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Abstract. We establish asymptotics for Christoffel functions, and universal-
ity limits, associated with multivariate orthogonal polynomials, on the bound-
ary of the unit ball in Rd.
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1. Introduction1

Let d ≥ 2, and Πd
n denote the space of polynomials in d variables of degree at

most n. Let Nd
n denote its dimension, so

Nd
n =

(
n+ d

n

)
.

Let µ be a positive measure on Rd with compact support such that
{
x ∈ Rd : µ′ (x) > 0

}
has non-empty interior. This ensures that∫

P 2dµ > 0

for every non-trivial polynomial P .
We let Kn (µ,x,y) denote the reproducing kernel for µ and Πd

n, so that for all
P ∈ Πd

n, and all x ∈ Rd,

P (x) =

∫
Kn (µ,y,x)P (y) dµ (y) .

The nth Christoffel function for µ is

λn (µ,x) =
1

Kn (µ,x,x)
.

It admits the extremal property

(1.1) λn (µ,x) = inf
P∈Πdn

∫
P (t)

2
dµ (t)

P 2 (x)
.

When µ is absolutely continuous with respect to d dimensional Lebesgue measure,
and µ′ = W , we shall write λn (W,x).
Asymptotics for these multivariate Christoffel functions have been established in

a number of papers [1], [2], [3], [11], [12], [15], for Jacobi weights, and weights that
satisfy some structural restriction, such as being radially or centrally symmetric.
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Xu [12] established one-sided asymptotics under more general conditions. In all
these results, explicit formulae for the reproducing kernel, due mostly to Xu, play
a crucial role.
In a recent paper [5], we extended the range of these asymptotics to the class of

regular measures: A compactly supported measure µ on Rd is said to be regular, if

(1.2) lim
n→∞

(
sup
P∈Πdn

‖P‖2L∞(supp[µ])∫
|P |2 dµ

)1/n

= 1.

This is alternatively called the Bernstein-Markov condition [3]. When supp[µ] is a
convex region such as a ball, a suffi cient condition for regularity is that µ′ > 0 a.e.
in that convex region.
We established asymptotics for ratios of Christoffel functions for regular measures

µ, ν, with the same support, and that are mutually absolutely continuous in an open
subset of the support, with dν

dµ continuous in some compact subset of that open
set. As a consequence, for the ball, and simplex, we obtained both asymptotics
for Christoffel functions and universality limits. The latter involve the normalized
Bessel function

(1.3) J∗α (z) = z−αJα (z) =

(
1

2

)α ∞∑
j=0

(
− 1

4z
2
)j

j!Γ (j + α+ 1)
.

It has the advantage over Jα, of being entire. For the unit ball, we proved:

Theorem A
Let B̄ = B (0, 1) =

{
x ∈ Rd : ‖x‖ ≤ 1

}
. Let µ be a regular measure on B̄, and

assume that D is a compact subset of the interior of B̄, such that µ′ is positive
and continuous in D.
(a) Uniformly for x ∈ D, and yn ∈ B

(
x, 1√

n

)
, n ≥ 1,

lim
n→∞

(
n+ d

d

)
λn (µ,yn) =

µ′ (x)

W0 (x)
,

where

W0 (x) =
Γ
(
d+1

2

)
π
d+1
2

(
1− ‖x‖2

)−1/2

.

(b) Uniformly for x ∈ D, and u,v in compact subsets of Rd,

lim
n→∞

Kn

(
µ,x+ u

n ,x+ v
n

)
Kn (µ,x,x)

=
J∗d/2

(√
G (x,u,v)

)
J∗d/2 (0)

,

where if · denotes the standard Euclidean inner product,

G (x,u,v) = ‖u− v‖2 +
(x· (u− v))

2

1− ‖x‖2
.

