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Abstract. Let, for example,

W (x) = exp
�
� expk

�
1� x2

����
, x 2 [�1; 1]

where � > 0, k � 1; and expk = exp (exp (::: exp ())) denotes the
kth iterated exponential. Let fAng denote the recurrence coe¢ -
cients in the recurrence relation

xpn (x) = Anpn+1 (x) +An�1pn�1 (x)

for the orthonormal polynomials fpng associated with W 2. We
prove that as n!1;

1

2
�An =

1

4
(logk n)

�1=�
(1 + o (1)) ;

where logk = log (log (::: log ())) denotes the kth iterated logarithm.
This illustrates the relationship between the rate of convergence to
1
2 of the recurrence coe¢ cients, and the rate of decay of the expo-
nential weight at �1. More general non-even exponential weights
on a non-symmetric interval (a; b) are also considered.

1. Introduction and Results1

Let �1 � a < 0 < b � 1, Q : (a; b) ! [0;1) be continuous,
and W = exp (�Q). Then, provided all power moments exist, we may
de�ne orthonormal polynomials

pn (x) = pn
�
W 2; x

�
= nx

n + :::; n > 0;

n = 0; 1; 2; ::: satisfying the orthonormality conditionsZ b

a

pnpmW
2 = �mn:

These orthonormal polynomials satisfy a recurrence relation of the form

xpn (x) = Anpn+1 (x) +Bnpn (x) + An�1pn�1 (x) ;
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where
An =

n
n+1

> 0 and Bn 2 R, n � 1:

(We use uppercase for An rather than the more common lowercase,
since we want to use the lower case for the Mhaskar-Rakhmanov-
Sa¤ numbers.) In the case when (a; b) = (�1; 1), a classical result
of Rakhmanov [8] implies that

lim
n!1

An =
1

2
and lim

n!1
Bn = 0;

and hence W 2 is a member of the Nevai-Blumenthal class.
The rate of convergence of An to 1

2
and Bn to 0 has been studied

for decades. Many properties of the weight W 2 (or more generally a
measure) can be formulated in terms of series involving

��An � 1
2

�� and
jBnj. For example, it is known [8] that Szegö�s conditionZ 1

�1

logW (x)p
1� x2

dx > �1;

is satis�ed i¤
inf
n�1

2nA1A2:::An > 0:

In recent years, Barry Simon and his collaborators have formulated
results of this type that go way beyond Szegö�s condition [1], [3], [8],
[9]. For example, they consider weights satisfying the weaker conditionZ 1

�1
logW (x)

p
1� x2 dx > �1:

In this paper, we shall consider weights that vanish so rapidly at the
endpoints of the interval that all of these conditions are violated. When
(a; b) is unbounded, the situation is more complicated - see for example,
[4].
In analyzing exponential weights W = e�Q, an important role is

played by the Mhaskar-Rakhmanov-Sa¤ numbers a < a�n < an < b,
the roots of the equations

n =
1

�

Z an

a�n

xQ0 (x)p
(x� a�n) (an � x)

dx;(1.1)

0 =
1

�

Z an

a�n

Q0 (x)p
(x� a�n) (an � x)

dx:(1.2)

For example, when Q is convex and Q (0) = 0, a�n are well de�ned
and unique, and a�n < 0 < an. One important feature of the a�n is
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the Mhaskar-Sa¤ identity

(1.3) kPWkL1[�1;1] = kPWkL1[a�n;an] ;

valid for all polynomials P of degree � n [5], [6], [7].
We de�ne the center of the Mhaskar-Rakhmanov-Sa¤ interval

(1.4) �n =
1

2
(an + a�n)

and its half-length

(1.5) �n =
1

2
(an � a�n) :

In the special case that Q is even, we have a�n = �an = �n; �n = 0
and an is the root of the equation

n =
2

�

Z 1

0

antQ
0 (ant)p
1� t2

dt:

In this paper, we show for a large class of exponential weights that

An
�n
� 1
2
= O

�
n�C

�
and

Bn � �n
�n

= O
�
n�C

�
for some C > 0. When (a; b) = (�1; 1) and �n approaches 1 with a
rate slower than any negative power of n, this leads to An approaching
1
2
with a rate slower than any negative power of n. In this case, we can

give the exact rate of approach of An to 1
2
.

One special case of our results deals with exponential weights on
[�1; 1] that decay rapidly at the endpoints, though with possibly dif-
fering rates. In the sequel, exp0 (x) = x and for k � 1

expk = exp (exp (::: exp ()))

denotes the kth iterated exponential. Moreover, log0 x = x and for
k � 1

logk = log (log (::: log ()))

denotes the kth iterated logarithm.

