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Abstract. We establish asymptotics for Christoffel functions associated with
multivariate orthogonal polynomials. The underlying measures are assumed to
be regular on a suitable domain - in particular this is true if they are positive
a.e on a compact set that admits analytic parametrization. As a consequence,
we obtain asymptotics for Christoffel functions for measures on the ball and
simplex, under far more general conditions than previously known. As another
consequence, we establish universality type limits in the bulk in a variety of
settings.
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1. Introduction1

Let µ be a positive measure on the real line with infinitely many points in its
support, and

∫
xjdµ (x) finite for j = 0, 1, 2, ... . Then we may define orthonormal

polynomials
pn (x) = γnx

n + ..., γn > 0,

satisfying ∫ ∞
−∞

pnpmdµ = δmn.

The nth reproducing kernel is

Kn (x, t) =

n−1∑
j=0

pj (x) pj (t)

and the nth Christoffel function is

(1.1) λn (µ, x) =
1

Kn (x, x)
= inf

deg(P )<n

∫
P (t)

2
dµ (t)

P 2 (x)
.

Asymptotics for Christoffel functions play a crucial role in analysis of orthogonal
polynomials, and in weighted approximation [12]. The most general asymptotics
for the case where the support supp[µ] is compact, require µ to be regular in the
sense of Stahl, Totik, and Ullman, or just regular. This requires [15, p. 66] that

(1.2) lim
n→∞

(
sup

deg(P )≤n

|P (x)|2∫
|P |2 dµ

)1/n

≤ 1,

Date : April 25, 2012.
1Research of first author supported by OTKA Grant T77812. Written during first author’s

visit to the School of Mathematics, Georgia Institute of Technology. Research of second author
supported by NSF grant DMS1001182 and US-Israel BSF grant 2008399

1



2 A.KROÓ AND D.S. LUBINSKY

q.e. in supp[µ]. Here q.e. (quasi-everywhere) means except on a set of logarithmic
capacity 0. This type of regularity should not be confused with the notion of a
regular Borel measure. When the complement of supp[µ] is regular in the sense
of the Dirichlet problem, (yet another notion of regularity!) [15, p. 68], one may
replace (1.2) by

(1.3) lim
n→∞

(
sup

deg(P )≤n

‖P‖L∞(supp[µ])∫
|P |2 dµ

)1/n

≤ 1.

If supp[µ] consists of finitely many intervals, a suffi cient condition for regularity,
called the Erdős-Turán criterion, is that µ′ > 0 a.e. in supp[µ]. See the compre-
hensive monograph [15].
When µ is regular, and in some subinterval I of the support, we have

(1.4)
∫
I

logµ′ > −∞,

Totik [16] proved that for a.e. x ∈ I,

lim
n→∞

nλn (µ, x) =
µ′ (x)

ω (x)
.

Here ω is the equilibrium density for supp[µ], in the sense of potential theory. In
the special case that the support of µ is an interval, this result had been established
earlier by Maté, Nevai, and Totik [10].
One application of asymptotics for Christoffel functions is to universality limits.

These arise in analysis of random matrices associated with unitary ensembles, and
for compactly supported µ, may be reduced to the limit

lim
n→∞

Kn

(
x+ aµ′(x)

nω(x) , x+ bµ′(x)
nω(x)

)
Kn (x, x)

=
sinπ (a− b)
π (a− b) ,

uniformly for a, b in compact subsets of the real line. For the case of compactly
supported µ, that are regular, and satisfy (1.4), Totik [17] showed that universality
holds for a.e. x ∈ I. The second author showed, that universality holds in measure
without assuming regularity [9]. We emphasize that there is a vast literature on this
topic, and varying measures are of more interest to physicists than fixed measures
with compact support. See [4], [5], [13], [14].
In this paper, we shall analyze asymptotics of Christoffel functions for multivari-

ate orthogonal polynomials, and apply these to universality type limits. Let d ≥ 2,
and Πd

n denote the space of polynomials in d variables of degree at most n. Let N
d
n

denote its dimension, so

Nd
n =

(
n+ d

n

)
.

Let µ be a positive measure on Rd with compact support such that
{
x ∈ Rd : µ′ (x) > 0

}
has non-empty interior. This ensures that∫

P 2dµ > 0

for every non-trivial polynomial P .
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We let Kn (µ,x,y) denote the reproducing kernel for µ and Πd
n, so that for all

P ∈ Πd
n, and all x ∈ Rd,

P (x) =

∫
Kn (µ,y,x) dµ (y) .

Note that this notation is different to the one dimensional case, where we assumed
exactness for polynomials of degree ≤ n− 1, in accordance with the standard uni-
variate notation. We adopt this difference to be consistent with the most common
multivariate convention.
One of the convenient features of the reproducing kernel is that it is independent

of how we order the monomials, and generate orthonormal polynomials. The nth
Christoffel function for µ is

λn (µ,x) =
1

Kn (µ,x,x)
.

It admits the extremal property

(1.5) λn (µ,x) = inf
P∈Πdn

∫
P (t)

2
dµ (t)

P 2 (x)
.

When µ is absolutely continuous with respect to d dimensional Lebesgue measure,
and µ′ = W , we shall write λn (W,x).
Asymptotics for these multivariate Christoffel functions have been established

in a number of papers [1], [2], [3], [19], [20], [23], for Jacobi weights, and weights
that satisfy some structural restriction, such as being radially or centrally sym-
metric. For our purposes, the most general result is due to Bos, Della Vecchia
and Mastroianni [2]. They showed that for a centrally symmetric weight W (x) on

the d dimensional ball, for which W (x)

√
1− ‖x‖2 satisfies a centrally symmetric

Lipschitz condition of some positive order on the unit ball in Rd,

lim
n→∞

(
n+ d

d

)
λn (W,x) =

Γ
(
d+1

2

)
π
d+1
2

√
1− ‖x‖2W (x) , ‖x‖ < 1.

