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Abstract. We obtain forward and converse quadrature sum estimates asso-
ciated with zeros of orthogonal polynomials for general exponential weights. These
are then applied to establish mean convergence of Lagrange interpolation at zeros
of these orthogonal polynomials. The results generalize earlier ones for even weights
on (�1; 1) or R.
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1. Introduction and Results
The theory of orthogonal polynomials and approximation theory for exponential weights
on a real interval began to develop in the 1960�s and 1970�s under the leadership of G.
Freud and P. Nevai. They typically considered weights such as

W (x) := exp (� jxj�) ; x 2 R;

where � > 1. With the introduction of potential theory in the 1980�s, there were major
advances in understanding the asymptotics of associated orthogonal polynomials. Poten-
tial theory a¤orded the opportunity to consider not only weights on the whole real line,
but also weights such as

W (x) := exp
�
�
�
1� x2

����
; x 2 (�1; 1) ;

where � > 0. Once the theory had been developed in its entirety, it became clear that
one could simultaneously treat not only weights like those above, but also not necessarily
even weights on a general real interval. See [3], [12], [16] for various perspectives on this
type of potential theory and its applications.
One important application is to Lagrange interpolation. Mean convergence of La-

grange interpolation at zeros of orthogonal polynomials has been thoroughly investigated
for even exponential weights - see, for example, the surveys [7], [11], [15], [18].
In this paper, we shall extend many of those results by also considering non-even

weights on a real interval

I = (c; d) where �1 � c < 0 < d � 1: (1)

This is made possible by the results in a recently published monograph [4].
Before we de�ne our class of weights, we need the notion of a quasi-increasing function.

A function g : (0; b)! (0;1) is said to be quasi-increasing if there exists C > 0 such that

g(x) � Cg(y); 0 < x � y < b:

1
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Of course, any increasing function is quasi-increasing. Similarly we may de�ne the notion
of a quasi-decreasing function. The notation

f(x) � g(x)

means that there are positive constants C1; C2 such that for the relevant range of x,

C1 � f(x)=g(x) � C2:

Similar notation is used for sequences and sequences of functions.

De�nition 1.1 General Exponential Weights
Let W = e�Q where Q : I ! [0;1) satis�es the following properties:
(a) Q0 is continuous in I and Q(0) = 0;
(b) Q00 exists and is positive in Inf0g;
(c)

lim
t!c+

Q(t) = lim
t!d�

Q(t) =1;

(d) The function

T (t) :=
tQ0(t)

Q(t)
; t 6= 0

is quasi-increasing in (0; d), and quasi-decreasing in (c; 0), with

T (t) � � > 1; t 2 Inf0g;

(e) There exists C1 > 0 such that

Q00(x)

j Q0(x) j � C1
j Q0(x) j
Q(x)

; a.e. x 2 Inf0g;

(f) There exists a compact subinterval J of the open interval I, and C2 > 0 such that

Q00(x)

j Q0(x) j � C2
j Q0(x) j
Q(x)

; a.e. x 2 InJ:

Then we write W 2 F
�
C2+

�
.

The simplest case of the above de�nition is when I = R and

T � 1 in R.

This is the so called Freud case, for the last condition forces Q to be of at most polynomial
growth. Moreover, T is then automatically quasi-increasing in (0; d). A typical example
is

Q(x) = Q�;�(x) =

�
x�; x 2 [0;1)
jxj� ; x 2 (�1; 0)

where �; � > 1. For this choice, we see that

T (x) =

�
�; x 2 (0;1)
�; x 2 (�1; 0) :

A more general example satisfying the above conditions is

Q(x) = Q`;k;�;�(x) =

�
exp`(x

�)� exp`(0); x 2 [0;1)
expk(jxj

�
)� expk(0); x 2 (�1; 0)
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where �; � > 1 and k; ` � 0. Here we set exp0 (x) := x and for ` � 1,

exp` (x) = exp(exp(exp ::: exp (x))))| {z }
` times

is the `th iterated exponential.
An example on the �nite interval I = (�1; 1) is

Q(x) = Q(`;k;�;�)(x) =

�
exp`((1� x2)��)� exp`(1); x 2 [0; 1)
expk((1� x2)��)� expk(1); x 2 (�1; 0)

where �; � > 0 and k; ` � 0.
Associated with the weight W 2 (note that we write the weight as a square), we can

de�ne orthonormal polynomials

pn(x) = pn(W
2; x) = nx

n + :::; n > 0;

satisfying Z
I

pnpmW
2 = �mn:

We denote the zeros of pn by

c < xnn < xn�1;n < ::: < x1n < d:

The Lagrange interpolation polynomial to a function f : I ! R at fxjngnj=1 is denoted
by Ln[f ]. Thus, if Pn denotes the polynomials of degree � n, then Ln[f ] 2 Pn�1 satis�es

Ln[f ](xjn) = f(xjn); 1 � j � n:

The Gauss quadrature rule for W 2 has the formZ
I

PW 2 =

nX
j=1

�jnP (xjn); P 2 P2n�1;

where the Christo¤el numbers �jn are positive.
In analysis of exponential weights, an important role is played by the Mhaskar-Rakhmanov-

Sa¤ numbers a�u, which for u 2 (0;1) satisfy

c < a�u < 0 < au < d

and are the unique roots of the equations

u =
1

�

Z au

a�u

xQ0(x)p
(x� a�u)(au � x)

dx;

0 =
1

�

Z au

a�u

Q0(x)p
(x� a�u)(au � x)

dx:

It is not obvious that a�u exist or are uniquely de�ned, but this follows from potential
theory for external �elds [3], [4], [16]. Moreover, it is known that

lim
u!1

a�u = c; lim
u!1

au = d:

In the special case where Q is even, the uniqueness of a�u forces

a�u = �au; u > 0:
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One of the features that motivates their importance is the Mhaskar-Sa¤ identity [10]

k PW kL1(I)=k PW kL1[a�n;an]; P 2 Pn:

Another is that they describe how the smallest and largest zeros xnn; x1n of pn behave.
For u > 0, let

�u :=
1

2
(au + ja�uj) ;

and

��u =

0@uT (a�u)
s
ja�uj
�u

1A�2=3

: (2)

Then [4]

1� x1n
an

� �n ! 0; n!1;

1� xnn
a�n

� ��n ! 0; n!1:

The reader will recall that in approximation theory for the interval [�1; 1], for example
in Jackson-Bernstein theorems and Markov-Bernstein inequalities, an important role is
played by the function p

1� x2
n

+ n�2; x 2 [�1; 1] :

As an analogue of the latter, but with a di¤erent scaling, we shall use

hn (x) :=
�
jx� a�nj+ ja�nj ��n

�
(jx� anj+ an�n) ; x 2 I: (3)

We can now state our main result, which provides forward and converse quadrature
sum estimates for weighted polynomials:

Theorem 1.2
Let W 2 F

�
C2+

�
and 1 < p <1:

(I) Let
1

4
� 1
p
< � <

5

4
� 1
p
: (4)

Then for n � 1 and P 2 Pn�1,

k PWh�n kLp(I)� C
 

nX
k=1

�knW
�2(xkn)

��PWh�n ��p (xkn)
!1=p

: (5)

Here C is independent of P and n.
(II) Let � 2 R. Then 

nX
k=1

�knW
�2(xkn)

��PWh�n ��p (xkn)
!1=p

� C k PWh�n kLp(I) : (6)

Here C is independent of P and n.

