for j = 0 is dropped. Now we let
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h 2 L1 (R) ; multiply by h (s) and integrate to obtain

(3.1)
nX
j=0

Z 1

�1
(�nP )

�
 
[�1]
j (s)

�
h (s) ds =

�Z 1

�1
h (s) ds

��Z
P (t) d� (t)

�
:

The integrand is treated as 0 for j = 0 and s < 0 (and for j = n and s > 0). Now
let 1 � j � n� 1. We make the substitution s =  j (t) and recall that  

[�1]
j maps

(�1;1) onto Ij , while

 0j (t) = �
�
n�1
n

��1
Kn (t; t) =p

2
n (t)

= �
�
n�1
n

��1
��1n (t) =p2n (t) :

We then see that Z 1

�1
(�nP )

�
 
[�1]
j (s)

�
h (s) ds

= �
Z
Ij

(�nP ) (t)h
�
 j (t)

�
 0j (t) dt

=

�
n�1
n

��1 Z
Ij

P (t)h

�
pn�1
pn

(t)

�
dt

p2n (t)
:

For j = 0, and j = n, we make the appropriate adjustments, taking account of our
convention of 0 integrand on half of (�1;1). Substituting into (3.1) gives�
n�1
n

��1 nX
j=0

Z
Ij

P (t)h

�
pn�1
pn

(t)

�
dt

p2n (t)
=

�Z 1

�1
h (s) ds

��Z
P (t) d� (t)

�
;

or�
n�1
n

��1 Z 1

�1
P (t)h

�
pn�1
pn

(t)

�
dt

p2n (t)
=

�Z 1

�1
h (s) ds

��Z
P (t) d� (t)

�
;

which yields (1.5). Of course, (1.4) follows with a special choice of h. This proof
is simpler than that given in [11], but uses slightly deeper results on orthogonal
polynomials. �

4. A de Branges style proof of (1.4)

By multiplying out the right-hand side, cancelling, and then refactorizing, we
see that for any complex �; �; v; z;

Ln (z; v)Ln (�; �) = Ln (�; z)Ln (�; v)� Ln (�; z)Ln (�; v) :

Now let Im a > 0, and set � = a; � = �a, so

Ln (z; v) =
1

Ln (a; �a)
(Ln (a; z)Ln (�a; v)� Ln (�a; z)Ln (a; v)):

Since pn is real on the real axis, and

Ln (a; �a) = 2i Im (a)Kn (a; �a) = i jLn (a; �a)j ;
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we obtain

Kn (z; v) =
Ln (z; v)

z � v

=
i

jLn (a; a)j
Ln (�a; z)Ln (�a; �v)� Ln (�a; �z)Ln (�a; v)

z � v

=
i

2�

En;a (z)E
�
n;a (v)� E�n;a (z)En;a (v)

z � v(4.1)

where g� (z) = g (�z), and we have used the de�nition (1.2) of En;a. Next, we claim
that for polynomials S of degree � n� 1;

(4.2) S (z) =

Z 1

�1

S (t)Kn (t; z)

jEn;a (t)j2
dt:

To prove this, let us assume that Im (a) > 0; Im (z) > 0. The right-hand side equals

Z 1

�1

S (t)Kn (t; z)

En;a (t)E�n;a (t)
dt

(4.3) =
i

2�

 
E�n;a (z)

R1
�1

S(t)
E�
n;a(t)(t�z)

dt

�En;a (z)
R1
�1

S(t)
En;a(t)(t�z)dt

!
:

Here all zeros of En;a lie in the lower half plane. See [10, Lemma 2.2(c)] for a full
proof, but note that it follows from the fact that Kn (z; �a) has all its zeros there,
and in turn this is a consequence of the Christo¤el-Darboux formula. Then, in the
�rst integral in (4.3), all zeros of E�n;a lie in the upper-half plane, so

S(t)
E�
n;a(t)(t�z)

is

analytic as a function of t in the lower-half plane, and O
�
t�2
�
at1. Thus the �rst

integral in the right-hand side of (4.3) is 0. For the second integral, S(t)
En;a(t)(t�z) is

analytic as a function of t in the upper-half plane, except for a simple pole at t = z.
We deduce that Z 1

�1

S (t)Kn (t; z)

En;a (t)E�n;a (t)
dt

=
i

2�

�
0� En;a (z) 2�i

S (z)

En;a (z)

�
= S (z) ;

Thus we have (4.2). We now turn to the proof of (1.4). Write P = RS where
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deg (R) ;deg (S) � n� 1: ThenZ
P d� =

Z
(RS) (z) d� (z)

=

Z
R (z)

"Z 1

�1
S (t)

Kn (t; z)

jEn;a (t)j2
dt

#
d� (z)

=

Z 1

�1
S (t)

1

jEn;a (t)j2
�Z

R (z)Kn (t; z) d� (z)

�
dt

=

Z 1

�1
S (t)

1

jEn;a (t)j2
R (t) dt

=

Z 1

�1

P (t)

jEn;a (t)j2
dt:

This gives (1.3). Finally, �x z 2 CnR, and choose a 2 C such that
pn�1 (�a) = zpn (�a) :

There are n choices for a, counting multiplicity. Then from (1.1), we see that

Ln (�a; t) = �
n�1
n

pn (�a) (zpn (t)� pn�1 (t))

and
Ln (a; �a) = 2i

n�1
n

Im (z) jpn (a)j2 :

Hence

jEn;a (t)j2 =
2�

jLn (a; �a)j
jLn (�a; t)j2

=
�

jIm zj
n�1
n

jzpn (t)� pn�1 (t)j2 :

Substituting into (1.3) gives (1.4). �
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