Here, and in the sequel, the norm is the Euclidean norm. Xu [20] established
one-sided asymptotics under more general conditions.
By using "needle polynomials", we shall generalize the above quoted results to

a much larger class of measures. We first extend the notion of regularity to d
dimensions. A compactly supported measure µ on Rd is said to be regular, if

(1.6) lim
n→∞

(
sup
P∈Πdn

‖P‖2L∞(supp[µ])∫
|P |2 dµ

)1/n

= 1.

This is often called the Bernstein-Markov condition [3], but we prefer the term
regularity.
Our most general ratio asymptotic is:

Theorem 1.1
Let µ, ν be positive measures, whose support is a compact set K ⊂ Rd, and both are
regular. Let D ⊂ D1 ⊂ K, where D is compact and D1 is open. Assume that ν
and µ are mutually absolutely continuous in D, and the Radon-Nikodym derivative
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dν
dµ is positive and continuous in D, while uniformly in D1,

(1.7) lim
ε→0+

(
lim sup
n→∞

λ[n(1−ε)] (µ,x)

λn (µ,x)

)
= 1.

Then uniformly for x ∈ D, and y ∈ B
(
x, 1√

n

)
, we have

(1.8) lim
n→∞

λn (ν,y)

λn (µ,y)
=
dν

dµ
(x) .

Remark
(a) In the statement, [s] denotes the greatest integer ≤ s, while B (x, r) is the
d−dimensional open ball with center x, radius r.
(b) Note that (1.7) is satisfied if for some β > 0 and positive continuous function
F ,

(1.9) lim
n→∞

nβλn (µ,x) = F (x) ,

uniformly in D1.
(c) In Section 7, we shall present a version of Theorem 1.1 in which we replace
continuity of dνdµ by a Lebesgue point condition.

A suffi cient condition for the regularity (1.6) involves a compact set K with
analytic parametrization. This means that for any x ∈ K, there exists a curve
γ (t) ∈ Rd, t ∈ [0, 1], analytic and bounded in an open set Ω ⊂ C that contains
[0, 1], and such that γ (0) = x, while for all 0 < t < 1,

B (γ (t) , φ (t)) ⊂ K.

Here Ω and the bound on γ depend only on K, while φ is a positive continuous
function tending to 0 as t → 0, and that also depends only on K. In particular,
any polygon or convex set with non-empty interior has analytic parametrization.
In fact local convexity also suffi ces, see [6] for details.

Theorem 1.2
Assume that K ⊂Rd is a compact set with analytic parametrization, and that µ, ν
are positive measures on K such that µ′, ν′ > 0 a.e. on K. Let D ⊂ D1 ⊂ K, where
D is compact and D1 is open. Assume that the Radon-Nikodym derivative ν′

µ′ is

positive and continuous in D, while uniformly in D1, (1.7) holds. Then uniformly

for x ∈ D, and y ∈ B
(
x, 1√

n

)
, we have (1.8).

The proof of Theorem 1.2 also shows that we may replace the condition that K
has analytic parametrization by a condition that it admits a Remez inequality.
As a consequence, we can deduce asymptotics for Christoffel functions associated

with regular measures on the ball and the simplex:

Theorem 1.3
Let B̄ = B (0, 1) =

{
x ∈ Rd : ‖x‖ ≤ 1

}
. Let ν be a regular measure on B̄, and

assume that D is a compact subset of the interior of B̄, such that ν′ is positive



ORTHOGONAL POLYNOMIALS 5

and continuous in D. Then uniformly for x ∈ D, and y ∈ B
(
x, 1√

n

)
,

(1.10) lim
n→∞

(
n+ d

d

)
λn (ν,y) =

ν′ (x)

W ball
0 (x)

,

where

(1.11) W ball
0 (x) =

Γ
(
d+1

2

)
π
d+1
2

(
1− ‖x‖2

)−1/2

.

Theorem 1.4
Let

Σd =

x ∈ Rd : x1, x2, ..., xd ≥ 0; 1−
d∑
j=1

xj ≥ 0


denote the d−dimensional simplex. Let ν be a regular measure on Σd, and assume
that D is a compact subset of the interior of Σd, such that ν′ is positive and

continuous in D. Then uniformly for x ∈ D, and y ∈ B
(
x, 1√

n

)
,

(1.12) lim
n→∞

(
n+ d

d

)
λn (ν,y) =

ν′ (x)

W simplex
0 (x)

,

where

(1.13) W simplex
0 (x) =

Γ
(
d+1

2

)
π
d+1
2

x
−1/2
1 x

−1/2
2 ...x

−1/2
d x

−1/2
d+1 ,

and

(1.14) xd+1 = 1−
d∑
j=1

xj .

In the second last line, of course x = (x1, x2, ..., xd).
We next turn to universality limits. We start with a general ratio result:

Theorem 1.5
Let µ, ν be positive measures and K, D,D1 be sets satisfying the hypotheses of The-
orem 1.1. Assume moreover, that µ and ν are absolutely continuous in D1, while
µ′ and ν′ are bounded above and below by positive constants in D1. Then uniformly
for x ∈ D, and u,v in compact subsets of Rd,

(1.15) lim
n→∞

Kn

(
µ,x+ u

n ,x+ v
n

)
− dν

dµ (x)Kn

(
ν,x+ u

n ,x+ v
n

)
Kn (µ,x,x)

= 0.

As a consequence, we can prove:

Theorem 1.6
Let µ, ν be positive measures and K, D,D1 be sets satisfying the hypotheses of The-
orem 1.2. Assume moreover, that µ and ν are absolutely continuous in D1, while
µ′ and ν′ are bounded above and below by positive constants in D1. Assume that
for some function F : R2 → R, uniformly for x ∈ D, and u,v ∈ Rn,

(1.16) lim
n→∞

Kn

(
µ,x+ u

n ,x+ v
n

)
Kn (µ,x,x)

= F (u,v) .
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Then uniformly for x ∈ D, and u,v ∈ Rn,

(1.17) lim
n→∞

Kn

(
ν,x+ u

n ,x+ v
n

)
Kn (ν,x,x)

= F (u,v) .