The upper bound on � in (4) is possibly not sharp, but this is largely irrelevant to
this paper: it is the lower bound on � in (4), which is sharp. We note that if we de�ne
for some small enough (but �xed) " > 0

x0n := x1n(1 + "�n);xn+1;n := xnn
�
1 + "��n

�
; (7)
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then uniformly in j and n,

�jnW
�2 (xjn) � xj�1;n � xjn

while still
a�n < xn+1;n < xnn < ::: < x1n < x0n < an

so one could replace the weighted Christo¤el numbers by the spacing between successive
zeros.
For Freud weights, more precise results are possible, and one may replace the factor

hn by a �xed power of 1 + jxj independent of n [9]. However, in the general case above,
the factor hn seems to be natural.
Following is our second result, which helps to justify part of the restriction on � in

Theorem 1.2.

Theorem 1.3
Let W 2 F

�
C2+

�
, 1 < p <1 and � 2 R. The following are equivalent:

(a) There exists C independent of f and n such that for n � 1, and measurable f : I ! R;

k Ln[f ]Wh�n kLp(I) =�
2�+ 1

p
n � C k fW kL1(I) : (8)

(b)

� >
1

4
� 1
p
: (9)

The disadvantage of the above result is that the weighting factor h�n =�
2�+ 1

p
n in the

left-hand side of (8) depends on n. In analogous questions for generalized Jacobi weights
on [�1; 1], one can e¤ectively take hn(x) = 1 � jxj, but not here. To avoid weighting
factors that depend on n, we consider separately p < 4 and p � 4: for the former case,
we do not really need a weighting factor.

Theorem 1.4
Let W 2 F

�
C2+

�
and 1 < p < 4. Let f : I ! R be Riemann integrable in each compact

subinterval of I. Assume moreover, that if d =1, we have for some � > 1
p ;

lim
x!1

(fW )(x) (1 + jxj)� = 0; (10)

while if d <1, for some � < 1
p ;

lim
x!d�

(fW ) (x) (d� x)� = 0: (11)

Assume analogous behaviour at c. Then

lim
n!1

k (Ln[f ]� f)W kLp(I)= 0: (12)

For p � 4, the asymmetry of the weight plays a far greater role. We begin with the
case where the asymmetry is not severe:

Theorem 1.5
Let W 2 F

�
C2+

�
, p � 4;� 2 R. Assume moreover, that

an � ja�nj ; n � 1: (13)

Let
� >

1

4
� 1
p
: (14)
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Let f : I ! R be Riemann integrable in each compact subinterval of I. Assume that if
d = 1, (10) holds with some � > 1

p , while if d < 1, (11) holds with some � < 1
p .

Assume, moreover, analogous behaviour at c. Then

lim
n!1

k (Ln[f ]� f)W
h
1 +Q2=3T

i��
kLp(I)= 0: (15)

We note that the weighting factor 1 + Q2=3T is exactly the same as that used in [5]
for even exponential weights on [�1; 1], and Theorem 1.5 is an extensive generalisation of
the su¢ ciency part of Theorem 1.5 from [5]. There it was also shown how necessary is
the factor 1 + Q2=3T , and that � � 1

4 �
1
p is necessary for (15), with strict inequality if

p = 4. We are certain that the necessity extends to this case.
In the case that I is a bounded interval, (13) is satis�ed trivially, since

ja�nj � 1; n � 1:

This relation is also satis�ed if I = R and the growth of Q on the positive and negative
real axis is of similar order. Next, we formulate a result for p � 4 and the general asym-
metric case:

Theorem 1.6
Let W 2 F

�
C2+

�
, p � 4;� 2 R. Let

� >
1

4
� 1
p
:

Let f : I ! R be Riemann integrable in each compact subinterval of I. Assume that if
d = 1, (10) holds with some � > �+ 1

p , while if d < 1, (11) holds with some � <
1
p .

Assume moreover, analogous behaviour at c. Then

lim
n!1

k (Ln[f ]� f)W
h
1 +Q2=3T

i��
kLp(I)= 0:

We see that in Theorem 1.6, the extra restriction is the more severe bound on � if d
(or c) is in�nite. We could relax this, but then seem to need to replace 1 + Q2=3T by a
more implicit factor that re�ects the asymmetry of the weight.
This paper is organised as follows: in Section 2, we state extra notation, and state

some technical lemmas. In Section 3, we prove a restricted range inequality and a Markov-
Bernstein inequality building on those of [4]. In Section 4, we prove Theorem 1.2(I), and
in Section 5, we prove Theorem 1.2(II). Then we prove the remaining results in Section 6.

2. Technical Estimates
Let us begin by introducing more notation. Throughout, C;C1; C2; ::: denote positive
constants independent of n; x; t and polynomials P of degree at most n. We write C =
C(�); C 6= C(�) to indicate dependence on, or independence of, a parameter �. The same
symbol does not necessarily denote the same constant in di¤erent occurrences. We let

�n :=
1

2
(an + ja�nj) ;�n :=

1

2
(an + a�n)

so that
[a�n; an] = [�n � �n; �n + �n] :
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For s � 0, we also set

Jn (s) := [a�n
�
1� s��n

�
; an (1� s�n)];

where ��n are de�ned by (2). Given any �xed such s, we note that Jn (s) is non-empty
for n large enough. We let

Ln (x) :=
x� �n
�n

denote the linear map of [a�n; an] onto [�1; 1], and let

L[�1]n (t) := �n + �nt

denote the inverse map. We let x0n and xn+1;n be de�ned by (7). It will also be useful
to have the numbers

���n :=
ja�nj
�n

��n =
ja�nj
�n

0@nT (a�n)
s
ja�nj
�n

1A�2=3

: (16)

In describing spacing of zeros and related quantities, the function

�n(x) :=
jx� a�2nj jx� a2nj

n
q�
jx� a�nj+ ja�nj ��n

�
(jx� anj+ an�n)

; x 2 I (17)

plays an important role.
The Lagrange interpolation polynomial Ln[f ] admits the representation

Ln[f ] =
nX
j=1

f(xjn)`jn(x)

where the fundamental polynomials `jn in turn admit the representation

`jn(x) =
pn(x)

p0n(xjn)(x� xjn)
:

In the sequel, we assume that W 2 F
�
C2+

�
without further mention. First we record all

our estimates relating speci�cally to orthogonal polynomials:

Lemma 2.1
(a) There exists n0 such that for n � n0,

1� x1n
an

� �n; 1�
xnn
a�n

� ��n: (18)

(b) Uniformly for n � 1 and 1 � j � n, and x 2 [xj+1;n; xj�1;n];

hn(x) � hn(xj;n);�n(x) � �n(xjn); (19)

and
1 + jxj � 1 + jxjnj ; ja�n � xj � ja�n � xjnj : (20)

(c) Uniformly for n � 1 and 1 � j � n,

�jnW
�2(xjn) � jxj�1;n � xjnj � �n(xjn): (21)
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(d) Uniformly for n � 1 and 1 � j � n,