In the above, and in the sequel, B (x, r) denotes the Euclidean ball center x,
radius r, so that

B (x, r) =
{
y ∈ Rd : ‖y − x‖ < r

}
,

while B̄ denotes the closed unit ball B (0, 1).
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Practically all the above mentioned papers deal with asymptotics in the interior
of the support. In the cases where the boundary is considered, asymptotics are
restricted either to the Chebyshev weight, or to less precise forms of the asymptotic.
It is the purpose of this paper, to consider the boundary of the ball. This is

a more complicated case, especially when one allows weights that vanish or are
infinite on the boundary, such as ultraspherical weights. For ρ ≥ 0, define the
ultraspherical weight

(1.4) Wρ (x) = ωρ

(
1− ‖x‖2

)ρ−1/2

,x ∈ B (0, 1) .

Here ωρ is a positive constant chosen so that
∫
Wρ = 1. It is known [12, p.259] that

(1.5) ωρ =
Γ
(
ρ+ d+1

2

)
πd/2Γ

(
ρ+ 1

2

) .
For Christoffel functions, we’ll prove:

Theorem 1.1
Let µ be a regular measure on B̄ = B (0, 1). Let D1 be an open set in Rd such
that D = D1 ∩

{
x ∈ Rd : ‖x‖ = 1

}
is non-empty. Assume that in D1 ∩ B̄, µ is

absolutely continuous, and satisfies there, for some ρ ≥ 0,

(1.6) µ′ (x) = h (x)Wρ (x) ,

where h is positive and uniformly continuous on D, as a function in D1 ∩ B̄. Let
{xn} be a sequence in D1 ∩ B̄ such that for some s ≥ 0,

(1.7) lim
n→∞

n2
(

1− ‖xn‖2
)

= s.

Let

(1.8) α = ρ+
d

2
.

(a) If ρ > 0,

lim
n→∞

n−2αKn (µ,xn,xn)h (xn)

= 2α+1 Γ (α+ 1)

Γ (2α+ 1)

∫ π
0
J∗α

(
2
√
s
∣∣∣sin ψ

2

∣∣∣) (sinψ)
2ρ−1

dψ∫ π
0

(sinψ)
2ρ−1

dψ
.(1.9)

The limit holds uniformly for s in bounded subsets of [0,∞). In particular, if (1.7)
holds with s = 0,

(1.10) lim
n→∞

n−2αKn (µ,xn,xn)h (xn) =
2

Γ (2α+ 1)
.

(b) If ρ = 0,

lim
n→∞

n−2αKn (µ,xn,xn)h (xn)

=
1

Γ (2α+ 1)

{
1 +

J∗α (2
√
s)

J∗α (0)

}
.(1.11)

In particular, if (1.7) holds with s = 0, then (1.10) holds.

Remarks
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(a) Note that h does not have to possess any structural property such as radial
invariance. It only needs to be positive and continuous.
(b) By h being positive and uniformly continuous on D, as a function in D1 ∩ B̄,
we mean the following: given ε > 0, there exists δ > 0 such that for x ∈ D and
y ∈ D1 ∩ B̄ with ‖y − x‖ < δ, we have |h (y)− h (x)| < ε.
(c) As noted above, we make essential use of explicit formulae for the reproducing
kernel due to Xu.

As regards universality limits, we’ll prove:

Theorem 1.2
Let µ satisfy the hypotheses of Theorem 1.1, with ρ > 0.
(a) Let x ∈D, and u,v ∈ Rd with x · u < 0 and x · v < 0. Then

(1.12) lim
n→∞

Kn

(
µ,x+ 1

n2u,x+ 1
n2v

)
Kn (µ,x,x)

=

∫ π
0
J∗α

(√
2G (u,v, ψ)

)
(sinψ)

2ρ−1
dψ

J∗α (0)
∫ π

0
(sinψ)

2ρ−1
dψ

,

where

(1.13) G (u,v, ψ) =
(
|x · u|1/2 − |x · v|1/2

)2

+ 4 |x · u|1/2 |x · v|1/2
(

sin
ψ

2

)2

.