Theorem 1.1
Let k; ` � 0, with at least one positive; let �; � > 0 and

(1.6) W (x) =

8<: exp
�
expk (1)� expk (1� x2)

��
�
, x 2 [0; 1)

exp
�
exp` (1)� exp` (1� x2)

��
�
, x 2 (�1; 0]

:
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Then
1

2
� An =

1

8

h
(logk n)

�1=� + (log` n)
�1=�

i
(1 + o (1)) ;

Bn = O
�
(logk n)

�1=� + (log` n)
�1=�

�
:(1.7)

Note that the factors expk (1) and exp` (1) are inserted to ensure
continuity of the exponent at 0. When k = `, they can be factored out
and dispensed with. Thus for the even weight

W (x) = exp
�
� expk

�
1� x2

����
; x 2 (�1; 1) ;

where k � 1 and � > 0, the theorem gives

1

2
� An =

1

4
(logk n)

�1=� (1 + o (1)) :

Our general class of weights is given in:

De�nition 1.2
Let �1 � a < 0 < b � 1, and W = e�Q, where Q : (a; b) ! [0;1)
satis�es the following properties:
(a) Q0 is continuous in (a; b) n f0g and Q (0) = 0:
(b) Q00 exists and is positive in (a; b) n f0g :
(c)

lim
t!a+ or b�

Q (t) =1:

(d) The function

T (t) =
tQ0 (t)

Q (t)
; t 6= 0;

satis�es, for some C1 > 0 and � > 1

1 < � � T (s) � C1T (t) ; 0 < s=t < 1;

provided s; t 2 (a; b) n f0g.
(e) There exists C2 > 0 such that

Q00 (x)

jQ0 (x)j � C2
jQ0 (x)j
Q (x)

a.e. x 2 (a; b) n f0g :

Then we write W 2 F (C2).
(f) Suppose in addition, that for each " > 0;

(1.8) T (x) = O (Q (x)") ; x! a+;

or

(1.9) T (x) = O (Q (x)") ; x! b�;
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or both these hold. Then we write W 2 E (C2) :

Remarks
(a) As examples of W 2 E (C2), we mention the weights of Theorem
1.1. Other examples are W = e�Q, where

Q (x) =

(
exp` (jxj

�)� exp` (0) ; x 2 [0;1);
expk

�
jxj�

�
� expk (0) ; x 2 (�1; 0]

;

where k; ` � 0 with at least one positive, and �; � > 1, and (as above)
expk denotes the kth iterated exponential. In the case k = ` = 0,
W 2 F (C2) nE (C2). See [4, pp. 8-9] for further orientation.
(b) On a �nite interval, the weight W = e�Q, where �; � > 0;

Q (x) =

�
(1� x2)

�� � 1; x 2 [0; 1);
(1� x2)

�� � 1; x 2 (�1; 0]

belongs to F (C2) nE (C2), since both (1.8) and (1.9) are violated. How-
ever, if k � 1; and

Q (x) =

(
expk

�
(1� x2)

��
�
� expk (1) ; x 2 [0; 1);

(1� x2)
�� � 1; x 2 (�1; 0]

;

then W = e�Q 2 E (C2), since (1.8) is ful�lled. Basically on [�1; 1],
(1.8) and (1.9) are satis�ed only for weights whose exponent Q grows
faster than any positive power of (1� x2)�1 as jxj ! 1.
Our most general result is:

Theorem 1.3
Let W 2 F (C2). Then for some C > 0;

(1.10)
An
�n
� 1
2
= O

�
n�C

�
and

Bn � �n
�n

= O
�
n�C

�
:

Remarks
(a) We note that in [4, Thm. 15.2, p. 402], we proved this for a more
general class of weights, with o (1) instead of O

�
n�C

�
.

(b) The same proof works for a larger class of weights, namely the class
F
�
lip1

2

�
in [4]. However, that class has a less explicit de�nition, so is

omitted.

When the interval is �nite, and we have information on the rate of
approach of �n to b�a

2
, then we can turn this order relation into an as-

ymptotic. This requires a little more notation: throughout this paper,
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we use the notation � in the following sense: given sequences of real
numbers fcng and fdng, we write

cn � dn

if for some positive constants C1; C2 independent of n, we have

C1 � cn=dn � C2:

Corollary 1.4
Let W 2 E (C2), and (a; b) be �nite. Then

b� a

4
� An =

�
b� a

4
� �n
2

�
(1 + o (1)) ;(1.11)

a+ b

2
�Bn = O

�
b� a

4
� �n
2

�
:(1.12)

Moreover, if we de�ne a�t for all t by (1.1-1.2), then

(1.13)
b� a

4
� �n
2
�
�Z 1

n

+

Z �n

�1

�
dt

tT (at)
:

To make this asymptotic more explicit, we need further hypotheses.
Since Q (x) sign (x) is strictly increasing on (a; b), and maps that in-
terval onto (�1;1), it has an inverse, which we denote by Q[�1] :
(�1;1)! (a; b).