It is straightforward to compute universality limits for the Chebyshev weight on
the ball and simplex, from known representations due to Y. Xu, for the reproducing
kernel for the Chebyshev weight on the ball and simplex. Using these, and Theorem
1.5, we can obtain general universality results on the ball and simplex. Somewhat
surprisingly, the concrete formulations in the bulk involve the Bessel function

Jα (z) =
(z

2

)α ∞∑
j=0

(
− 1

4z
2
)j

j!Γ (j + α+ 1)
,

rather than the usual sinc kernel. Of course, on the real line the Bessel function
and its associated Bessel kernel arise primarily at the edge of the spectrum. We
shall find it convenient to also use

(1.18) J∗α (z) = z−αJα (z) =

(
1

2

)α ∞∑
j=0

(
− 1

4z
2
)j

j!Γ (j + α+ 1)
.

It has the advantage of being entire, and in particular, non-zero at 0, with

(1.19) J∗α (0) =
1

2αΓ (α+ 1)
.

In the literature, jα (x) is sometimes used to denote J∗α (x) /J∗α (0), but we shall not
use this.

Theorem 1.7
Let µ be a regular measure on B̄, and assume that D is a compact subset of the
interior of B̄, such that µ′ is positive and continuous in D. Then uniformly for
x ∈ D, and u,v in compact subsets of Rd,

(1.20) lim
n→∞

Kn

(
µ,x+ u

n ,x+ v
n

)
Kn (µ,x,x)

=
J∗d/2

(√
G (x,u,v)

)
J∗d/2 (0)

,

where, if · denotes the standard Euclidean inner product,

(1.21) G (x,u,v) = ‖u− v‖2 +
(x· (u− v))

2

1− ‖x‖2
.

For the simplex, we have

Theorem 1.8
Let µ be a regular measure on Σd, and assume that D is a compact subset of the
interior of Σd, such that µ′ is positive and continuous in D. Then uniformly for
x ∈ D, and u,v in compact subsets of Rd,

(1.22) lim
n→∞

Kn

(
µ,x+ u

n ,x+ v
n

)
Kn (µ,x,x)

=
J∗d/2

(√
H (x,u,v)

)
J∗d/2 (0)

,
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where, with the notation (1.14),

(1.23) H (x,u,v) =

d+1∑
j=1

(uj − vj)2

xj
.

Of course, in the last line, xj is the jth component of x, and so on, while ud+1, vd+1

are given by (1.14) for the vectors u,v.
This paper is organised as follows: in Section 2, we prove Theorem 1.1. We

prove Theorem 1.2 in Section 3, and Theorems 1.3 and 1.4 in Section 4. Theorem
1.5 and Theorem 1.6 are proved in Section 5, and Theorems 1.7 and 1.8 are proved
in Section 6. We prove an extension of Theorem 1.1 in Section 7.
Throughout, c, C,C1, C2, ... denote positive constants independent of n, and vec-

tors t,x,y,u,v, as well as polynomials p. The same constant does not necessarily
denote the same constant in different occurrences.
Acknowledgement
The authors thank the referee for helpful comments, and most especially for

suggesting use of the Mehler-Heine formula to shorten Lemma 6.2.

2. Proof of Theorem 1.1

We shall use the "needle" polynomials constructed by Kroó and Swetits [7]. We
could also have used the fast decreasing polynomials of Ivanov and Totik.

Lemma 2.1
Let n ≥ 1, δ ∈ (0, 1), and x ∈ B̄. There exists qn ∈ Πd

n such that
(i) qn (x) = 1;
(ii)

0 ≤ qn ≤ 1 in B̄;

(iii)

|qn (y)| ≤ e−cnδ, y ∈ B\B (x, δ) .

Here c is an absolute constant.
Remark
We emphasize that qn depends on x and δ. The theory of fast decreasing polyno-
mials implies that one cannot choose qn independent of δ.
Proof
We follow the construction of Lemma 3 and Corollary 2 in [7, pp. 92-93]. Consider
the polynomial

rm (t) =

(
Tm
(
1 + δ2 − t2

)
Tm
(
1 + δ2

) )2

∈ Π1
4m,

where Tm is the usual Chebyshev polynomial. Here rm (0) = 1. For t ∈ [−1, 1], we
have 0 ≤ 1 + δ2 − t2 ≤ 1 + δ2, and Tn is increasing on [1,∞), so in [−1, 1]

0 ≤ rm ≤ 1.

Finally, for |t| ∈ [δ, 1], we have 1 + δ2 − t2 ≤ 1, so

rm (t) ≤ 1(
Tm
(
1 + δ2

))2 ≤ e−Cmδ,



8 A.KROÓ AND D.S. LUBINSKY

an easy consequence of the identity

Tm (t) =
1

2

((
t+
√
t2 − 1

)m
+
(
t+
√
t2 − 1

)−m)
.

Now we set m = [n/4], and

qn (y) = rm

(
‖y − x‖

4

)
.

Then clearly qn ∈ Πd
n. The properties (i) and (ii) follow directly from those of rm,

while if y ∈ B and ‖y − x‖ ≥ 4δ,

qn (y) ≤ e−Cmδ ≤ e−c1nδ.

Now simply replace δ by δ
4 . �

Proof of Theorem 1.1
As the measure µ is regular, with support K, there exists a sequence {δn} with
limit 0 such that for n ≥ 1,

(2.1) sup
P∈Πdn

‖P‖2L∞(supp[µ])∫
|P |2 dµ

≤ enδ
2
n .

We may assume that

(2.2) lim
n→∞

nδ2
n =∞.