(1.14)

(b) For n ≥ 1, let ‖an‖ = 1 = ‖bn‖, with ‖an − bn‖ = O
(

1
n

)
. Then as n→∞,

(1.15)
Kn (µ,an,bn)

Kn (µ,an,an)
=
J∗α (n ‖an − bn‖)

J∗α (0)
+ o (1) .

For ρ = 0, we prove:

Theorem 1.3
Let µ satisfy the hypotheses of Theorem 1.1, with ρ = 0.
(a) Let x ∈D, and x · u < 0 and x · v < 0. Then
(1.16)

lim
n→∞

Kn

(
µ,x+ 1

n2u,x+ 1
n2v

)
Kn (µ,x,x)

=
1

2

J∗α

(√
2G (u,v, 0)

)
+ J∗α

(√
2G (u,v, π)

)
J∗α (0)

,

(b) For n ≥ 1, let ‖an‖ = 1 = ‖bn‖, with ‖an − bn‖ = O
(

1
n

)
. Then as n → ∞,

(1.15) holds.
Observe in Theorems 1.2 and 1.3, that when we move off the unit sphere, we need

an increment of O
(

1
n2

)
, while if we stay on the unit sphere, the correct increment

is O
(

1
n

)
.

This paper is organised as follows: in Section 2, we analyze Christoffel functions
for ultraspherical weights. In section 3, we prove Theorem 1.1. In Section 4, we
establish universality for ultraspherical weights. In Section 5, we prove Theorems
1.2 and 1.3.
Throughout, c, C,C1, C2, ... denote positive constants independent of n, and vec-

tors t,x,y,u,v, as well as polynomials p. The same constant does not necessarily
denote the same constant in different occurrences.
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2. Ultraspherical Weights

We begin with the explicit formula for the reproducing kernel due to Xu. This
involves the Jacobi polynomial P (α,β)

n of degree n, that satisfies the orthogonality
relation ∫ 1

−1

P (α,β)
n (x)xj (1− x)

α
(1 + x)

β
dx = 0, 0 ≤ j ≤ n− 1,

normalized by

(2.1) P (α,β)
n (1) =

(
n+ α

n

)
.

Theorem 2.1
(a) Let ρ > 0 and

(2.2) α = ρ+
d

2
;β = ρ+

d

2
− 1.

Let

(2.3) cn,ρ =
2Γ (α+ 1)

Γ (2α+ 1)

Γ (n+ 2α)

Γ (n+ α)
/

∫ π

0

(sinψ)
2ρ−1

dψ.

Then for x,y ∈ B̄,

Kn (Wρ,x,y) = cn,ρ

∫ π

0

P (α,β)
n

(
x · y +

√
1− ‖x‖2

√
1− ‖y‖2 cosψ

)
(sinψ)

2ρ−1
dψ.

(2.4)

(b) For ρ = 0, let

(2.5) α =
d

2
;β =

d

2
− 1.

Let

(2.6) cn,0 =
Γ (α+ 1)

Γ (2α+ 1)

Γ (n+ 2α)

Γ (n+ α)
.

Then

Kn (W0,x,y) = cn,0{P (α,β)
n

(
x · y +

√
1− ‖x‖2

√
1− ‖y‖2

)
+P (α,β)

n

(
x · y −

√
1− ‖x‖2

√
1− ‖y‖2

)
}.(2.7)

Proof
See [14, Thm 3.3, pp. 2448-2449]. �
Next, we recall the Mehler-Heine asymptotic formula for Jacobi polynomials:

Lemma 2.2
Let α > 0, β > −1. Uniformly for s in bounded subsets of [0,∞), we have

(2.8) lim
n→∞

n−αP (α,β)
n

(
1− s

2n2

)
= 2αJ∗α

(√
s
)
.
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Proof
See [10, Thm. 8.1.1, p. 192]. �
We turn to the special case of Theorem 1.1 for ultraspherical weights. Note that

if s = 0, this has been partly done by Xu:

Theorem 2.3
Let {xn} be a sequence in B̄ such that for some s ≥ 0,

(2.9) lim
n→∞

n2
(

1− ‖xn‖2
)

= s.