Corollary 1.5
Let W 2 E (C2), and (a; b) be �nite. Assume also that for each
� 2 (0; 1), there exists A� and " 2 (0; 1) such that

(1.14) u � A� )
b�Q[�1] (u1�")

b�Q[�1] (u)
� 1 + �;

with a similar assertion for negative u: Then

b� a

4
� An =

1

4

�
b�Q[�1] (n) +Q[�1] (�n)� a

�
(1 + o (1)) ;

b+ a

4
�Bn = O

�
b�Q[�1] (n) +Q[�1] (�n)� a

�
:

(1.15)
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Remarks
(a) In the special case (a; b) = (�1; 1), the result becomes

1

2
� An =

1

4

�
2�Q[�1] (n)�Q[�1] (�n)

�
(1 + o (1)) ;

Bn = O
�
2�Q[�1] (n)�Q[�1] (�n)

�
:

(b) The condition (1.14) is not always true for W 2 E (C2). For exam-
ple, if A > 1 and W = exp (�Q), where

Q (x) = exp
���log �1� x2

���A�� 1; x 2 (�1; 1) ;
then W 2 E (C2), but (1.14) fails. For this weight one can check that
the conclusion of Corollary 1.5 is still true provided A > 2. It is not,
however true for 1 < A < 2, since 1 � Q[�1] (n) and 1 � an decay at
di¤erent rates in this case. We shall discuss this example in more detail
in Section 5. So when one does not assume something like (1.14), one
cannot always reformulate Corollary 1.4 as Corollary 1.5.
We give the idea of proof in the next section, and the technical

details in Section 3. Throughout this paper, C; C1; C2::: denote positive
constants independent of n; x; :::. The same symbol does not necessarily
denote the same constant in di¤erent occurrences.

2. The Idea of Proof

We use well known representations of An; Bn in the form

An
�n

=

Z b

a

�
x� �n
�n

�
pn (x) pn+1 (x)W

2 (x) dx;

Bn � �n
�n

=

Z b

a

�
x� �n
�n

�
p2n (x)W

2 (x) dx:(2.1)

We split the interval (a; b) as

(2.2) (a; b) = In [ Jn [ Kn
where

(2.3) Kn = (a; b) n
�
a�n

�
1 + n�C1

�
; an

�
1 + n�C1

��
;

is the main "tail" interval;
(2.4)
Jn =

�
a�n

�
1 + n�C1

�
; an

�
1 + n�C1

��
n
�
a�n + �nn

�"; an � �nn
�"� ;

consists of small intervals near a�n; and

(2.5) In =
�
a�n + �nn

�"; an � �nn
�"�
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is the "main part" of (a; b). Here C1 > 0 and " 2
�
0; 1

20

�
are constants

independent of n.
Using restricted range inequalities, we show that for some C1; C2 > 0

(2.6)
Z
Kn

�
x� �n
�n

�
pn (x) pn+1 (x)W

2 (x) dx = O
�
exp

�
�nC2

��
;

with a similar tail estimate for the integral for Bn. Next, we can use
global bounds on pnW and pn+1W , namely

jpnW j (x) j(x� a�n) (an � x)j1=4 � C; x 2 (a; b)

that were established in [4] to show that

(2.7)
Z
Jn

�
x� �n
�n

�
pn (x) pn+1 (x)W

2 (x) dx = O
�
n�C3

�
;

for some C3 > 0, with similar estimates for integrals arising from Bn.
Then it remains to deal with the integrals

I =

Z
In

�
x� �n
�n

�
pn (x) pn+1 (x)W

2 (x) dx

and

J =

Z
In

�
x� �n
�n

�
p2n (x)W

2 (x) dx:

We make the substitution

u = Ln (x) =
x� �n
�n

, x = L[�1]n (u) = �n + �nu

that maps [a�n; an] onto [�1; 1], and Jn onto [�1 + n�"; 1� n�"] so
that

I = �n

Z 1�n�"

�1+n�"
u
�
pnpn+1W

2
� �
L[�1]n (u)

�
du;(2.8)

J = �n

Z 1�n�"

�1+n�"
u
�
p2nW

2
� �
L[�1]n (u)

�
du:(2.9)

If " is small enough, asymptotics in [4] show that for x = cos � 2
[�1 + n�"; 1� n�"] ; and m = n; n+ 1

�1=2n (pmW )
�
L[�1]n (cos �)

�
(sin �)1=2

=

r
2

�
cos ((m� n) � + �) +O

�
n�C4

�
:(2.10)
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Here � = � (n; �) is an explicitly given function. Then

I =
2

�

Z ��n�C5

n�C5
cos � cos � cos (� + �) d� +O

�
n�C6

�
=

1

�

Z ��n�C5

n�C5
cos � [cos (� + 2�) + cos �] d� +O

�
n�C6

�
=

1

�

Z ��n�C5

n�C5

�
cos � cos (� + 2�) +

1

2
+
1

2
cos 2�

�
d� +O

�
n�C6

�
=

1

2
+
1

�

Z ��n�C5

n�C5
cos � cos (� + 2�) d� +O

�
n�C6

�
:

(2.11)

We show that the integral in the last right-hand side is O
�
n�C

�
for

some C > 0, by using a Riemann-Lebesgue type lemma. To do this,
one uses the fact that � = nfn (�) for some smooth increasing fn, makes
a substitution t = f

[�1]
n (�), and then applies results on the degree of

trigonometric polynomial approximation. This is the most technical
part of the proof. Similar considerations apply to J . Combining the
above estimates (2.6), (2.7) and (2.11) gives the result.