1

jp0nW j (xjn)
� (xjn � xj+1;n)hn(xjn)1=4: (22)

(e) Uniformly for n � 1 and 1 � j � n and x 2 I;

j`jn(x)jW�1(xjn)W (x) � (xjn � xj+1;n)hn(xjn)1=4
����pn(x)W (x)x� xjn

���� : (23)

(f) Uniformly for n � 1 and 1 � j � n and x 2 I;

j`jn(x)jW�1(xjn)W (x) � C: (24)

(g) Uniformly for n � 1 and 1 � j � n� 1 and x 2 [xj+1;n; xjn];

`jn(x)W
�1(xjn)W (x) + `j+1;n(x)W

�1(xj+1;n)W (x) � 1: (25)

(h) Uniformly for n � 1 and x 2 I;

jpnW j (x) � Chn(x)�1=4: (26)

(i) Uniformly for n � 1 and 1 � j � n� 1 and x 2 (xj+1;n; xjn);

jpnW j (x) �
hn(xjn)

�1=4

xjn � xj+1;n
minfjx� xjnj ; jx� xj+1;njg: (27)

Proof
(a) This is Theorem 1.19(f) in [4, p.23].
(b) The relation

�n (x) � �n (xjn)

follows from Theorem 5.7(I)(b) in [4, pp. 125-126], in view of the spacing between suc-
cessive zeros given in (c). In the course of the proof there, it is also e¤ectively shown
that

hn (x) � hn (xjn) ; ja�n � xj � ja�n � xjnj :

The proof that 1 + jxj � 1 + jxjnj is somewhat easier.
(c) This follows from Corollary 1.14(a) in [4, p. 20] and Theorem 1.19(e) in [4, p. 23] and
also (b) above.
(d) This is Theorem 1.19(a) in [4, p. 22].
(e) This is a consequence of (d) and the formula for `jn.
(f), (g) These are Theorem 13.3 in [4, p. 361].
(h) This follows from Theorems 1.17 and 1.18 in [4, p. 22].
(i) This is Theorem 1.19(d) in [4, p. 23], combined with (c) above. �

Next we record estimates involving Q and au.

Lemma 2.2
(a) For u > 0;

Q (a�u) � u

s
ja�uj

�uT (a�u)
; (28)

Q0 (a�u) � u

s
T (a�u)

ja�uj �u
: (29)
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(b) Let �; � > 0. Then uniformly for j = 0; 1; and u > 0;

T (a�u) � T (a�u);Q(j)(a�u) � Q(j)(a�u); ��u � ��u: (30)

(c) There exist C; " > 0 such that for n � 1;

�nT (an)

ann2
� Cn�" (31)

and
T (an) �n � Cn�": (32)

(d) There exists C > 0 such that for 1
2 �

u
v � 2;����1� auav

���� � 1

T (au)

���1� u
v

��� : (33)

Moreover, if � > 0; there exists C > 0 such that for u � C;����1� a�uau
���� � 1

T (au)
: (34)

Proof
(a) This is part of Lemma 3.4 in [4, p. 69].
(b) The �rst two � relations are part of Lemma 3.5(b) in [4, p. 72]. The third � relation
follows easily from the �rst two.
(c) This is Lemma 3.7 in [4, p.76].
(d) This is part of Lemma 3.11 in [4, p.81]. �

Next, we record a restricted range inequality and a Markov-Bernstein inequality:

Lemma 2.3
Let 0 < p � 1 and s > 0.
(a) There exist C; n0 such that for n � n0 and P 2 Pn,

k PW kLp(I)� C k PW kLp(a�n(1�s��n);an(1�s�n)) : (35)

(b) For n � 1 and P 2 Pn,

k (PW )0 �n kLp(I)� C k PW kLp(I) : (36)

Proof
(a) This is Theorem 1.9(a) in [4, p. 15].
(b) This is Theorem 1.15 in [4, p. 21]. �

Next, we record a lower bound for integrals involving the orthogonal polynomials pn:

Lemma 2.4
Let 0 < p < 1; 0 < A < B < 1. Let � : I ! (0;1) be a function with the following
property: uniformly for n � 1; 1 � j � n;

A � �(x)

�(xjn)
� B; x 2 [xj+1;n; xjn]: (37)

For n � 1, let In be a subinterval of (xnn; x1n) containing at least two zeros of pn. Then

k pnW� kLp(In)� C k h�1=4n � kLp(In) : (38)



Quadrature Sums and Lagrange Interpolation for General Exponential Weights10

The constant C is independent of n; In; � but depends on A;B in (37).
Proof
We note �rst that if 1 � j � n� 1, Lemma 2.1(i) and (37) giveZ xjn

xj+1;n

jpnW�jp �
�
hn(xjn)

�1=4

xjn � xj+1;n

�p
�(xjn)

p

Z xjn

xj+1;n

minfjx� xjnj ; jx� xj+1;njgpdx

� hn(xjn)�p=4�(xjn)p(xjn � xj+1;n) �
Z xjn

xj+1;n

h�p=4n �p

by Lemma 2.1(b) and (37). Adding over those j for which [xj+1;n; xjn] � In gives the
result: note that terms over adjacent intervals are of the same size up to �. Thus if
the endpoints of In do not coincide with zeros of pn, the small intervals around these
endpoints are of the same size as an adjacent [xj+1;n; xjn] � In. Of course, as In contains
at least two zeros, there is such an adjacent interval.�

Our �nal technical lemma concerns the size of �n for di¤erent n:

Lemma 2.5
Let A > 0. For n � 1, let

m := m (n) � A=
p
��n (39)

and let
` := `(n) := n+m:

Then uniformly in n and x 2 Kn := [�n; a`], we have

�n (x) � �` (x) ; (40)

hn (x) � h` (x) (41)

Proof
Note �rst that from Lemma 2.2(c), and the de�nition (16) of ��n,

m=n � C
�
�nT (an)

ann2

�1=3
! 0; n!1:

Then Lemma 2.2(d) shows that

ja`=an � 1j

= O

�
m

T (an)n

�
= O

 
1

nT (an)

r
�n
an

!2=3
= O (�n) : (42)

Similarly,
ja�`=a�n � 1j ! 0; n!1:

Then for n large enough and x 2 Kn, we have

jx� a�2`j � jx� a�2nj � �n;
jx� a�`j+ ja�`j ��` � jx� a�nj+ ja�nj ��n � �n: (43)

Recall the de�nition of �n at (17). We see that

�n (x)

�` (x)
�
����x� a2nx� a2`

����
p
jx� a`j+ a`�`p
jx� anj+ an�n

: (44)
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Here as at (42), Lemma 2.2(d) gives uniformly for x 2 Kn;����x� a2nx� a2`
� 1
���� =

����a2` � a2nx� a2`

����
� C

an�n
a2` � a`

� C�nT (an) = o (1) :

Here we used (34) in the second last line, and then we used (32). Next,���� jx� a`j+ a`�`jx� anj+ an�n
� 1
���� � jan � a`j+ a`�` + an�n

an�n
� C;

by (42). A similar inequality holds if we reverse the roles of the numerator and denomi-
nator in the left-hand side of this last line. Then (40) of the lemma follows from (44) and
these last two steps. In a somewhat easier manner, since

hn (x)

h` (x)
� jx� anj+ an�n
jx� a`j+ a`�`

;

we also obtain (41). �

3. Two Inequalities

In this section, we shall slightly extend a restricted range inequality, and Markov-Bernstein
inequality from [4], by inserting a power of hn into the weight. First we state the restricted
range inequality, which involves the interval

Jn (s) :=
�
a�n

�
1� s��n

�
; an (1� s�n)

�
; s � 0:

For a given s, this will be non-empty for large enough n.