(a) If ρ > 0, and α is as in (2.2),

lim
n→∞

n−2αKn (Wρ,xn,xn)

= 2α+1 Γ (α+ 1)

Γ (2α+ 1)

∫ π
0
J∗α

(
2
√
s
∣∣∣sin ψ

2

∣∣∣) (sinψ)
2ρ−1

dψ∫ π
0

(sinψ)
2ρ−1

dψ
.(2.10)

The limit holds uniformly for s in bounded subsets of [0,∞). In particular, if
s = 0, then

(2.11) lim
n→∞

n−2αKn (Wρ,xn,xn) =
2

Γ (2α+ 1)
.

(b) If ρ = 0, and α is as in (2.5),

(2.12) lim
n→∞

n−2αKn (Wρ,xn,xn) =
1

Γ (2α+ 1)

{
1 +

J∗α (2
√
s)

J∗α (0)

}
.

In particular, if s = 0, then (2.11) holds.
Proof
(a) Write

(2.13) 1− ‖xn‖2 =
sn
n2
, n ≥ 1,

where
lim
n→∞

sn = s.

From Theorem 2.1(a),

Kn (Wρ,xn,xn) = cn,ρ

∫ π

0

P (α,β)
n

(
‖xn‖2 +

(
1− ‖xn‖2

)
cosψ

)
(sinψ)

2ρ−1
dψ

= cn,ρ

∫ π

0

P (α,β)
n

(
1− 2sn

n2
sin2 ψ

2

)
(sinψ)

2ρ−1
dψ,(2.14)

by (2.13). Here, uniformly for ψ ∈ [0, π], Lemma 2.2 gives

(2.15) n−αP (α,β)
n

(
1− 2sn

n2
sin2 ψ

2

)
= 2αJ∗α

(
2
√
s

∣∣∣∣sin ψ2
∣∣∣∣)+ o (1) .

Moreover, using the fact that as x→∞,
Γ (x+ a)

Γ (x+ b)
= xa−b (1 + o (1)) ,
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we see from (2.3) that

cn,ρ = nα (1 + o (1))
2Γ (α+ 1)

Γ (2α+ 1)
/

∫ π

0

(sinψ)
2ρ−1

dψ.

Substituting this and (2.15) into (2.14), gives (2.10). In the special case when s = 0,
we have ∫ π

0
J∗α

(
2
√
s
∣∣∣sin ψ

2

∣∣∣) (sinψ)
2ρ−1

dψ∫ π
0

(sinψ)
2ρ−1

dψ
= J∗α (0) =

1

2αΓ (α+ 1)
,

and (2.10) simplifies to (2.11).
(b) Here Theorem 2.1(b) gives

Kn (W0,xn,xn) = cn,0{P (α,β)
n (1) + P (α,β)

n

(
2 ‖xn‖2 − 1

)
}

= cn,0{P (α,β)
n (1) + P (α,β)

n

(
1− 2sn

n2

)
}.

The result follows from Lemma 2.2 in an easier fashion than (a). �

3. Proof of Theorem 1.1

We use "needle" polynomials from [5], based on univariate needle polynomials
from [6]:

Lemma 3.1
Let n ≥ 1, δ ∈ (0, 1), and x ∈ B̄. There exists qn ∈ Πd

n such that
(i) qn (x) = 1;
(ii)

0 ≤ qn < 1 in B̄;

(iii)
|qn (y)| ≤ e−cnδ, y ∈ B\B (x, δ) .

Here c is an absolute constant.
Remark
We emphasize that qn depends on x and δ.
Proof
See Lemma 2.1 in [5]. �

Proof of Theorem 1.1(a), (b)
The proof is very similar to that of Theorem 1.1 in [5]. As the measure µ is regular,
with support B̄, there exists a sequence {δn} with limit 0 such that for n ≥ 1,

(3.1) sup
P∈Πdn

‖P‖2L∞(B̄)∫
|P |2 dµ

≤ enδ
2
n .

We may assume that

(3.2) lim
n→∞

nδ2
n =∞.