Since h = dν
dµ is uniformly continuous on D,

εn = sup {|h (x)− h (y)| : x ∈ D,y ∈ K, ‖x− y‖ ≤ δn}
→ 0, n→∞.(2.3)

Let us set m = m (n) = n−
[

2δnn
c

]
− 1, where c is the absolute constant in Lemma

2.1. We may assume, by a translation and dilation of the support, that K ⊂ B.
Now choose any x0 ∈ D and any y ∈ B

(
x0,

δn
2

)
. Choose pm ∈ Πd

n that is extremal
for λm (µ,y), so that

λm (µ,y) =

∫
p2
mdµ and pm (y) = 1.

Choose qn−m as in Lemma 2.1, with the properties qn−m (y) = 1; 0 ≤ qn−m ≤ 1 in
B; and

|qn−m (x)| ≤ e−c(n−m) δn2 , x ∈ B\B
(
y,
δn
2

)
.

Set

Sn = pmqn−m ∈ Πd
n.
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We have Sn (y) = 1, and so the extremal property of λn, followed by the properties
of qn−m, give

λn (ν,y)

≤
∫
K
S2
ndν

≤
∫
B(x0,δn)

p2
mhdµ+ e−c(n−m)δn ‖pm‖2L∞(K)

∫
K\B(x0,δn)

dν

≤ (h (x0) + εn)

∫
B(x0,δn)

p2
mdµ+ e−c(n−m)δnenδ

2
n

(∫
K
p2
mdµ

)(∫
K
dν

)
,

by (2.1) and (2.3). Using our choice of m, we continue this as

λn (ν,y) ≤
(∫
K
p2
mdµ

)(
h (x0) + εn + e−2nδ2n+nδ2n

∫
K
dν

)
= λm (µ,y)

(
h (x0) + εn + e−nδ

2
n

∫
K
dν

)
.

Since δn and εn are independent of x0 ∈ D,y ∈ B
(
x0,

δn
2

)
, we have

λn (ν,y)

λn (µ,y)
≤ λm (µ,y)

λn (µ,y)

(
h (x0) + εn + e−nδ

2
n

∫
K
dν

)
≤ h (x0) + o (1) ,

uniformly for x0 ∈ D,y ∈ B
(
x0,

δn
2

)
, because mn = 1+o (1), and by our hypothesis

(1.7). Thus we have shown uniformly for such x0,y,

(2.4) lim sup
n→∞

λn (ν,y)

λn (µ,y)
≤ h (x0) .

Since (2.2) holds, B
(
x0,

δn
2

)
⊃ B

(
x0,

1√
n

)
, for large enough n. For the converse

inequality, we note that with m1 = m1 (n) = n +
[

2δnn
c

]
, we obtain by swapping

the roles of µ and ν in the above,

λm1
(µ,y) ≤ λn (ν,y)

(
h−1 (x0) + o (1) + e−nδ

2
n

∫
K
dµ

)
,

and hence
λm1

(µ,y)

λn (µ,y)
≤ λn (ν,y)

λn (µ,y)

(
h−1 (x0) + o (1) + e−nδ

2
n

∫
K
dµ

)
.

Here the left-hand side is 1 + o (1) by our hypothesis (1.7), and as m1

n = 1 + o (1),
so

1 ≤ lim inf
n→∞

λn (ν,y)

λn (µ,y)
h−1 (x0) ,

which together with (2.4), gives the result. �

3. Proof of Theorem 1.2

Recall that we defined the notion of analytic parametrization before Theorem
1.2. It suffi ces to prove the following theorem, and then apply Theorem 1.1:

Theorem 3.1
Assume that K is a compact set with analytic parametrization, and that µ is a
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positive measure on K such that µ′ > 0 a.e. on K. Then µ is regular.
Proof
Let m denote Lebesgue measure on Rd. The first fact we need is a Remez inequal-
ity, proved in [6, Thm. 6, p. 31]. There exists a positive continuous function φ∗

defined on [0,∞), such that

(3.1) lim
ε→0+

φ∗ (ε) = 0

and if n ≥ 1, P ∈ Πd
n, and F ⊂ K with m (F) ≤ ε, then

(3.2) ‖P‖L∞(K) ≤ e
nφ∗(ε) ‖P‖L∞(K\F) .

Next, for δ > 0, we set

ψ (δ) = inf {µ (L) : L ⊂ K,m (L) ≥ δ} .

Since µ′ > 0 a.e. on K, ψ (δ) > 0 for δ > 0, and ψ is monotonically increasing, with
limit 0 at 0.

We proceed to prove regularity. Let ε ∈ (0,min {1,m (K)}) and P ∈ Πd
n be a

non-constant polynomial. Choose a = a (ε) ∈ (0, 1) such that

Qa =
{
x ∈ K : |P (x)| > a ‖P‖L∞(K)

}
has m (Qa) = ε. Note that m (Qa) is a strictly decreasing continuous function of
a, with limit 0 at 1 and limitm (K) at 0, so we can choose such an a. Now we have

|P | ≤ a ‖P‖L∞(K) in K\Qa.

Moreover, since m (Qa) = ε, the Remez inequality (3.2) gives

‖P‖L∞(K) ≤ e
nφ∗(ε) ‖P‖L∞(K\Qa) .

Combining these two inequalities, yields

aenφ
∗(ε) ≥ 1.

In addition, as m (Qa) = ε,

µ (Qa) ≥ ψ (ε) .

These last two inequalities gives∫
K
|P |2 dµ ≥

∫
Qa

|P |2 dµ ≥ a2 ‖P‖2L∞(K) µ (Qa) ≥ e−2nφ∗(ε) ‖P‖2L∞(K) ψ (ε) .

As ε > 0 , ψ and φ∗ are independent of P , we obtain

sup
P∈Πdn

‖P‖2L∞(K)∫
K |P |

2
dµ
≤ 1

ψ (ε)
e2nφ∗(ε).

Taking nth roots and lim sup’s, gives

lim sup
n→∞

(
sup
P∈Πdn

‖P‖2L∞(K)∫
K |P |

2
dµ

)1/n

≤ e2φ∗(ε).