Lemma 3.1
Let 0 < p � 1 and � 2 R. Let s > 0. Then there exists n0 such that for n � n0 and
P 2 Pn,

k PWh�n kLp(I)� C k PWh�n kLp(Jn(s)) : (45)

Next, we state our Markov-Bernstein inequality:

Lemma 3.2
Let 0 < p � 1 and � 2 R. Then for n � 1 and P 2 Pn,

k (PW )0 h�n �n kLp[a�n;an]� C k PWh�n kLp(I) : (46)

We �rst establish:

Proposition 3.3
Suppose that for each �xed positive integer A, and for each �xed non-negative integer B,
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and for n large enough, we have polynomials Sm of degree m = m (n) � 1=p��n such that
if

` : = ` (n) = n+Am (n) +B; (47)

Kn : = [�n; a`] ;

then
(i)

Sm � C1h�n in [a�`; a`] ; (48)

(ii)
Sm � C2h�n in [�n;1); (49)

(iii)
jS0m�nj � C3h�n in Kn: (50)

Moreover, suppose that similar polynomials exist when we replace Kn by [a�`; �n] and so
on. Then the conclusions of Lemma 3.1 and Lemma 3.2 follow.
Proof
Step 1: The conclusion of Lemma 3.1 follows
Let t > 0. We have from (ii),

k PWh�n kLp[�n;d)� C
�1
2 k PSmW kLp[�n;d)

� C�12 k PSmW kLp(I) :

Using our restricted range inequality Lemma 2.3(a), and the fact that PSm has degree
n+m (n) � `, we continue this as

� C�12 C k PSmW kLp(J`(t))
� C�12 CC1 k Ph�nW kLp(J`(t));

by (i). A similar inequality holds over the interval (c; �n] and then we obtain

k PWh�n kLp(I)� C k PWh�n kLp(J`(t)) :

If we can show that given s > 0, there exists t > 0 and n0 such that for n � n0, we have

J` (t) � Jn (s) ;

then we obtain (45). Let s > 0. We shall show that 9t > 0 such that for large enough n,

a` (1� t�`) � an (1� s�n) : (51)

A similar inequality holds for a�`; a�n, and then the desired inclusion follows. Now���� a`an � 1
���� � Cm

T (an)n
� C�n;

as at (42). Since �n � �`, we can �nd t > 0 for which (51) holds.
Step 2: The conclusion of Lemma 3.2 follows
We have from (ii) and then Lemma 2.5,

k (PW )
0
h�n �n kLp[�n;a`]� C

�1
2 k (PW )0 Sm�n kLp[�n;a`]

= C�12 k
�
(PSmW )

0 � PWS0m
�
�n kLp[�n;a`]

� C3
�
k (PSmW )0 �` kLp[�n;a`] + k PWS

0
m�n kLp[�n;a`]

�
� C4

�
k PSmW kLp[a�`;a`] + k PWS0m�n kLp[�n;a`]

�
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by the Markov-Bernstein inequality and restricted range inequalities in Lemma 2.3. Using
(i) and (iii) above we continue this as

� C4 k PWh�n kLp(I) :

A similar inequality holds over [a�`; �n], so we deduce that

k (PW )0 h�n �n kLp[a�`;a`]� C5 k PWh�n kLp(I) :

Since [a�`; a`] contains [a�n; an], the result follows. �

We now turn to the construction of the polynomials Sm. We �rst show that it suf-
�ces to consider � 2

�
� 1
2 ; 0
�
:

Proposition 3.4
It su¢ ces to construct the polynomials Sm for � 2

�
� 1
2 ; 0
�
:

Proof
Step 1: Then we may construct the polynomials for all � � 0
For � = 0, we can choose Sm � 1. Given � < 0, we can write

� = �1r;

where �1 2
�
� 1
2 ; 0
�
and r is a positive integer. Assume that we have polynomials Sm;�1

which satisfy the properties (i), (ii), (iii) in Proposition 3.3 with � replaced by �1. We
then set

Sm;� := S
r
m;�1

:

As r is �xed, Sm;� does have degree � 1=
p
��n. Next, we see that both (i) and (ii) follow

directly for � from that for �1 if we replace A by Ar. (It is here that we need the
parameter A in the de�nition (47) of `). Finally, in Kn;��S0m;��n�� = r

��S0m;�1
�n
�� jSm;�1

jr�1

� Ch�1
n h�1(r�1)

n = Ch�n ;

by (i), (iii) for Sm;�1 .
Step 2: Then we may construct the polynomials for all � > 0
Given � > 0, we may write

� = �1 + 2r;

where r is a positive integer and �1 2 (�2; 0). We set

fn (x) :=
h�
(x� a�n)2 +

�
a�n��n

�2��
(x� an)2 + (an�n)

2
�i

and
Sm;� := Sm;�1

frn;

a polynomial of degree equal to that of Sm;�1 plus 4r. Then as r is �xed, the degree
restrictions are satis�ed. Since uniformly in x 2 R and n � 1, we see that

fn (x) � hn (x)2 ;

it is easy to see that (i), (ii) for Sm;� follow from those for Sm;�1 . Next, in Kn;��S0m;� (x)�n (x)�� �
��S0m;�1

(x)�n (x)
�� fn (x)r + r jSm;�1

(x)�n (x)j fn (x)
r�1 jf 0n (x)j

� Chn (x)
�1+2r + Chn (x)

�1+2r �n (x) jf 0n (x) =fn (x)j ;
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by (iii) and (i) for Sm;�1 . (Recall that Kn � [a�`; a`]). If we can show that

�n (x) jf 0n (x) =fn (x)j � C in Kn;

then we obtain (iii) for �. Now we see that in Kn;

jf 0n (x) =fn (x)j =

����� 2 (x� a�n)
(x� a�n)2 +

�
a�n��n

�2 + 2 (x� an)
(x� an)2 + (an�n)

2

�����
� C

�
1

�n
+

1

jx� anj+ an�n

�
� C1
jx� anj+ an�n

:

Moreover, using (43) and Lemma 2.2(d),

�n (x) �
p
�n
n

jx� a2njp
jx� anj+ an�n

� C
p
�n
n

jx� anj+ an=T (an)p
jx� anj+ an�n

so

�n (x) jf 0n (x) =fn (x)j � C
p
�n
n

jx� anj+ an=T (an)
(jx� anj+ an�n)

3=2
:

Since for large n, �n is much smaller than 1=T (an), (recall (32)) a little calculus shows
that this last right-hand side is largest when jx� anj is smallest, so we deduce that

�n (x) jf 0n (x) =fn (x)j � C
p
�n
n

an=T (an)

(an�n)
3=2

= C;

by de�nition of �n. �

We next map [a�`; a`] to an interval slightly larger than [�1; 1]. Recall that the linear
transformation

t = Ln (x) =
x� �n
�n

, x = L[�1]n (t) = �nt+ �n

maps [a�n; an] onto [�1; 1]. We shall use the function

h�n (t) :=
�
j1 + tj+ ���n

�
(j1� tj+ ��n) ; (52)

which may be thought of as hn transformed to the interval [�1; 1].