3. Proof of Theorem 1.3

In this section, we �esh out the technical details for the ideas given
in the previous section. We begin with the tail integrals in (2.6),
employing a restricted range inequality. Throughout we assume that
W 2 F (C2) and use the notation a�n; �n; �n; T introduced in Section
1, as well as that from Section 2 - in particular, In;Jn;Kn of (2.2) to
(2.5). Indeed our main task is to rigorously estimate the integrals over
In;Jn and Kn. We also let

��n =

�
nT (a�n)

ja�nj
�n

��2=3
:

We note that in the case of a �nite interval [a; b], the factor ja�nj
�n

� 1,
so can be dropped.

Lemma 3.1
Let 0 < p � 1 and W 2 F (C2). Then for some C1; C2; C3 > 0; for
all n � 1, and all polynomials P of degree � n;

kPWkLp(Kn) � C2 exp
�
�nC3

�
kPWkLp(a�n;an) :
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Proof
This is an easy consequence of Theorem 4.2(a) and (b) in [4, p. 96].
Taking in (b) there �� = nC��n, with C < 2

3
so small that

�� < T (a�n)
�1 ;

which is possible by Lemma 3.7 there [4, p. 76, eqn. (3.39)], we obtain

kPWkLp((a;b)n[a�n(1+��);an(1+�+)]) � C2 exp
�
�C4n3C=2

�
kPWkLp(a;b) :

Since [4, eqn. (3.39), p. 76], if C > 0 is small enough,

�� = nC

8<:nT (a�n)
s
ja�nj
�n

9=;
�2=3

= O
�
n�C1

�
;

for some C1 > 0, the result follows, using also Theorem 4.2(a) in [4, p.
96]. �

Lemma 3.2
For some C1; C2; C3 > 0;

(3.1)
Z
Kn

�����x� �n
�n

�
pn (x) pn+1 (x)

����W 2 (x) dx � C2 exp
�
�nC3

�
;

(3.2)
Z
Kn

�����x� �n
�n

�
p2n (x)

����W 2 (x) dx � C2 exp
�
�nC3

�
:

Proof
We note �rst thatZ

In

�����x� �n
�n

�
pn (x) pn+1 (x)

����W 2 (x) dx � 1 + n�":

Indeed,
���x��n�n

��� � 1 + n�" for x 2 In and we can apply the Cauchy-
Schwarz inequality. Similarly,Z

In

�����x� �n
�n

�
p2n (x)W

2 (x)

���� dx � 1 + n�":
We now apply Lemma 3.1 with the weight W 2 = e�2Q, and p = 1; we
also use the fact that an+1 for W is the same as a2n+2 for W 2, while [4,
(3.51), p. 81]

an+1=an = 1 +O

�
1

nT (an)

�
= 1 +O

�
1

n

�
;

with a similar relation for a�n�1=a�n. This gives the result. �
Next we go a little inside the Mhaskar-Rakhmanov-Sa¤ interval:
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Lemma 3.3
There exist C1; C2 such that

(3.3)
Z
Jn

�����x� �n
�n

�
pn (x) pn+1 (x)

����W 2 (x) dx � C1n
�C2 ;

(3.4)
Z
Jn

�����x� �n
�n

�
p2n (x)

����W 2 (x) dx � C1n
�C2 :

Proof
We use the bound

jpm (x)jW (x) j(x� a�n�1) (an+1 � x)j1=4 � C; x 2 (a; b) :

It is valid for m = n and n+1. See [4, (15.41), p. 413], and replace n
by n+ 1 there. Then we see thatZ

Jn

�����x� �n
�n

�
pn (x) pn+1 (x)

����W 2 (x) dx

� C

Z
Jn

dxp
jx� a�n�1j jan+1 � xj

� Cmax
�
n�"=2; n�C1=2

	
;

since [4, eqn. (3.51), p. 81]

1� a�n
1� ��(n+1)

= 1 +O

�
1

n

�
:

�
The most di¢ cult part is the next dealing with the integral over In.

We use:

Lemma 3.4
Let

(3.5) Ln (x) =
x� �n
�n

, L[�1]n (u) = �n + �nu:

There exists " > 0 such that uniformly for n � m � n � 1
2
n1=3, and

uniformly for jxj � 1� n�"; x = cos �;

�1=2n (pmW )
�
L[�1]n (x)

� �
1� x2

�1=4
=

r
2

�
cos

��
m� n+

1

2

�
� + nfn (�)�

�

4

�
+O

�
n�"
�
:

(3.6)
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Here

(3.7) fn (�) = �

Z 1

cos �

��n (t) dt;

(3.8) ��n (t) =
�n
n
�n
�
L[�1]n (t)

�
; t 2 [�1; 1] ;

and

�n (x) =

p
(x� a�n)(an � x)

�2

Z an

a�n

Q0 (s)�Q0 (x)

s� x

dsp
(s� a�n) (an � s)

:

Proof
This is Theorem 15.3 in [4, p. 403]. �
We shall also need some estimates on ��n :

Lemma 3.5
(a)

(3.9)
Z 1

�1
��n (t) dt = 1:

(b) Uniformly for n � 1 and t 2 (�1; 1) ;

(3.10) ��n (t) �
p
1� t2

(1� t+ �t)
�
1 + t+ ��t

� ;
where

(3.11) ��t =
ja�tj

�tT (a�t)
:

(c) For some C > 0 and for all u; v 2 [�1; 1] ;
(3.12)�����n (u)p1� u2 � ��n (v)

p
1� v2

��� � C

����� u� v

(1� u+ �t)
�
1 + u+ ��t

������
1=4

:

Proof
(a) This is (1.75) in [4, p. 17].
(b) This is Theorem 1.10(IV) in [4, p. 17]. Note that our class F (C2)
is contained in the class F

�
Lip1

2

�
there.