Finally, as ε is arbitrary, and (3.1) holds, we have the result. �



ORTHOGONAL POLYNOMIALS 11

4. Proof of Theorems 1.3 and 1.4

It is easily seen that the ball and simplex admit analytic parametrization, and we
can take the curve γ to be just a straight line segment. All we need is asymptotics
for the Christoffel functions for the Chebyshev weight on the ball or simplex, and
these have been established by Bos and Xu.

Proof of Theorem 1.3
Bos [1, p. 100] and Xu [20, Theorem 4.1, p. 266] proved that for ‖x‖ < 1,

lim
n→∞

(
n+ d

d

)
λn
(
W ball

0 ,x
)

= 1.

Bos states the uniform convergence in compact sets, while Xu omits it from his
statement, but it is clear from his proof. Our normalization of W ball

0 is that of Xu.
Then Theorem 1.1, with dµ (x) = W ball

0 (x) dx gives the result. Note that this µ
satisfies (1.7) uniformly in compact subsets of B. �

Proof of Theorem 1.4
Xu [23, Cor. 2.4, p. 127] proved that for x in the interior of Σd,

lim
n→∞

(
n+ d

d

)
λn

(
W simplex

0 ,x
)

= 1.

Again, the uniform convergence in compact sets, is obvious from the proof. We note
a minor misprint in [23, p. 123] in the definition of W simplex

0 : the normalization
constant should be replaced by its reciprocal. Again, we can apply Theorem 1.1.
�

5. Proof of Theorems 1.5 and 1.6

The method follows that in [8]. We begin with

Lemma 5.1
Assume that µ, µ∗ are measures with compact support K ⊂ Rd, and for some ρ > 0,

(5.1) dµ ≤ ρ dµ∗ in K.
Then for x,y ∈ Rd, ∣∣∣∣Kn (µ,x,y)− 1

ρ
Kn (µ∗,x,y)

∣∣∣∣ /Kn (µ,x,x)

≤
(
Kn (µ,y,y)

Kn (µ,x,x)

)1/2 [
1− Kn (µ∗,x,x)

ρKn (µ,x,x)

]1/2

.(5.2)

Proof
This is essentially the same as in [8], but we include the details because of the
different setting. Now∫

K

(
Kn (µ,x, t)− 1

ρ
Kn (µ∗,x, t)

)2

dµ (t)

=

∫
K
K2
n (µ,x, t) dµ (t)− 2

ρ

∫
K
Kn (µ,x, t)Kn (µ∗,x, t) dµ (t) +

1

ρ2

∫
K
K2
n (µ∗,x, t) dµ (t)

= Kn (µ,x,x)− 2

ρ
Kn (µ∗,x,x) +

1

ρ2

∫
K
K2
n (µ∗,x, t) dµ (t) ,
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by the reproducing kernel property. As dµ ≤ ρ dµ∗, we also have∫
K
K2
n (µ∗,x, t) dµ (t) ≤ ρ

∫
K
K2
n (µ∗,x, t) dµ∗ (t) = ρKn (µ∗,x,x) .

So ∫
K

(
Kn (µ,x, t)− 1

ρ
Kn (µ∗,x, t)

)2

dµ (t)

≤ Kn (µ,x,x)− 1

ρ
Kn (µ∗,x,x) .(5.3)

Next for any polynomial P ∈ Πd
n, we have the Christoffel function estimate

(5.4) |P (y)| ≤ Kn (µ,y,y)
1/2

(∫
K
P 2dµ

)1/2

.

Applying this to P (t) = Kn (µ,x, t) − 1
ρKn (µ∗,x, t) and using (5.3) gives, for all

x,y ∈ Rd, ∣∣∣∣Kn (µ,x,y)− 1

ρ
Kn (µ∗,x,y)

∣∣∣∣
≤ Kn (µ,y,y)

1/2

[
Kn (µ,x,x)− 1

ρ
Kn (µ∗,x,x)

]1/2

.

�
Next, we establish an elementary bound on Christoffel functions:

Lemma 5.2
Let µ be a measure with compact support K, and let B (x0, δ) be a ball inside that
support. Assume that µ is absolutely continuous in B (x0, δ), satisfying a.e. there

0 < C1 ≤ µ′ ≤ C2 <∞.

Then, given 0 < η < δ, there exist C3, C4 > 0, such that for n ≥ 1,

(5.5) C3 ≤
(
n+ d

d

)
λn (µ,x) ≤ C4 in B (x0, η) .

Proof
The lower bound follows from Theorem 1.3 and monotonicity of Christoffel functions
in the measure. Indeed, let ν′1 = 1 in B (x0, δ) and 0 elsewhere. By a scaled form
of Theorem 1.3,

lim
n→∞

(
n+ d

d

)
λn (ν1,x) = C

√
1−

(
‖x− x0‖

δ

)2

, x ∈ B (x0, δ) ,

where C depends only on d and δ. The convergence is uniform in compact subsets
of B (x0, δ). Since λn (µ,x) ≥ C1λn (ν1,x), the lower bound in (5.5) follows. Next,
choose r > 0 so large that B (x0, r) contains K, and let dν2 = dµ|K\B(x0,δ) +

C2dx|B(x0,r). Thus dν2 is the sum of µ restricted to K\B (x0, δ), and a multiple
of the Legendre weight for the ball B (x0, r). Since dν2 ≥ C2dx|B(x0,r), and the
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latter is regular on B (x0, r), it is easily seen that ν2 is also regular. Moreover, ν′2 is
positive and continuous on B (x0, δ), so Theorem 1.3 gives uniformly on B (x0, η) ,

lim
n→∞

(
n+ d

d

)
λn (ν2,x) = C

√
1−

(
‖x− x0‖

r

)2

,

for some C depending on δ. But also µ ≤ ν2, so λn (µ, ·) ≤ λn (ν2, ·), and the upper
bound in (5.5) follows. �

We turn to the

Proof of Theorem 1.5
Let x0 ∈ D, ε ∈ (0, 1) and choose δ > 0 such that h = dν

dµ (which is positive and
continuous on D) satisfies

(5.6) 1− ε ≤ h (y) /h (x) ≤ 1 + ε for x,y ∈ B (x0, δ) .