Proposition 3.5
Let � 2

�
� 1
2 ; 0
�
. Suppose that there exists C0 > 0 such that for each s > 0, we have

polynomials Rm of degree m = m (n) � C0=
p
��n with also m � 1=p��n such that

(i�)
Rm (t) � C1 (j1� tj+ ��n)

� in [�2; 1 + s��n] ; (53)

(ii�)
Rm (t) � C2 (j1� tj+ ��n)

� in [0;1): (54)

Then there exist polynomials Sm satisfying the conclusions of Proposition 3.3.
Proof
Assuming the fRmg exist, we set

Sm (x) := �
2�
n Rm (Ln (x)) :

Now if t = Ln (x), then a straightforward substitution shows that

hn (x) = �
2
n

�
j1 + tj+ ���n

�
(j1� tj+ ��n) = �2nh�n (t) :
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Hence for t = Ln (x) 2 [�2; 2],

hn (x) � �2n
�
3 + ���n

�
(j1� tj+ ��n) :

Then as � < 0, (i�) gives

Sm (x) � C1�
2�
n (j1� tj+ ��n)

�

� C2hn (x)
�
; (55)

for t = Ln (x) 2 [�2; 1 + s��n]. Now let ` := ` (n) be given by (47). Then

Ln (a`)� 1 = Ln (a`)� Ln (an)

=
a` � an
�n

= O

�
an

�nT (an)

m

n

�
;

by Lemma 2.2(d). Then (42) and the de�nition of ��n show that for some s > 0;

Ln (a`) � 1 + s
an
�n
�n = 1 + s�

�
n:

Next,

Ln (a�`) + 1 = Ln (a�`)� Ln (a�n)

=
a�` � a�n

�n

= O

�
ja�`j
�`

m

n

�
= o (1) ;

by Lemma 2.2(d) again. Then for n large enough,

Ln [a�`; a`] � [�2; 1 + s��n]:

Then we obtain (48) of Proposition 3.3 from (55). Next, in [0;1), we have j1 + tj � 1, so
(ii�) gives

Rm (t) � C2 (j1� tj+ ��n)
�

� C2h
�
n (t)

�

and then, as
Ln (�n) = 0;

we have in [�n;1),
Sm (x) � Chn (x)� ;

so we have (49) of Proposition 3.3. We turn to (50), and for this we use Dzadyk�s
inequality. Let

R�m (t) := Rm (t(1 + s�
�
n)) :

Then using the above inequalities and the fact that � < 0, we see that for t 2 [�1; 1] ;

jR�m (t)j � C
�
1� t2 + ��n

�� � C1 �1� t2 +m�2�� :
By Dzadyk�s inequality (see [2, Thm. 2.3, pp. 241-2] or [17, p. 285])

jR�0m (t)j � Cm
�
1� t2 +m�2���1=2 ; t 2 [�1; 1] :
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Then also
jR0m (t)j � Cm

�
1� t2 +m�2���1=2 ; t 2 [�1; 1] :

Moreover, for x 2 [�n; a`]) t 2 [0; 1 + s��n], as in the proof of Proposition 3.4,

�n

�
L[�1]n (t)

�
= �n (x)

�
p
�n
n

jx� a2njp
jx� anj+ an�n

� �n
n

j1� tj+ an= (T (an) �n)p
j1� tj+ ��n

:

Then with t = Ln (x) 2 [0; 1 + s��n] � Ln [�n; a`] ;

jS0m�nj (x) =hn (x)
�

= jR0m (t)j ��1n �n

�
L[�1]n (t)

�
=h�n (t)

�

� Cm

�
1� t2 + ��n
h�n (t)

��
1

n

j1� tj+ an= (T (an) �n)
1� t+ ��n

� C
m

n

1

T (an) �n
� C;

recall (42). So we have all the conclusions of Proposition 3.3 for � 2
�
� 1
2 ; 0
�
. �

Finally, we can construct polynomials satisfying (i�) and (ii�), using Christo¤el func-
tions for Jacobi weights:

Proposition 3.6
Let � 2

�
� 1
2 ; 0
�
. Then for large enough n, there exist polynomials Rm of degree m =

m (n) � 1=p��n satisfying the conclusions of Proposition 3.5.
Proof
Let

� := �
�
�+

1

2

�
, �

�
� +

1

2

�
= �:

Then � 2 (� 1
2 ; 0). We use the Christo¤el function �k (x) for the Jacobi weight

u (x) := (1 + x)
�1=2

(1� x)� ; x 2 (�1; 1) :

For k � 1, ��1k (x) is a polynomial of degree 2k � 2 and it is known [13, p. 108] that

k�1��1k (x) �
�
j1� xj+ k�2

����1=2
=
�
j1� xj+ k�2

��
; (56)

uniformly for x 2 [�1; 1] ; k � 1. Since k�1��1k (x) is increasing in (1;1), while the last
right-hand side is decreasing there, we also obtain

k�1��1k (x) � C
�
j1� xj+ k�2

��
in (1;1) : (57)

We now choose
k := m (n) := greatest integer � 1

2
p
��n

and for �xed s > 0;

Rm (t) := k
�1��1k

�
t+ 1

2 (1 + s��n)

�
;
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so that Rm has degree 2k � 2 � 1=p��n � 2 with � for large enough n. Since the degree
is independent of s, we have satis�ed the degree restrictions in Proposition 3.5. Next for
t 2 [�2; 1 + s��n];

t+ 1

2 (1 + s��n)
2
�
�1
2
; 1

�
;

so (56) gives

Rm (t) �
�����1� t+ 1

2 (1 + s��n)

����+ ��n��
� (j1� tj+ ��n)

�
:

Thus we have (53) in a stronger form. Similarly we may deduce (54) from (57). �

4. The Proof of Theorem 1.2(I)

We shall deduce this from a result in [6]. To avoid con�icts of notation with that of this
paper, we slightly change the notation there.