Since h is uniformly continuous on D as a function in D1 ∩ B̄,
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εn = sup {|h (x)− h (y)| : x,y ∈ D1 ∩B with ‖x− y‖ ≤ δn and dist (x, D) ≤ δn}
→ 0, n→∞.

(3.3)

Let us set m = m (n) = n−
[

2δnn
c

]
− 1, where c is the absolute constant in Lemma

3.1. Choose pm ∈ Πd
n that is extremal for λm (Wρ,xn), so that

λm (Wρ,xn) =

∫
p2
mWρ and pm (xn) = 1.

Choose qn−m as in Lemma 3.1, with the properties qn−m (xn) = 1; 0 ≤ qn−m ≤ 1
in B; and

|qn−m (x)| ≤ e−c(n−m) δn2 , x ∈ B\B
(
xn,

δn
2

)
.

Set
Sn = pmqn−m ∈ Πd

n.

We have Sn (xn) = 1, and so the extremal property of λn, followed by the properties
of qn−m, give

λn (µ,xn)

≤
∫
B̄

S2
ndµ

≤
∫
B(xn,δn)∩B̄

p2
mhWρ + e−c(n−m)δn ‖pm‖2L∞(B̄)

∫
B̄\B(xn,δn)

dµ

≤ (h (xn) + εn)

∫
B(xn,δn)∩B̄

p2
mWρ + e−c(n−m)δnenδ

2
n

(∫
B̄

p2
mWρ

)(∫
B̄

dµ

)
,

by (3.1) and (3.3). Using our choice of m, we continue this as

λn (µ,xn) ≤
(∫

B̄

p2
mWρ

)(
h (xn) + εn + e−2nδ2n+nδ2n

∫
B̄

dµ

)
= λm (Wρ,xn)

(
h (xn) + εn + e−nδ

2
n

∫
B̄

dµ

)
.

Since δn and εn are independent of xn, we have

λn (µ,xn)

λn (Wρ,xn)
≤ λm (Wρ,xn)

λn (Wρ,xn)

(
h (xn) + εn + e−nδ

2
n

∫
B̄

dµ

)
≤ h (xn) + o (1) ,

because m
n = 1 + o (1), and we have the asymptotic in Theorem 2.3, holding uni-

formly for s in compact subsets of [0,∞). Thus

(3.4) lim sup
n→∞

λn (µ,xn)

λn (Wρ,xn)h (xn)
≤ 1.

For the converse inequality, we note that with m1 = m1 (n) = n+
[

2δnn
c

]
, we obtain

by swapping the roles of Wρ and µ in the above,

λm1
(Wρ,xn) ≤ λn (µ,xn)

(
h−1 (xn) + o (1) + e−nδ

2
n

∫
B̄

Wρ

)
,
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and hence

λm1
(Wρ,xn)

λn (Wρ,xn)
≤ λn (µ,xn)

λn (Wρ,xn)

(
h−1 (xn) + o (1) + e−nδ

2
n

∫
B̄

Wρ

)
.

Here the left-hand side is 1 + o (1) by Theorem 2.3, and as m1

n = 1 + o (1), so

1 ≤ lim inf
n→∞

λn (µ,xn)

λn (Wρ,xn)
h−1 (xn) .

Together with (3.4), this gives

lim
n→∞

λn (µ,xn)

λn (Wρ,xn)h (xn)
= 1.

Now apply Theorem 2.3. �

4. Universality for Ultraspherical Weights

In this section, we obtain universality results for ultraspherical weights, as a
special case of Theorem 1.2. We have to distinguish between the cases where we
stay on the sphere (where the perturbation may have size O

(
1
n

)
) and where we

move inside (where it needs to have size O
(

1
n2

)
). We also distinguish between Wρ

for ρ > 0 and ρ = 0. Let G be given by (1.13), so that

G (u,v, ψ) =
(
|x · u|1/2 − |x · v|1/2

)2

+ 4 |x · u|1/2 |x · v|1/2
(

sin
ψ

2

)2

.