Set

ρ = h (x0) (1 + ε) .

We shall apply Lemma 5.1 twice. Define a measure µ∗ by dµ∗ = dµ in B (x0, δ),
and

dµ∗ = max

{
1,

1

ρ

}
(dµ+ dν) in K\B (x0, δ) .

Step 1: µ and µ∗

Since µ∗ ≥ µ, we have the inequality (5.2). Moreover, since µ is regular and µ∗ ≥ µ,
µ∗ is also regular. Next, from Theorem 1.1,

lim
n→∞

Kn (µ∗,x,x)

Kn (µ,x,x)
= 1

uniformly in B (x0, η), for any η < δ, while from Lemma 5.2, for x,y ∈ B (x0, η) ,

Kn (µ,y,y)

Kn (µ,x,x)
≤ C.

It is only here that we need the extra hypothesis in Theorem 1.5 that µ′ is bounded
above and below by positive constants on D1. Then Lemma 5.1, with ρ = 1 there,
shows that for x ∈ B (x0, η), and uniformly for u,v in compact subsets of Rn,

(5.7) lim
n→∞

Kn

(
µ,x+ u

n ,x+ v
n

)
−Kn

(
µ∗,x+ u

n ,x+ v
n

)
Kn (µ,x,x)

= 0,

Step 2: ν and µ∗

Now dν ≤ ρ dµ∗ in K\B (x0, δ). Also, in B (x0, δ),

dν =
dν

dµ
dµ ≤ ρ dµ = ρ dµ∗.

So in K, dν ≤ ρ dµ∗. By Theorem 1.1, and (5.6)

lim
n→∞

Kn (µ∗,x,x)

ρKn (ν,x,x)
=

1

ρ

dν

dµ∗
(x) =

1

ρ

dν

dµ
(x) ≥ 1− ε

1 + ε
,
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uniformly in B (x0, η), for any η < δ. Note that (1.7) holds for ν and x in B (x0, δ) -
indeed, this follows from the ratio limit in Theorem 1.1. Furthermore, from Lemma
5.2, for x,y ∈ B (x0, η) ,

Kn (ν,y,y)

Kn (ν,x,x)
≤ C.

Again, here we need the extra hypothesis in Theorem 1.5 that ν′ is bounded above
and below by positive constants on D1. Then Lemma 5.1 gives∣∣∣Kn

(
ν,x+ u

n ,x+ v
n

)
− 1

ρKn

(
µ∗,x+ u

n ,x+ v
n

)∣∣∣
Kn (ν,x,x)

≤ C

[
1− Kn (µ∗,x,x)

ρKn (ν,x,x)

]1/2

≤ C1 (2ε)
1/2

,(5.8)

for n ≥ n0, x ∈ B (x0, η), and u,v in compact subsets of Rd. Since C and C1

are independent of u,v,x, n, we obtain from this and (5.7), and the bound on the
Christoffel functions in Lemma 5.2,∣∣ρKn

(
ν,x+ u

n ,x+ v
n

)
−Kn

(
µ,x+ u

n ,x+ v
n

)∣∣
Kn (µ,x,x)

≤ C1ε
1/2,

and hence for large enough n, and uniformly for x ∈ B (x0, η), and u,v in compact
subsets of Rn,∣∣∣ dνdµ (x0)Kn

(
ν,x+ u

n ,x+ v
n

)
−Kn

(
µ,x+ u

n ,x+ v
n

)∣∣∣
Kn (µ,x,x)

≤ C1ε
1/2,

where C1 is independent of u,v,x, n. Then using (5.6) again, we obtain (1.15). The
uniformity in B (x0, η) was also established above. As D is compact, uniformity in
D follows. �

Proof of Theorem 1.6
This follows directly from Theorem 1.5 and Theorem 3.1. �

6. Proof of Theorems 1.7 and 1.8

We need only compute the universality limit for the Chebyshev weight on the ball
or simplex, and then apply Theorem 1.5. We make essential use of known represen-
tations for the reproducing kernel. These involve the standard Jacobi polynomial
P

(α,β)
n of degree n, that satisfies the orthogonality relation∫ 1

−1

P (α,β)
n (x)xj (1− x)

α
(1 + x)

β
dx = 0, 0 ≤ j ≤ n− 1,

and normalized by

(6.1) P (α,β)
n (1) =

(
n+ α

n

)
.

Lemma 6.1
(a) Let

cn =
Γ
(
d+2

2

)
Γ (d+ 1)

Γ (n+ d)

Γ
(
n+ d

2

) .
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Then

Kn

(
W ball

0 ,x,y
)

= cn{P (d/2,d/2−1)
n

(
x · y+

√
1− ‖x‖2

√
1− ‖y‖2

)
+P (d/2,d/2−1)

n

(
x · y −

√
1− ‖x‖2

√
1− ‖y‖2

)
}.(6.2)

(b) Let

dn =
Γ
(
d
2 + 1

)
Γ (d+ 1)

Γ (n+ d+ 1)

Γ
(
n+ d

2 + 1
)

Then

(6.3) Kn

(
W simplex

0 ,x,y
)

=
dn

22d+2

∑
εi=±1

P
(d/2,d/2)
2n

d+1∑
j=1

√
xjyjεj

 ,

where

(6.4) xd+1 = 1−
d∑
j=1

xj ; yd+1 = 1−
d∑
j=1

yj .