Theorem 4.1
Let 1 < p <1, n � 1 and let ftjgnj=1 satisfy

�1 � t1 < t2 < ::: < tn � 1:

Set tj := �1; j � 0 and tj := 1; j > n.
(I) Let b 2

�
1
2 ; 1
�
, � 2 [0; 12 ] and

�1
p
< � < 1� 1

p
: (58)

(II) Let

!(t) :=

�����1� ���� tb
��������+ ��� : (59)

Let � : [�1; 1] ! [0;1) be measurable and let �n(t) be a polynomial of degree n whose
zeros are ftjgnj=1, normalized by the condition

j�n�j � ! in [�1; 1]: (60)

(III) Let
�j := tj+1 � tj�1; 1 � j � n: (61)

Assume that there exists � > 0 such that for 1 � j; k � n with jj � kj � 1;

jtj � tkj � � jj � kj1=3 [1 + log jj � kj]2=3�j : (62)

(IV) Assume moreover, that for some � > 0, and 1 � j � n;����1� ���� tjb
��������+ � � ��j : (63)

Then for P 2 Pn�1;Z 1

�1
jP�jp � C

nX
j=1

jP (tj)jp
(Z tj+K+1

tj�K

j`j�jp +
�j! (tj)

p

[�j j�0n(tj)j]
p

)
: (64)
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The integer K depends only on L;�, and the constant C depends on L;�; �; � ; p but is
independent of �; !; ftjgnj=1; b; �; n; P .
Proof
See [6, Thm. 1.7, p. 583]. �

The Proof of Theorem 1.2(I)
Step 1: Choice of ftjg ; �n; �; !; b; �
We shall apply the theorem above with

tj : = Ln (xjn) ; 0 � j � n;
�j : = tj�1 � tj+1; 1 � j � n: (65)

(We are reversing the order of the ftjg. Of course tj depends on n, but we do not display
this dependence). As our polynomial �n whose zeros are ftjgnj=1, we may choose

�n (t) = �
1=2
n pn

�
L[�1]n (t)

�
=B; (66)

where B is a �xed large enough positive number. Moreover, for � satisfying (4), we write

� := �� 1
4
: (67)

Then (58) is satis�ed. In !, we choose b = 1; � = 0, so that

! (t) = (1� jtj)� (68)

and we choose
� (t) :=W

�
L[�1]n (t)

�
(1� jtj)� : (69)

Step 2: We verify (60)
From our bound (26) on pn, we have

j�n�j (t) � CB�1�1=2n hn

�
L[�1]n (t)

��1=4
(1� jtj)�

� CB�1 (1� jtj)�1=4+� � ! (t) ;

if B is large enough.
Step 3: We verify (62)
Now Lemma 2.1(b) and (c) show that uniformly in j and n;Z xjn

xj+1;n

dx

�n (x)
� xjn � xj+1;n

�n (xjn)
� 1:

Then for j 6= k, �����
Z xkn

xjn

dx

�n (x)

����� � jk � jj :
The constants in � are independent of j; k; n. Suppose for example that xjn; xkn � �n.
Since also xjn; xkn � an (1� "�n) for some " > 0, we see that in the integral,

�n (x) �
p
�n
n

jx� a2njp
jx� anj

(70)

�
p
�n
n

an � x+ an=T (an)p
an � x

;
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as in the proof of Proposition 3.4. Then this and the substitution an � x = yan=T (an)
gives

jk � jj � C
np
�n

�����
Z xkn

xjn

p
an � x

an � x+ an=T (an)
dx

�����
= C

np
�n

r
an

T (an)

�����
Z (1�xkn=an)T (an)

(1�xjn=an)T (an)

p
y

y + 1
dy

����� (71)

� C
np
�n

r
an

T (an)

�����
Z (1�xkn=an)T (an)

(1�xjn=an)T (an)

1
p
y
dy

�����
� C

np
�n

r
an

T (an)

����p(1� xkn=an)T (an)�q(1� xjn=an)T (an)����
= C

np
�n

���� xjn � xknp
an � xkn +

p
an � xjn

���� :
So,

jxjn � xknj � C jk � jj
p
�n
n

�p
an � xkn +

p
an � xjn

�
: (72)

If
an � xjn � an=T (an) ; (73)

then

a2n � xjn = a2n � an + an � xjn
� an=T (an) + an � xjn � an � xjn

(recall (34)) so

xj�1;n � xj+1;n � �n (xjn) �
p
�n
n

jxjn � a2njp
an � xjn

�
p
�n
n

p
an � xjn: (74)

Hence (72) gives
jxjn � xknj

xj�1;n � xj+1;n
� C jk � jj : (75)

If (73) fails, we return to (71) to obtain

jk � jj � C
np
�n

r
an

T (an)

�����
Z (1�xkn=an)T (an)

(1�xjn=an)T (an)

p
ydy

�����
� C

np
�n

r
an

T (an)
j(xkn � xjn)T (an) =anj

����p(1� xkn=an)T (an) +q(1� xjn=an)T (an)����
= C (an�n)

�3=2 jxkn � xjnj
�p
an � xkn +

p
an � xjn

�
: (76)

Here we have used the fact that
p
y is increasing in (0;1). Since (73) fails, we also obtain

from the second � in (74), (which is still valid),

xj�1;n � xj+1;n � C
p
�n
n

an=T (an)p
an � xjn

= C
(an�n)

3=2

p
an � xjn

:

Then provided p
an � xkn � 2

p
an � xjn; (77)
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(76) gives

jk � jj � C jxkn � xjnj
xj�1;n � xj+1;n

:

If (77) fails, then

jxkn � xjnj = j(an � xkn)� (an � xjn)j

� 3

4
(an � xkn)

so (76) gives
jk � jj � C (an�n)

�3=2 jxjn � xknj3=2 :
If we can show that

xj�1;n � xj+1;n � Can�n; (78)

then the last inequality gives

jk � jj � C
�

jxjn � xknj
xj�1;n � xj+1;n

�3=2
;

whence
jxjn � xknj

xj�1;n � xj+1;n
� C jk � jj2=3 : (79)

To show (78), we recall that since xjn � �n and as (73) fails, the second � in (74) gives

xj�1;n � xj+1;n �
p
�n
n

jxjn � a2njp
an � xjn

�
p
�n
n

an=T (an)p
an � xjn

� C

p
�n
n

an=T (an)p
an�n

= Can�n:

In summary, we have shown that for all xjn; xkn � �n, (79) holds (for jk � jj � jk � jj
2=3).

Similarly, we may establish this when xjn; xkn � �n. The case where xjn and xkn lie on
opposite sides of the midpoint �n of [a�n; an] follows from the other two cases: one chooses
a pair of zeros that bracket �n and then applies the relevant result to the pairs of zeros
on each side of �n. Thus (79) holds in all cases. Since

jtj � tkj
tj�1 � tj+1

=
jxjn � xknj

xj�1;n � xj+1;n
;

we obtain a stronger form of (62). Of course the constant is independent of n; j; k, and
that is crucial.
Step 4: We verify (63)
Because of our choice b = 1; � = 0, we must show that for some � independent of j and n;

j1� jtj jj � � (tj�1 � tj+1) .