Theorem 4.1
Fix ρ > 0 and let α, β be defined by (2.2).
(a) Let ‖x‖ = 1, x · u < 0 and x · v < 0. Then

(4.1) lim
n→∞

Kn

(
Wρ,x+ 1

n2u,x+ 1
n2v

)
Kn (Wρ,x,x)

=

∫ π
0
J∗α

(√
2G (u,v, ψ)

)
(sinψ)

2ρ−1
dψ

J∗α (0)
∫ π

0
(sinψ)

2ρ−1
dψ

.

(b) For n ≥ 1, let ‖an‖ = 1 = ‖bn‖, with ‖an − bn‖ = O
(

1
n

)
. Then as n→∞,

(4.2)
Kn (Wρ,an,bn)

Kn (Wρ,an,an)
=
J∗α (n ‖an − bn‖)

J∗α (0)
+ o (1) .

For ρ = 0, we prove:

Theorem 4.2
Let α, β be defined by (2.5).
(a) Let ‖x‖ = 1, x · u < 0 and x · v < 0. Then
(4.3)

lim
n→∞

Kn

(
W0,x+ 1

n2u,x+ 1
n2v

)
Kn (W0,x,x)

=
1

2

J∗α

(√
2G (u,v, 0)

)
+ J∗α

(√
2G (u,v, π)

)
J∗α (0)

.

(b) For n ≥ 1, let ‖an‖ = 1 = ‖bn‖, with ‖an − bn‖ = O
(

1
n

)
. Then as n→∞,

(4.4)
Kn (W0,an,bn)

Kn (W0,an,an)
=
J∗α (n ‖an − bn‖)

J∗α (0)
+ o (1) .
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We begin with an elementary lemma. In the sequel, we abbreviate G (u,v, ψ) as
G (ψ).

Lemma 4.3 Assume that ‖x‖ = 1, and

(4.5) z = x+
1

n2
u and y = x+

1

n2
v,

where x · u < 0 and x · u < 0. Then uniformly for ψ ∈ [0, π] ,

z · y +

√
1− ‖z‖2

√
1− ‖y‖2 cosψ

= 1− 1

n2
G (ψ) +O

(
1

n4

)
.(4.6)

Proof
Now

‖z‖2 = 1 +
2

n2
x · u+

1

n4
‖u‖2

so √
1− ‖z‖2 =

1

n

√
−2x · u− 1

n2
‖u‖2 =

1

n

√
2 |x · u|+O

(
1

n3

)
.

Similarly, √
1− ‖y‖2 =

1

n

√
2 |x · v|+O

(
1

n3

)
.

Next,

z · y = 1 +
1

n2
x · (u+ v) +

1

n4
u · v.

Then

z · y +

√
1− ‖z‖2

√
1− ‖y‖2 cosψ

= z · y +

√
1− ‖z‖2

√
1− ‖y‖2

{
1− 2 sin2 ψ

2

}
= 1 +

1

n2

{
x · (u+ v) + 2

√
|x · u| |x · v| − 4

√
|x · u| |x · v| sin2 ψ

2

}
+O

(
1

n4

)
= 1− 1

n2

{(
|x · u|1/2 − |x · v|1/2

)2

+ 4
√
|x · u| |x · v| sin2 ψ

2

}
+O

(
1

n4

)
= 1− G (ψ)

n2
+O

(
1

n4

)
.

�

Proof of Theorem 4.1(a)
Let z,y be given by (4.5). From (2.4), and (4.6),

n−αKn (Wρ, z,y) = cn,ρ

∫ π

0

n−αP (α,β)
n

(
z · y +

√
1− ‖z‖2

√
1− ‖y‖2 cosψ

)
(sinψ)

2ρ−1
dψ

= cn,ρ

∫ π

0

n−αP (α,β)
n

(
1− G (ψ)

n2
+O

(
1

n4

))
(sinψ)

2ρ−1
dψ

= cn,ρ

{
2α
∫ π

0

J∗α

(√
2G (ψ)

)
(sinψ)

2ρ−1
dψ + o (1)

}
,



ORTHOGONAL POLYNOMIALS 11

by Lemma 2.2. In particular, when u = v = 0, so that z = y = x, and G (ψ) = 0,
we obtain

(4.7) n−αKn (Wρ,x,x) = cn,ρ

{
2αJ∗α (0)

∫ π

0

(sinψ)
2ρ−1

dψ + o (1)

}
.