Proof
(a) See [22, eqn. (3.8), Thm 3.3, p. 2449].
(b) See [21, Theorem 2.3, p. 3032]. We have also taken account of his convention of
replacing integrals by sums, in the confluent case "αi = 0" when the Jacobi parame-
ters reduce to those of the Chebyshev weight. Note that Xu uses the ultraspherical
polynomial C(λ)

n , defined [18, eqn. (4.7.1), p. 80] by

C(λ)
n (x) = dn,λP

(λ− 1
2 ,λ−

1
2 )

n (x) ,

where in our case λ = d+1
2 , and

dn,λ =
Γ
(
λ+ 1

2

)
Γ (2λ)

Γ (n+ 2λ)

Γ
(
n+ λ+ 1

2

) .
�
Next, we turn to asymptotics of Jacobi polynomials:

Lemma 6.2
(a) Let α > 0, β > −1. Uniformly for s in bounded subsets of [0,∞), we have

(6.5) lim
n→∞

n−αP (α,β)
n

(
1− s

2n2

)
= 2αJ∗α

(√
s
)
.

(b) Let α, β ≥ − 1
2 .

(6.6) sup
n≥1

n1/2 sup
x∈(−1,1)

∣∣∣P (α,β)
n (x)

∣∣∣ (1− x)
α+1/2

2 (1 + x)
β+1/2

2 ≤ C <∞.

Proof
(a) This is Mehler-Heine’s asymptotic formula [18, Thm. 8.1.1, p. 192].
(b) See for example, [11, Lemma 29, p.170], and use the fact that if ρn is the
constant such that ρnP

(α,b)
n is an orthonormal polynomial, then ρn grows like

Cn1/2 (1 + o (1)), for some positive C. See, for example, [18, p. 68] �
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Next, we compute asymptotics for the arguments in the kernel in (6.2) and (6.3):

Lemma 6.3
(a) Assume that ξ ∈ B, and

(6.7) x = ξ +
1

n
u and y = ξ +

1

n
v.

Then

(6.8) x · y +

√
1− ‖x‖2

√
1− ‖y‖2 = 1− G

2n2
+O

(
1

n3

)
,

where G = G (ξ,u,v) is defined by (1.21).
(b) Let ξ lie in the interior of Σd, and x,y be given by (6.9). Then

(6.9)
d+1∑
j=1

√
xjyj = 1− H

8n2
+O

(
1

n3

)
,

where H = H (ξ,u,v) is given by (1.23).
Proof
(a) We see that

x · y = ‖ξ‖2 +
1

n
ξ · (u+ v) +

1

n2
u · v.

Also √
1− ‖x‖2 =

√
1− ‖ξ‖2 − 2

n
ξ · u− 1

n2
‖u‖2.

A straightforward computation, using the Maclaurin series
√

1 + t = 1 + t
2 −

t2

8 +

O
(
t3
)
, gives √

1− ‖x‖2
√

1− ‖y‖2

= 1− ‖ξ‖2 − 1

n
ξ · (u+ v)− 1

2n2

(
‖u‖2 + ‖v‖2

)
+

2 (ξ · u) (ξ · v)

n2
(

1− ‖ξ‖2
) − (ξ · (u+ v))

2

2n2
(

1− ‖ξ‖2
) +O

(
1

n3

)
.

Then

x · y +

√
1− ‖x‖2

√
1− ‖x‖2 =

= 1 +
1

n2
u · v − 1

2n2

(
‖u‖2 + ‖v‖2

)
− 1

2n2
(

1− ‖ξ‖2
) (ξ · (u− v))

2
+O

(
1

n3

)

= 1− G

2n2
+O

(
1

n3

)
.

(b) For 1 ≤ j ≤ d,

√
xjyj =

√(
ξj +

uj
n

)(
ξj +

vj
n

)
= ξj +

1

2n
(uj + vj) +

1

2n2ξj
ujvj −

1

8n2ξj
(uj + vj)

2
+O

(
1

n3

)
.(6.10)
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Also,
√
xd+1yd+1

=

√√√√√
1−

d∑
j=1

xj

1−
d∑
j=1

yj


= 1−

d∑
j=1

ξj −
1

2n

d∑
j=1

(uj + vj) +
1

2n2
(

1−
∑d
j=1 ξj

)
 d∑
j=1

uj

 d∑
j=1

vj


− 1

8n2
(

1−
∑d
j=1 ξj

)
 d∑
j=1

(uj + vj)

2

+O

(
1

n3

)
.

(6.11)

Combining (6.10) and (6.11) gives

d+1∑
j=1

√
xjyj

= 1 +
1

2n2

d∑
j=1

ujvj
ξj
− 1

8n2

d∑
j=1

(uj + vj)
2

ξj

+
1

2n2ξd+1

 d∑
j=1

uj

 d∑
j=1

vj

− 1

8n2ξd+1

 d∑
j=1

(uj + vj)

2

+O

(
1

n3

)

= 1− H

8n2
+O

(
1

n3

)
.

�

Proof of Theorem 1.7
As remarked before, we need only establish the limit (1.20) for the Chebyshev
weight W ball

0 , and then can apply Theorem 1.5. Let x,y be given by (6.7). Now
the dominant term in the right-hand side in (6.2) is the term with argument

x · y+

√
1− ‖x‖2

√
1− ‖y‖2. Since x · y−

√
1− ‖x‖2

√
1− ‖y‖2 remains in a com-

pact subset of (−1, 1) as n → ∞, the bound (6.6) shows that it is of essentially
smaller size than the other term. We then have, using (6.8),

n−d/2Kn

(
W ball

0 ,x,y
)

= cnn
−d/2{P (d/2,d/2−1)

n

(
x · y+

√
1− ‖x‖2

√
1− ‖y‖2

)
+P (d/2,d/2−1)

n

(
x · y −

√
1− ‖x‖2

√
1− ‖y‖2

)
}

= cn

{
n−d/2P (d/2,d/2−1)

n

(
1− G (ξ,u,v)

2n2
+O

(
1

n3

))
+ o (1)

}
= cn

{
2d/2J∗d/2

(√
G (ξ,u,v)

)
+ o (1)

}
,



18 A.KROÓ AND D.S. LUBINSKY

by (6.5). Using this with u = v = 0, gives

n−d/2Kn

(
W ball

0 , ξ, ξ
)

= cn

{
2d/2J∗d/2 (0) + o (1)

}
.