(c) This is Theorem 6.3(a) in [4, p. 148] with  (x) = jxj1=2 : �
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Lemma 3.6
Let " > 0 and

In =

Z
In

�
x� �n
�n

�
pn (x) pn+1 (x)W

2 (x) dx;

Jn =

Z
In

�
x� �n
�n

�
p2n (x)W

2 (x) dx:

Then

In =
1

2
+
1

�
Kn +O

�
n�C

�
;

Jn =
1

�
(Ln �Mn) +O

�
n�C

�
;

where

Kn =

Z ��n�"

n�"
cos � sin ((2n+ 2) fn+1 (�)) d�;(3.13)

Ln =

Z ��n�"

n�"
cos2 � sin ((2n+ 2) fn+1 (�)) d�;(3.14)

Mn =

Z ��n�"

n�"
cos � sin � cos ((2n+ 2) fn+1 (�)) d�:(3.15)

Proof
The substitution x = L

[�1]
n (cos �) gives

In = �n

Z cos�1(�1+n�")

cos�1(1�n�")
cos �

�
pnpn+1W

2
� �
L[�1]n (cos �)

�
sin � d�

=
2

�

Z cos�1(�1+n�")

cos�1(1�n�")
cos � cos

�
��
2
+ (n+ 1) fn+1 (�)�

�

4

�
�

� cos
�
�

2
+ (n+ 1) fn+1 (�)�

�

4

�
d� +O

�
n�C

�
;

by Lemma 3.4, applied with n replaced by n + 1 and m = n; n + 1.
Absorbing part of the integral into the order term, we continue this as

In =
1

�

Z ��n�"

n�"
cos �

h
cos
�
(2n+ 2) fn+1 (�)�

�

2

�
+ cos �

i
d� +O

�
n�C

�
=

1

2
+
1

�

Z ��n�"

n�"
cos � sin ((2n+ 2) fn+1 (�)) d� +O

�
n�C

�
:
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Similarly,

Jn = �n

Z cos�1(�1+n�")

cos�1(1�n�")
cos �

�
p2nW

2
� �
L[�1]n (cos �)

�
sin � d�

=
2

�

Z cos�1(�1+n�")

cos�1(1�n�")
cos � cos2

�
��
2
+ (n+ 1) fn+1 (�)�

�

4

�
d� +O

�
n�C

�
=

1

�

Z ��n�"

n�"

�
� cos � sin � cos ((2n+ 2) fn+1 (�))
+ cos2 � sin ((2n+ 2) fn+1 (�))

�
d� +O

�
n�C

�
:

�

Now we study properties of the function fn de�ned by (3.7), with a
view to showing Kn; Ln;Mn ! 0 as n!1.

Lemma 3.7
(a) fn is a strictly increasing continuous function that maps [0; �] onto
[0; �] :
(b) For n � 1 and � 2 [0; �] ;
(3.16) C1 sin

2 � � f 0n (�) � C2:

(c) For n � 1 and � 2 [0; �] ;

(3.17) jf 0n (�)� f 0n (�)j � C

 
j� � �j

max
�
sin2 �; sin2 �

	!1=4 :
(d)

C1� � fn (�) � C2�
3, � 2

h
0;
�

2

i
;(3.18)

C1 (� � �) � � � fn (�) � C2 (� � �)3 , � 2
h�
2
; �
i
:(3.19)

(e) Let gn = f
[�1]
n denote the inverse function of fn. Then

C1t � gn (t) � C2t
1=3; t 2

h
0;
�

2

i
;

C1 (� � t) � � � gn (t) � C2 (� � t)1=3 ; t 2
h�
2
; �
i
:(3.20)

(f) For n � 1;

C2 � g0n (t) � C1t
�2; t 2

h
0;
�

2

i
:(3.21)

C2 � g0n (t) � C1 (� � t)�2 ; t 2
h�
2
; �
i
:(3.22)
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(g) For n � 1 and 0 < s < t < �;

(3.23) jg0n (s)� g0n (t)j � C js� tj1=4max
�
s�5; (� � t)�5

	
:

Proof
(a) The normalization (3.9) shows that fn maps [0; �] onto [0; �].
(b) We see from (3.7) and Lemma 3.5(b) that for � 2 [0; �] ;

f 0n (�) = ���n (cos �) sin � � C1 sin
2 �;

and

f 0n (�) � C2:

(c) This follows from Lemma 3.5(c).
(d) Now for � 2

�
0; �

2

�
;

fn (�) =

Z �

0

f 0n (t) dt

� C

Z �

0

sin2 t dt

� C2�
3:

Similarly, our upper bound on f 0n gives

fn (�) � C1�:

The bound near � is proved similarly.
(e) Firstly setting � = gn (t) in the bounds in (d) gives

C1gn (t) � t � C2g
3
n (t) , gn (t) 2

h
0;
�

2

i
;

C1 (� � gn (t)) � � � t � C2 (� � gn (t))
3 , gn (t) 2

h�
2
; �
i
:

Here the constants are independent of n, t. Moreover, for each �xed
" > 0, gn � 1 in ["; � � "], uniformly in n. Then the result follows.
(f) For t 2

�
0; �

2

�
; we know that gn (t) � ��C, and hence the bounds

of (a), (e) give

g0n (t) =
1

f 0n (gn (t))
� C sin�2 gn (t) � Ct�2:

Similarly, the bounds of (a) give for t 2 [0; �] ;

g0n (t) =
1

f 0n (gn (t))
� C:
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For t 2
�
�
2
; �
�
; we know that gn (t) � C and hence the bounds of (b),

(e) give

g0n (t) =
1

f 0n (gn (t))
� C sin�2 gn (t) � C (� � gn (t))

�2 � C (� � t)�2 :

(g) For 0 < s < t � �
2
;

jg0n (t)� g0n (s)j =
���� 1

f 0n (gn (t))
� 1

f 0n (gn (s))

����
� jf 0n (gn (s))� f 0n (gn (t))j

jf 0n (gn (t)) f 0n (gn (s))j

�
 

jgn (s)� gn (t)j
max

�
sin2 gn (s) ; sin

2 gn (t)
	!1=4 g0n (t) g0n (s)

� C

�
js� tj s�2

s2

�1=4
t�2s�2 � C js� tj1=4 s�5;

by the Mean Value Theorem and the bounds of (f). Similarly for �
2
�

s < t < �;

jg0n (t)� g0n (s)j � C js� tj1=4 (� � t)�5 :

Combining these two estimates in an obvious way gives the result. �

Lemma 3.8
For some C > 0;

(3.24) Kn; Ln, Mn = O
�
n�C

�
:

Proof
We estimateKn; the proof for Ln;Mn is very similar. By a substitution
t = 2fn+1 (�) in (3.13) and the properties of gn+1 in the previous lemma,
we see that

Kn =

Z 2��n�"

n�"
cos gn+1

�
t

2

�
sin (n+ 1) t g0n+1

�
t

2

�
1

2
dt+O

�
n�C

�
:

De�ne

hn (t) =
1

2

8<:
�
cos gn+1

�
1
2
n�"
��
g0n+1

�
1
2
n�"
�
; t 2 [0; n�"]�

cos gn+1
�
t
2

��
g0n+1

�
t
2

�
; t 2 [n�"; 2� � n�"]�

cos gn+1
�
� � 1

2
n�"
��
g0n+1

�
� � 1

2
n�"
�
; t 2 [2� � n�"; 2�]

:

Then still

Kn =

Z 2�

0

hn (t) sin (n+ 1) t dt+O
�
n�C

�
:
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Indeed by Lemma 3.7(f),Z n�"

0

hn (t) sin (n+ 1) t dt

=
1

2

�
cos gn+1

�
1

2
n�"
��

g0n+1

�
1

2
n�"
�Z n�"

0

sin (n+ 1) t dt

= O
�
n2"�1

�
;

and we assumed 0 < " < 1
20
. Now we use the orthogonality of

sin (n+ 1) t to trigonometric polynomials T of degree � n to deduce
that

jKnj � inf
T

Z 2�

0

jhn � T j+O
�
n�C

�
;

where the inf is taken over all T of degree � n � 1. We continue this
using Jackson estimates [2, Thm. 2.3, p. 205] as

jKnj � sup
x;y2[0;2�];jx�yj� 1

n

jhn (x)� hn (y)j+O
�
n�C

�
� Cn�

1
4
+5" +O

�
n�C

�
;

by the estimates of Lemma 3.7 (f), (g). We assumed in Section 2 that
" < 1

20
and so we are done. �

Proof of Theorem 1.3
In (2.1), we split the integrals as in (2.2),Z b

a

=

Z
In
+

Z
Jn
+

Z
Kn
:

We showed that Z
Jn
+

Z
Kn
= O

�
n�C

�
in Lemmas 3.2 and 3.3. The remaining integrals over In were handled
in Lemma 3.6 and Lemma 3.8, where we showed for the �rst integral
in (2.1), Z

In
=
1

2
+O

�
n�C

�
:

The second integral in (2.1) is similar. �



18 E. LEVIN 1, D. S. LUBINSKY2

4. Proof of Corollaries 1.4, 1.5 and Theorem 1.1

Throughout this section, we assume at least the hypotheses of Corol-
lary 1.4 - in particular that (a; b) is �nite. By Theorem 1.3 and �nite-
ness of (a; b), which forces boundedness of f�ng ;

An �
�n
2
= O

�
n�C

�
and Bn � �n = O

�
n�C

�
;

so

b� a

4
� An =

b� a

4
� �n
2
+O

�
n�C

�
;

b+ a

4
�Bn =

b+ a

4
� �n +O

�
n�C

�
= O

�
b� a

4
� �n

�
+O

�
n�C

�
;