These last two limits give the result. �

Proof of Theorem 4.1(b)
As ‖an‖ = ‖bn‖ = 1,

(4.8) an·bn = 1− 1

2n2
(n ‖an − bn‖)2

.

Then (2.4) shows that

n−αKn (Wρ,an,bn) = cn,ρ

∫ π

0

n−αP (α,β)
n

(
an·bn +

√
1− ‖an‖2

√
1− ‖bn‖2 cosψ

)
(sinψ)

2ρ−1
dψ

= cn,ρ

∫ π

0

n−αP (α,β)
n

(
1− 1

2n2
(n ‖an − bn‖)2

)
(sinψ)

2ρ−1
dψ

= cn,ρ

{
2αJ∗α (n ‖an − bn‖)

∫ π

0

(sinψ)
2ρ−1

dψ + o (1)

}
,

by Lemma 2.2. Using this and its special case with bn = an gives the result.

Proof of Theorem 4.2(a)
Let z,y be given by (4.5). By (2.7) and (4.6), with ψ = 0, π,

n−αKn (W0, z,y) = cn,0n
−α{P (α,β)

n

(
z · y +

√
1− ‖z‖2

√
1− ‖y‖2

)
+P (α,β)

n

(
z · y −

√
1− ‖z‖2

√
1− ‖y‖2

)
}

= cn,0{n−αP (α,β)
n

(
1− G (0)

n2
+O

(
1

n4

))
+n−αP (α,β)

n

(
1− G (π)

n2
+O

(
1

n4

))
}

= cn,02α
{
J∗α

(√
2G (0)

)
+ J∗α

(√
2G (π)

)
+ o (1)

}
,

by Lemma 2.2. Also, as ‖x‖ = 1, (2.7) gives

n−αKn (W0,x,x) = 2cn,0n
−αP (α,β)

n (1)

= cn,0
{

2α+1J∗α (0) + o (1)
}
,

by Lemma 2.2 again. Combining the last two limits, gives the result. �

Proof of Theorem 4.2(b)
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Here we still have (4.8), so (2.7) gives

Kn (W0,an,bn) = cn,0{P (α,β)
n

(
an·bn +

√
1− ‖an‖2

√
1− ‖bn‖2

)
+P (α,β)

n

(
an·bn −

√
1− ‖an‖2

√
1− ‖bn‖2

)
}

= 2cn,0P
(α,β)
n (an·bn)

= cn,0
{

2α+1J∗α (n ‖an−bn‖) + o (1)
}
,

while
Kn (W0,an,an) = cn,0

{
2α+1J∗α (0) + o (1)

}
.

�

5. Proof of Theorems 1.2 and 1.3

The method follows that in [7]. We begin with

Lemma 5.1
Assume that µ, µ∗ are measures with support B̄ ⊂ Rd, and for some ∆ > 0,

(5.1) dµ ≤ ∆ dµ∗ in K.

Then for x,y ∈ Rd, ∣∣∣∣Kn (µ,x,y)− 1

∆
Kn (µ∗,x,y)

∣∣∣∣ /Kn (µ,x,x)

≤
(
Kn (µ,y,y)

Kn (µ,x,x)

)1/2 [
1− Kn (µ∗,x,x)

∆Kn (µ,x,x)

]1/2

.(5.2)

Proof
See [5, Lemma 5.1]. �
Now we can follow the method of [5], [7].