Then (1.20) follows on changing ξ to x. �

Proof of Theorem 1.8
The dominant terms in the right-hand side in (6.3) are the two terms with all εj = 1,
or with all εj = −1. For all other choices of {εj}, the argument

∑d+1
j=1

√
xjyjεj re-

mains in a compact subset of (−1, 1) as n → ∞, so the bound (6.6) shows that
the corresponding terms in (6.3) are of essentially smaller size than the above two
terms. Because of the evenness of P (d/2,d/2)

2n , we have, using (6.9),

(2n)
−d/2

Kn

(
W simplex

0 ,x,y
)

=
dn

22d+1
(2n)

−d/2
P

(d/2,d/2)
2n

d+1∑
j=1

√
xjyj

 (1 + o (1))

=
dn

22d+1
(2n)

−d/2
P

(d/2,d/2)
2n

(
1− H (ξ,u,v)

2 (2n)
2 +O

(
1

n3

))
(1 + o (1))

=
dn

22d+1
2d/2J∗d/2

(√
H (ξ,u,v)

)
(1 + o (1)) ,

by (6.5). Using this with u = v = 0, gives

(2n)
−d/2

Kn

(
W simplex

0 ,x,y
)

=
dn

22d+1
2d/2J∗d/2 (0) (1 + o (1)) .

Then (1.22) for the Chebyshev weight W simplex
0 follows. �

7. An Extension of Theorem 1.1

We can weaken the continuity of dνdµ in Theorem 1.1 to a Lebesgue point condi-
tion. Recall that x0 is a Lebesgue point of a function h of d variables if

lim
r→0+

∫
B(x0,r)

|h (x0)− h (t)| dt
m (B (x0, r))

= 0,

where m denotes Lebesgue measure on Rd.

Theorem 7.1
Let µ, ν be positive measures, whose support is a compact set K ⊂ Rd, and both are
regular. Let x0 ∈ K and assume that µ, ν are absolutely continuous in some ball
B (x0, δ) ⊂ K, while µ′, ν′ are bounded above and below a.e. by positive constants
there, and (1.7) holds uniformly in B (x0, δ) ⊂ K. Assume that x0 is a Lebesgue
point of ν′

µ′ . Then, given r > 0, we have uniformly for y ∈ B
(
x0,

r
n

)
,

(7.1) lim
n→∞

λn (ν,y)

λn (µ,y)
=
dν

dµ
(x0) .

Proof
We may assume that K ⊂ B = B (0, 1). Fix r > 0 and let y ∈ B

(
x0,

r
n

)
. Let
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τ ≥ 2r and ε ∈ (0, 1). Let `n =
[
εn
2

]
and m = m (n) = n− 2`n. Choose pm ∈ Πd

m

that is extremal for λm (µ,y), so that

λm (µ,y) =

∫
p2
mdµ and pm (y) = 1.

Choose q(k)
`n
, k = 1, 2, as in Lemma 2.1, with the properties q(k)

`n
(y) = 1; 0 ≤ q(k)

`n
≤ 1

in B; and ∣∣∣q(1)
`n

(x)
∣∣∣ ≤ e−c`n

τ
n ≤ e−Cετ , x ∈ B\B

(
y,
τ

n

)
;(7.2) ∣∣∣q(2)

`n
(x)
∣∣∣ ≤ e−c`nδ ≤ e−Cεn, x ∈ B\B (y, δ) .(7.3)

As above, let h = dν
dµ and

Sn = pmq
(1)
`n
q

(2)
`n
∈ Πd

n.

We have Sn (y) = 1, and so

λn (ν,y)

≤
∫
K
S2
ndν

≤ h (x0)

∫
B(y, τn )

p2
mdµ+ ‖pm‖2L∞(B(y, τn ))

∫
B(y, τn )

|h (x0)− h (t)| dµ (t)

+e−Cετ
∫
B(x0,2δ)\B(y, τn )

p2
mh dµ+ ‖pm‖2L∞(K) e

−Cεn
∫
K\B(x0,2δ)

dν

= : T1 + T2 + T3 + T4,

by (7.2), (7.3). Firstly,
T1 ≤ h (x0)λm (µ,y) .

Next, Lemma 5.2 gives

‖pm‖2L∞(B(y, τn )) ≤
∥∥λ−1

m (µ, ·)
∥∥
L∞(B(y, τn ))

∫
p2
mdµ

≤ Cndλm (µ,y) ,

so as τ > r, and ‖y − x0‖ < r
n ,

T2 ≤ Cndλm (µ,y) ‖µ′‖L∞(B(x0,δ))

∫
B(x0, 2τn )

|h (x0)− h (t)| dt = o (λm (µ,y)) ,

as x0 is a Lebesgue point of h. Next, by (7.2),

T3 ≤ e−Cετ ‖h‖L∞(B(x0,δ))

∫
B(x0,δ)\B(y, τn )

p2
m dµ

≤ C1e
−Cετλm (µ,y) .

Finally, using the regularity of µ,

T4 ≤ (1 + o (1))
n

(∫
p2
m dµ

)
e−Cεn

∫
K\B(x0,δn)

dν = o (λm (µ,y)) .

Combining all the above estimates gives

λn (ν,y)

λn (µ,y)
≤ λm (µ,y)

λn (µ,y)

(
h (x0) + C1e

−Cετ + o (1)
)
.
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Here τ is independent of ε, and may be chosen as large as we please. We deduce
that

lim sup
n→∞

λn (ν,y)

λn (µ,y)
≤ h (x0) lim sup

n→∞

λn−2[ εn2 ] (µ,y)

λn (µ,y)
.

The proof may now be completed as in Theorem 1.1. �
We note that the absolute continuity of µ and boundedness below of µ′, was

needed only for the upper bound for
∥∥λ−1

m (µ, ·)
∥∥
L∞(B(y, τn )). If we assumed a

suitable bound for this, we could allow µ to have a singular part.
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