(4.1)

recall a < 0 < b and a�n < 0 < an. The �rst two conclusions of
Corollary 1.4 will then follow if we can show that for each �xed " > 0;
and large enough n,

(4.2)
b� a

4
� �n > n�":

We �rst gather some technical estimates:

Lemma 4.1
(a) Uniformly for t 6= 0;

(4.3)
a0t
at
� 1

tT (at)
:

(b) Uniformly for t 6= 0;

(4.4) Q (at) � jtjT (at)�1=2 :

(c) T (x)!1 as x! a+ or b�.
Proof
(a) See [4, p. 79, Thm. 3.10(a)].
(b) See (3.18) in [4, p. 69, Lemma 3.4] and note that �n � ja�nj � 1
in this case.
(c) See Lemma 3.2(f) in [4, p. 65] and note that there the interval is
(c; d) rather than (a; b). �

Lemma 4.2
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Assume that W 2 E (C2). Then as n!1;

b� an �
Z 1

n

dt

tT (at)
;(4.5)

a�n � a �
Z �n

�1

dt

tT (at)
:(4.6)

Moreover, given " > 0, we have for large enough n,

(4.7)
Z 1

n

dt

tT (at)
+

Z �n

�1

dt

tT (at)
> n�":

Proof
If m > n;

log
am
an
=

Z m

n

a0t
at
dt �

Z m

n

dt

tT (at)
;

by Lemma 4.1(a). The constants implicit in � are independent ofm;n.
Since am ! b as m!1, we obtain

1� an
b
� log b

an
�
Z 1

n

dt

tT (at)
:

Then (4.5) follows and (4.6) is similar. Next, we assume (1.8), (the
case where (1.9) holds is similar),

T (u) = O(Q (u)"), u! b� :

Then as t!1, Lemma 4.1(b) gives

(4.8) T (at) = O (Q (at)
") = O (t") :

This has the consequence thatZ 1

n

dt

tT (at)
� C

Z 1

n

dt

t1+"
� Cn�";

as stressed. Then (4.7) follows. �

Proof of Corollary 1.4
We add (4.5) , (4.6) and divide by 4: for given " > 0, as n!1;

(4.9)
b� a

4
� �n
2
�
Z 1

n

dt

tT (at)
+

Z �n

�1

dt

tT (at)
> n�":

Now the result follows immediately from (4.1). �



20 E. LEVIN 1, D. S. LUBINSKY2

Lemma 4.3
Under the hypotheses of Corollary 1.5,

(4.10) lim
n!1

b� an
b�Q[�1] (n)

= 1

and

(4.11) lim
n!1

a�n � a

Q[�1] (�n)� a
= 1:

Proof
By Lemma 4.1(b), (c), and (4.8), we have for large enough n,

n1�" � Q (an) � n

) b�Q[�1]
�
n1�"

�
� b� an � b�Q[�1] (n) :

By hypothesis, given � 2 (0; 1), there exists " > 0 so that for large
enough n,

1 � b�Q[�1] (n1�")

b�Q[�1] (n)
� 1 + �:

Then (4.10) follows. The other relation is similar. �

Proof of Corollary 1.5
By the lemma,

b� a

4
� �n
2

=
1

4

�
b�Q[�1] (n) +Q[�1] (�n)� a

�
(1 + o (1)) ;

b+ a

4
� �n
2

= O
�
b�Q[�1] (n) +Q[�1] (�n)� a

�
:

(4.12)

Now (4.1) and the fact that b�a
4
� �n

2
decays slower than any negative

power of n (recall Lemma 4.2) give the result. �

Proof of Theorem 1.1
We �rst show that these weights satisfy the hypotheses of Corollary
1.4 and 1.5. Let us assume k � 1 (the case where ` � 1 is similar). In
(1.37) of [4, p. 9], it is shown that as x! 1�;

T (x) =
2�

(1� x2)�+1

"
k�1Y
j=1

expj

��
1� x2

����#
(1 + o (1)) :

From this follows that for each " > 0;

T (x) = O
�
logQ (x)1+"

�
; x! 1�;
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which is much stronger than (1.8). The remaining hypotheses to belong
to F (C2) and E (C2) follow easily, and were outlined in [4, p. 9].
We next show that the hypotheses of Corollary 1.5 are satis�ed with
(a; b) = (�1; 1). We have

logkQ (x) =
�
1� x2

���
) 1�Q[�1] (u)2 = (logk u)

�1=�

(4.13) ) 1�Q[�1] (u) =
1

2
(logk u)

�1=� (1 + o (1))

as u!1. Then

1�Q[�1] (u1�")

1�Q[�1] (u)
=

(logk u
1�")

� 1
�

(logk u)
� 1
�

(1 + o (1))