Proof of Theorem 1.2(a)
Let ε ∈ (0, 1) and choose δ > 0 such that h (which is positive and uniformly
continuous on D) satisfies

(5.3) (1 + ε)
−1 ≤ h (y) /h (z) ≤ 1 + ε for z,y ∈ B (x, δ) ∩ B̄,

whenever dist(x,D) ≤ δ. Choose x ∈ D. Set,

τ = h (x)
−1

(1 + ε) .

We shall apply Lemma 5.1 twice. Define a measure µ∗ by dµ∗ = dµ in B (x, δ)∩ B̄,
and

dµ∗ = max

{
1,

1

τ

}
(Wρdm+ dµ) in B̄\B (x, δ) ,

where, recall, dm is Lebesgue measure.
Step 1: µ and µ∗

Since µ∗ ≥ µ, we have the inequality (5.2) with ∆ = 1. Moreover, since µ is regular
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and µ∗ ≥ µ, so µ∗ is also regular. Next, from (1.9) of Theorem 1.1, as µ = µ∗ in
B (x, δ) ∩ B̄,

lim
n→∞

Kn (µ∗,xn,xn)

Kn (µ,xn,xn)
= 1

for any sequence {xn} in B
(
x, δ2

)
. In particular, this is the case if

(5.4) xn = x+
u

n2
or xn = x+

v

n2
, n ≥ 1.

Moreover, Theorem 1.1(a), and the continuity in s, and positivity of the right-hand
side of (1.9), show that with such {xn} ,

(5.5)
Kn (µ,xn,xn)

Kn (µ,x,x)
≤ C.

Then Lemma 5.1, with ∆ = 1 there, shows that for u,v in compact subsets of Rn,

(5.6) lim
n→∞

Kn

(
µ,x+ u

n2 ,x+ v
n2

)
−Kn

(
µ∗,x+ u

n2 ,x+ v
n2

)
Kn (µ,x,x)

= 0.

Step 2: Wρdm and µ∗

Now Wρdm ≤ τ dµ∗ in B̄\B (x, δ). Also, in B̄ ∩B (x, δ), (5.3) and our choice of τ
show that

(5.7) Wρdm = h−1dµ ≤ τ dµ ≤ τ dµ∗.
So in B̄, Wρdm ≤ τ dµ∗. By Theorem 1.1, and (5.6), with xn = x + u

n2 , n ≥ 1,
and by continuity of h,

lim
n→∞

Kn (µ∗,xn,xn)

τKn (Wρ,xn,xn)
=

1

τh (x)
= (1 + ε)

−1
.

Furthermore, we have

(5.8)
Kn (Wρ,xn,xn)

Kn (Wρ,x,x)
≤ C.

Then Lemma 5.1 with ∆ = τ gives∣∣Kn

(
Wρ,x+ u

n2 ,x+ v
n2

)
− 1

τKn

(
µ∗,x+ u

n2 ,x+ v
n2

)∣∣
Kn (Wρ,x,x)

≤ C

[
1− Kn (µ∗,xn,xn)

τKn (Wρ,xn,xn)

]1/2

≤ C1 (2ε)
1/2

,(5.9)

for n ≥ n0, and u,v in a given compact subset of Rd. Since C is independent of
u,v,n, we obtain from this and (5.6), and the bound on the Christoffel functions
in Lemma 5.2,∣∣τKn

(
Wρ,x+ u

n2 ,x+ v
n2

)
−Kn

(
µ,x+ u

n2 ,x+ v
n2

)∣∣
Kn (µ,x,x)

≤ C1ε
1/2,

and hence for large enough n, and u,v in compact subsets of Rn,∣∣∣h (x)
−1
Kn

(
Wρ,x+ u

n2 ,x+ v
n2

)
−Kn

(
µ,x+ u

n2 ,x+ v
n2

)∣∣∣
Kn (µ,x,x)

≤ C1ε
1/2,

where C1 is independent of u,v,x, n. Then Theorem 4.1(a) and Theorem 1.1 now
give the result. �
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Proof of Theorem 1.2(b)
This follows similarly from Theorem 4.1(b). �

Proof of Theorem 1.3
This follows similarly from Theorem 4.2. �
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