Note that all xjn < an (even for j = 0) and hence all tj < 1. If tj � 0, this last inequality
is implied by

j1� tj j � � (1� tj+1) : (80)

Since Lemma 2.1(b) shows that uniformly in j and n,

an � xjn � an � xj�1;n;
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we obtain
1� tj � 1� tj�1

and so (80) follows. The case tj < 0 is similar.
Step 5: Completion of the proof of (5)
We have the estimate (64) and must translate it from [�1; 1] to [a�n; an]. But �rst we
must bound the fundamental polynomials

�
`�jn
	n
j=1

for the points ftjgnj=1 on (�1; 1). We
see that

`�jn(t) = `jn

�
L[�1]n (t)

�
;

where f`jngnj=1 are the fundamental polynomials for the points fxjng
n
j=1. Then using our

Lemma 2.1(f), we see that for t 2 I and uniformly in j and n,��`�jn (t) � (t)�� = j`jnW j
�
L[�1]n (t)

�
(1� jtj)�

� CW (xjn) (1� jtj)� :

Next, using Lemma 2.1(b), (c), translated to the ftjg, we see that for some C independent
of j; n; Z tj+K+1

tj�K

��`�jn���p � CW p (xjn) (1� jtj j)�p (tj�1 � tj+1) :

Next,
�0n (tj) = �

3=2
n p0n (xjn) =B

so Lemma 2.1(c), (d) give

(tj�1 � tj+1)W (xjn) j�0n (tj)j �
�
1� t2j

��1=4
and then (recall the notation (65) and (67), (68))

�j! (tj)
p

[�j j�0n(tj)j]
p �W p (xjn) (1� jtj j)p� (tj�1 � tj+1) :

Thus (64) gives for any P 2 Pn�1;Z 1

�1

���P (t)W �
L[�1]n (t)

� �
1� t2

�����p dt � C nX
j=1

jP (tj)W (xjn)jp
�
1� t2j

�p�
(tj�1 � tj+1) :

Applying this to P �L[�1]n and then making the substitution t = Ln (x) and using Lemma
2.1(c) gives Z an

a�n

���(PW ) (x) [jx� a�nj jan � xj]����p dx
� C

nX
j=1

���(PW ) (xjn) [jxjn � a�nj jan � xjnj]����p (xj�1;n � xj+1;n)
� C

nX
j=1

�jnW
�2 (xjn)

���(PW ) (xjn) [jxjn � a�nj jan � xjnj]����p :
Now for �xed " > 0 and x 2

�
a�n

�
1� "��n

�
; an (1� "�n)

�
,

jx� a�nj jan � xj � hn (x) :
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In particular this holds for x = xjn; 1 � j � n by Lemma 2.1(a), provided " is small
enough. We deduce thatZ an(1�"�n)

a�n(1�"��n)

���(PW ) (x)hn (x)����p dx � C nX
j=1

�jnW
�2 (xjn)

���(PW ) (xjn)hn (xjn)����p :
The restricted range inequality Lemma 3.1 then gives (5). �

5. The Proof of Theorem 1.2(II)

The method of proof is due to P. Nevai [13]. Given a polynomial P of degree � n, and
1 � j � n, the fundamental theorem of calculus gives

jPW jp (xjn)

� min
[xjn;xj�1;n]

jPW jp +
Z xj�1;n

xjn

p jPW jp�1
��(PW )0�� :

In view of the � relations in Lemma 2.1(b), (c), we see that we may insert a factor of
h�pn (xjn) and �jnW�2 (xjn) or xj�1;n � xjn :

�jnW
�2 (xjn)

��PWh�n ��p (xjn)
� C (xj�1;n � xjn)

��PWh�n ��p (xjn)
� C

Z xj�1;n

xjn

��PWh�n ��p + C Z xj�1;n

xjn

jPW jp�1
��(PW )0��h�pn �n:

Here C is independent of n; j; P . Adding over j, and using our knowledge of the location
of the zeros gives

nX
j=1

�jnW
�2 (xjn)

��PWh�n ��p (xjn)
� C

Z an

a�n

��PWh�n ��p + C Z an

a�n

jPW jp�1
��(PW )0��h�pn �n: (81)

Applying Hölder�s inequality to the second term in the last right-hand side givesZ an

a�n

��PWh�n ��p�1 ��(PW )0 h�n �n��
�

 Z an

a�n

��PWh�n ��p
!1� 1

p
 Z an

a�n

��(PW )0 h�n �n��p
! 1

p

� C

Z an

a�n

��PWh�n ��p ;
by our Markov-Bernstein inequality Lemma 3.2. Then (81) gives the desired inequality

nX
j=1

�jnW
�2 (xjn)

��PWh�n ��p (xjn) � C Z an

a�n

��PWh�n ��p :
�
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6. The Proof of Theorems 1.3 to 1.6
We begin with the

Proof of (b))(a) of Theorem 1.3
Assume (9). We may write

� = �1 + r;

where �1 satis�es (4) and r � 0. Then Theorem 1.2(I) with P = Ln [f ] ; our restricted
range inequality Lemma 3.1, and the fact that hn � C�2n in [a�n; an] give

k Ln[f ]Wh
�
n kLp(I)� C k Ln[f ]Wh�1+r

n kLp[a�n;an]
� C�2rn k Ln[f ]Wh�1

n kLp[a�n;an]

� C�2rn

 
nX
k=1

�knW
�2(xkn)

��fWh�1
n

��p (xkn)!1=p

� C�2rn k fW kL1(I)

 
nX
k=1

(xk�1;n � xkn)
��h�1
n

��p (xkn)!1=p

� C�2rn k fW kL1(I)

 Z an

a�n

h�1p
n

!1=p
: (82)

Here we have used Lemma 2.1(b), (c). Now

�1p >
p

4
� 1 > �1

so we may continue (82) as

� C�2r+2�1+
1
p

n k fW kL1(I)
�Z 1

�1

��
1 + t+ ���n

�
(1� t+ ��n)

��1p
dt

�1=p
and we have (8). �

In the proof of the necessity part of Theorem 1.3, we use the following:

Lemma 5.1
For n � 1, let fn : I ! R, with fn = 0 in (�n; d) and

fn(xjn) =W
�1(xjn)sign (p

0
n(xjn)) ; xjn 2 (c; �n): (83)

Then there exists n0 such that for n � n0 and x 2 [�n; d),

jLn[fn](x)j � C�1=2n jpn(x)j : (84)

Proof
We have for x � �n, by (83) and then Lemma 2.1(d),

jLn[fn](x)j = jpn(x)j
X

xjn2(c;�n)

1

jp0nW j (xjn)(x� xjn)

� jpn(x)j
X

xjn2(c;�n)

(xjn � xj+1;n)hn (xjn)1=4

x� xjn
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� C
jpn(x)j
�n

Z �n

a�n

hn (y)
1=4
dy

� C jpn(x)j �1=2n

Z 0

�1

�
1� t2

�1=4
dt;

Here we have used Lemma 2.1(b), (c) in the second last line, and the substitution
y = L

[�1]
n (t) in the last line:�

Proof of the Necessity part of Theorem 1.3
Assume (8). Construct fn as in Lemma 5.1 so that fn also satis�es

k fnW kL1(I)= 1:

(We may also assume that fn is continuous, but that is irrelevant to the proof). Then for
some C1 independent of n,

1 =k fnW kL1(I)� C�
�2��1=p
n k Ln[fn]Wh�n kLp(I)

� C��2��1=pn

 Z an

�n

h
�1=2n

��pnWh�n �� (x)ip dx
!1=p

:

Similarly, we may derive an estimate over [a�n; �n] and combining these gives

C � C�1=2�2��1=pn k pnWh�n kLp[a�n;an]
� C�1=2�2��1=pn k h��1=4n kLp[xnn;x1n]; (85)

by Lemma 2.4. That lemma is applicable since � = h�n satis�es (37) (see Lemma 2.1(b)).
Next,

1� Ln (x1n) =
an � x1n
�n

� ��n

with a similar relation for xnn, and a substitution shows that

k h��1=4n kpLp[xnn;x1n]= �
2p(��1=4)+1
n

Z 1�O(��n)