� (1� ")�
1
� (1 + o (1)) ;

even if k > 1. For given � > 0 and correspondingly small ", this is no
larger than 1+ � so we can satisfy (1.14). If ` � 1, we obtain a similar
relation for Q[�1] (�n). Then Corollary 1.5, (4.13) and its analogue for
negative u, give the conclusion of Theorem 1.1. When ` = 0, a�n + 1
decays like a negative power of n (cf. [4, p. 31]), and 1 � Q[�1] (�n)
also decays like a negative power of n. Then the dominant term in
(1.7) is that involving (logk n)

�1=�, and the term (log` n)
�1=� = n�1=�

is much smaller, and can be absorbed into the order term. Again the
result follows. �

5. An Example

In this section, we let (a; b) = (�1; 1), A > 1 and

Q (x) = exp
���log �1� x2

���A�� 1; x 2 (�1; 1) :
Lemma 5.1
W = e�Q 2 E (C2).
Proof
We see that

(5.1) Q0 (x) = [Q (x) + 1]A
��log �1� x2

���A�1 2x

1� x2

and hence

(5.2) T (x) =
xQ0 (x)

Q (x)
=

�
1 +

1

Q (x)

�
A
��log �1� x2

���A�1 2x2

1� x2
:
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We �rst show that

(5.3) T (x) � 2A > 1; x 2 (0; 1) :
Now

1 +
1

Q (x)
=

1

1� exp
�
� jlog (1� x2)jA

� � ��log �1� x2
����A ;

using the elementary inequality

1� e�u � u; u � 0:
Hence

T (x) � 2A x2

jlog (1� x2)j (1� x2)
:

Using the elementary inequality

� log (1� t) (1� t) � t; t 2 (0; 1) ;
we then obtain (5.3), the most di¢ cult part of De�nition 1.2(d). The
relation

T (s) � C1T (t) , 0 < s=t < 1;

follows for small s; t since 2A � T � C there. For s; t a little larger,
we use the fact that if C 2 (0; 1), we have

T (x) �
��log �1� x2

���A�1 �1� x2
��1

in (C; 1)

and the function on the right-hand side is increasing in x. So we have
(d) of De�nition 1.2. The requirement (e) is easy. Finally, we prove
(f). Let " > 0 and K > 1=". For x close enough to 1,

Q (x) � exp
�
K
��log �1� x2

���� = �1� x2
��K

:

Then as x! 1�;

T (x) =Q (x)" = O
��
1� x2

�K"�1 ��log �1� x2
���A�1� = o (1) :

�

Lemma 5.2
(a) The limit (1.14) of Corollary 1.5 fails. More precisely, given " 2
(0; 1), we have

lim
t!1

1�Q[�1] (t1�")

1�Q[�1] (t)
=1:

(b) If A < 2, the conclusion of Corollary 1.5 fails. More precisely,

lim
n!1

1� an
1�Q[�1] (n)

=1:
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Proof
(a) If t = Q (x), then

1 + t = exp
���log �1� x2

���A�
and hence

exp
�
� (log (1 + t))1=A

�
= 1� x2:

Then as x! 1�;

1� x =
1

2
exp

�
� (log (1 + t))1=A

�
(1 + o (1))

=
1

2
exp

�
� (log t)1=A

�
(1 + o (1)) :

That is,

1�Q[�1] (t) =
1

2
exp

�
� (log t)1=A

�
(1 + o (1)) :

Then as t!1;

1�Q[�1] (t1�")

1�Q[�1] (t)
= exp

�
(log t)1=A

n
1� (1� ")1=A

o�
(1 + o (1))

! 1:

(b) We use the relation (4.4). Then

logQ (an) = log n�
1

2
log T (an) +O (1)

(5.4)

)
��log �1� a2n

���A = log n�1
2
(A� 1) log

��log �1� a2n
����1

2
log
��1� a2n

��+O (1) :
Writing ��log �1� a2n

��� = (log n)1=A � �;

we obtain��log �1� a2n
���A = log n� �A (log n)1�1=A +O

�
�2 (log n)1�2=A

�
:

Substituting this in (5.4) gives

��A (log n)1�1=A +O
�
�2 (log n)1�2=A

�
= O(log log n)� 1

2
(log n)1=A +

�

2

and hence
1

2
= �

�
A (log n)1�2=A +

1

2
(log n)�1=A

�
+O

�
�2 (log n)1�2=A

�
+O

�
(log n)�1=A (log log n)

�
:
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Here as 1� 2=A > �1=A, we obtain

� =
1

2A
(log n)�1+2=A (1 + o (1)) ;

so ��log �1� a2n
��� = (log n)1=A � 1

2A
(log n)�1+2=A (1 + o (1))

) 1�an =
1

2
exp

�
� (log n)1=A + 1

2A
(log n)�1+2=A (1 + o (1))

�
(1 + o (1))

) 1� an
1�Q[�1] (n)

= exp

�
1

2A
(log n)�1+2=A (1 + o (1))

�
! 1;

as n ! 1. Then the conclusion of Corollary 1.4 does not translate
into the conclusion of Corollary 1.5. �
Note that for A < 2; we obtain from Corollary 1.4,

1

2
� An =

1

2
(1� an) (1 + o (1))

=
1

4
exp

�
� (log n)1=A + 1

2A
(log n)�1+2=A (1 + o (1))

�
:

Of course, with a little more work, this may be made more precise.
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