�1+O(���n)

��
j1 + tj+ ���n

�
(j1� tj+ ��n)

�p(�� 1
4 ) dt:

(86)
If (9) is violated, then

p

�
�� 1

4

�
� �1;

and since ���n ! 0; n!1, an easy estimation of the integral in (86) shows that

�1=2�2��1=pn k h��1=4n kLp[xnn;x1n]!1; n!1;

contradicting (85). So (9) must be true. �

Proof of Theorem 1.4
Let f satisfy (10) or (11) according as d is in�nite or �nite and let P be a polynomial.
Then from Theorem 1.2(I) with � = 0, and n large enough,

k (f � Ln[f ])W kLp(I)

�k (f � P )W kLp(I) + k Ln[P � f ]W kLp(I)



Quadrature Sums and Lagrange Interpolation for General Exponential Weights25

�k (f � P )W kLp(I) +C
 

nX
k=1

�knW
�2(xkn) j(P � f)W jp (xkn)

!1=p
: (87)

Now by our hypothesis,W�2 j(P � f)W jp is Riemann integrable over each compact subin-
terval [a; b] of I, so

lim
n!1

X
xkn2[a;b]

�knW
�2(xkn) j(P � f)W jp (xkn) =

Z b

a

j(P � f)W jp : (88)

This follows from the fact that the left-hand side is a Riemann-Stieltjes sum. See [19,
p.50, Thm. 3.41.1 ¤.]. Next if d =1, our hypothesis asserts that for some � > 1=p;

lim
x!1

(fW ) (x) (1 + jxj)� = 0;

so given " > 0, we may assume that b is so large that

j(P � f)W j (x) � " (1 + jxj)�� ; x � b:

(Note that P is �xed in this and the weight W decays much faster than any polynomial
can grow). Then X

xkn�b
�knW

�2(xkn) j(P � f)W jp (xkn)

� C"p
X
xkn�b

xk�1;n � xk+1;n
(1 + jxknj)�p

� C"p
Z 1

�1

dx

(1 + jxj)�p ;

with C independent of n; b; ". As usual this follows using Lemma 2.1(b), (c). If d < 1,
our hypothesis asserts that for some � < 1

p ;

lim
x!d�

(fW ) (x) (d� x)� = 0:

Again, given " > 0, we may assume that b > 0 is so close to d that

j(P � f)W j (x) � " (d� x)�� ; x 2 (b; d) :

Then X
xkn�b

�knW
�2(xkn) j(P � f)W jp (xkn)

� C"p
X
xkn�b

xk�1;n � xk+1;n
(d� xkn)�p

� C"p
Z d

0

dx

(d� x)�p ;

with C independent of n; b; ". As usual this follows using Lemma 2.1(b), (c). Thus in all
cases, we may make sure that the sum involving xjn � b is small, and similarly we may
handle the sum over xjn � a for a close to c. It follows from these considerations and
(87) and (88) that

lim sup
n!1

k (f � Ln [f ])W kLp(I)� C k (f � P )W kLp(I)
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with C independent of P . Since W decays su¢ ciently rapidly near �1 if d or c are
in�nite, we may choose a polynomial P for which this last right-hand side is as small as
we please. Then the result follows. �

In the proof of Theorems 1.5 and 1.6, we shall use:

Lemma 5.2
Let

F (x) := 1 +Q2=3(x)T (x): (89)

Then for n � 1 and x 2 I;
hn(x)

an ja�nj
F (x) � C: (90)

Proof
Now we may consider only x � 0. Since

hn(x)

an ja�nj
=

�
1 +

x

ja�nj
+ ��n

������1� x

an

����+ �n� ;
we need only bound below

����1� x
an

���+ an�n�F (x) by some C > 0: We consider three

ranges of x � 0.
(I) x 2 [0; an=2]
Write x = ar. Then �����1� x

an

����+ �n�
� 1� ar

an
� 1� ar

a2r
� 1

T (x)

by Lemma 2.2(d). Then�����1� x

an

����+ �n�F (x) � C � 1

T (x)
+Q2=3(x)

�
� C:

(II) x 2 [an=2; a2n]
Here Lemma 2.2(a) and the de�nition of �n give

F (x) � Q2=3(an)T (an) � (n
r

an
�nT (an)

)2=3T (an) = �
�1
n : (91)

Then �����1� x

an

����+ �n�F (x) � C�nF (x) � C:
(III) x 2 [a2n; d)
As both F and

���1� x
an

���+ �n are increasing over this range of x, the desired lower bound
follows from the previous range of x. �

Proof of Theorem 1.5
Let P be a polynomial and f satisfy the hypotheses of Theorem 1.5. We proceed similarly
to Theorem 1.4. Note that � > 0 follows from (14). We also note that if the conclusion
of Theorem 1.5 holds for a given �, then it holds for any larger �, so we may assume
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that � is small enough to satisfy (4). We shall also use our hypothesis an � ja�nj, which
implies that ����1� x

a�n

���� � C in [a�n; an]
and hence

hn
an ja�nj

� C in [a�n; an] : (92)

Let n be larger than the degree of P . Using Lemma 5.2, followed by Theorem 1.2(I), gives

k (f � Ln[f ])WF�� kLp(I)

� C
"
k (f � P )WF�� kLp(I) + k Ln[P � f ]W

�
hn

an ja�nj

��
kLp(I)

#

� C

24k (f � P )WF�� kLp(I) +
 

nX
k=1

�knW
�2(xkn)

�����(P � f)W
�

hn
an ja�nj

�������
p

(xkn)

!1=p35
(93)

� C

24k (f � P )W kLp(I) +
 

nX
k=1

�knW
�2(xkn) j(P � f)W jp (xkn)

!1=p35
by (92). Then proceeding as in the proof of Theorem 1.4, we obtain

lim sup
n!1

k (f � Ln[f ])WF�� kLp(I)� C k (f � P )W kLp(I)

with C independent of P and the result follows.�

Proof of Theorem 1.6
Let P be a polynomial and f satisfy the hypotheses of Theorem 1.6. We proceed sim-
ilarly to Theorem 1.4. As before, the estimate (93) holds. The di¤erence is that now
hn= (an ja�nj) need not be bounded in [a�n; an]. Instead, we use that for x 2 [0; an];

hn (x)

an ja�nj
�
�
1 +

x

ja�nj
+ ��n

�
(1 + �n) � C (1 + jxj) :

Similarly we may show that this holds in [a�n; 0]. Then

nX
k=1

�knW
�2(xkn)

�����(P � f)W
�

hn
an ja�nj

�������
p

(xkn)

� C
nX
k=1

�knW
�2(xkn)

���(P � f) (xkn)W (xkn) (1 + jxknj)�
���p :

Now if d =1, we assumed that for some " > 0,

lim
x!1

jf(x)jW (x) (1 + x)
�+1=p+"

= 0;

with a similar limit if c = �1. We may show as in Theorem 1.4 that

lim sup
n!1

nX
k=1

�knW
�2(xkn)

�����(P � f)W
�

hn
an ja�nj

�������
p

(xkn)

� C k (f � P ) (x)W (x) (1 + jxj)� kLp(I) :

Again this may be made arbitrarily small and so the proof may be completed as before.
�
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