
GREEN EQUILIBRIUM MEASURES AND REPRESENTATIONS
OF AN EXTERNAL FIELD

A.L. LEVIN1 AND D.S. LUBINSKY2

Abstract. We establish a representation for external �elds involving Green
potentials. This is the analogue of the representation of Rakhmanov and Bu-
yarov involving logarithmic potentials. We also establish related results, and
present an example.

1. Introduction

Let Q be convex on R, with
min
R
Q = 0;

and with Q growing at 1 faster than log jxj. Then Q admits the representation

(1.1) Q (x) =

Z 1

0

gS� (x) d� ; x 2 R;

where fS�g is a suitable increasing sequence of compact intervals and gS� denotes
the Green function for CnS� with pole at1. This representation was discovered by
Rakhmanov [14], and it turned out to be indispensable in the study of orthogonal
polynomials for the weight W = exp (�Q), and in several other contexts [2], [6],
[7]. Actually (1.1) was proved in [14] for a special class of convex Q. The general
result was announced in [3].
Inspired by that paper, the authors proved (1.1) in [9], using results of Totik

[17] on equilibrium measures for the family of weights
�
w�
	
�>0

. This was then
applied in studying orthogonal properties for non-even weights. A far reaching
generalisation of (1.1) appeared in a recent paper of Buyarov and Rakhmanov [4].
They proved that (1.1) holds (for x 2 [�S� � R), for example, for any continuous
function Q, and beyond. Note that (1.1) may be rewritten as

(1.2) Q (x) =

Z 1

0

�
log

1

capS�
� U!� (x)

�
d� ;

where

U!� (x) :=

Z
log

1

jx� sjd!� (s)

is the (logarithmic) equilibrium potential for the set S� .
Since the study of rational functions is intimately connected with Green poten-

tials, there is good reason to believe that an analogue of (1.2) for Green potentials
will be useful for problems involving rational functions, just as (1.2) is useful for
problems involving polynomials. For a wide class of functions Q on a set E (that is
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not necessarily a real interval) in a domain G � C, we show that there is a suitable
increasing family of compact sets S� � E; � > 0, such that for t > 0 and z 2 St;

(1.3) Q (z) =

Z t

0

�
1

capGS�
� V !

G
� (z)

�
d� :

Here capGS� denotes the Green capacity for the set S� , and if g (z; �) denotes the
Green�s function for G with pole at �,

V !
G
� (z) :=

Z
S�

g (z; �) d!G� (�)

denotes the Green potential for the Green equilibrium measure !G� for S� . We
emphasise that in the sequel the symbol V is associated with Green (and not loga-
rithmic) potentials.
Since fS�g�>0 is increasing, so that the integrand in (1.3) is 0 for � > t, one also

deduces from (1.3) that

(1.4) Q (z) =

Z 1

0

�
1

capGS�
� V !

G
� (z)

�
d� ; z 2 [�>0S� :

But what is a suitable fS�g�>0? This is easy to explain. We haveZ t

0

V !
G
� (z) d� =

Z t

0

�Z
S�

g (z; �) d!G� (�)

�
d�:

Hence if we de�ne the measure �t on St by

(1.5) �t :=

Z t

0

!G� d� ;

we obtain, by Fubini, that

(1.6)
Z t

0

V !
G
� (z) d� =

Z
St

g (z; �) d�t (�) = V
�t (z) ;

where V �t is the Green potential of �t. We also see from (1.5) that

�t (St) =

Z t

0

!G� (St) d� =

Z t

0

d� = t:

(Recall that !G� has mass 1 and is supported on S� � St). Thus �t has mass t, and
is supported on St. Now assuming that (1.3) holds, we obtain from (1.6) that

(1.7) V �t (z) +Q (z) = ct; z 2 St;
where we set

(1.8) ct :=

Z t

0

d�

capGS�
:

Moreover, assuming, for the moment, that

E =
[
�>0

S� ;

(which is not always the case), and keeping in mind that

(1.9) V !
G
� (z) � 1

capGS�
; z 2 G;
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we obtain from (1.4) that

(1.10) V �t (z) +Q (z) � ct; z 2 E:
The relations (1.7), (1.10) imply that �t is the Green equilibrium measure of mass
t for the external �eld Q. Hence if (1.3) holds, then the set St must coincide with
the support of �t.
In the next section, we describe the class of functions for which (1.3) will be

proved, and present the main theorem. We also recall some basic notions and
results from potential theory. The rest of the paper is devoted to proofs. We could
prove (1.3) using the above-mentioned results of Totik (which can be extended to
deal with Green potentials), but we preferred to follow the same steps as in [4],
thereby obtaining some other useful results, parallel to those proved in [4].

2. Preliminaries and Main Theorem

Let G be any domain in C, whose boundary @G has positive capacity, and let
g (z; �) denote the Green function for G with pole at �. So g is characterized by the
following properties:
(i) As a function of z, with � �xed, g (z; �) is non-negative, subharmonic in Cn f�g
and harmonic in Gn f�g ;
(ii) g (z; �) + log jz � �j remains bounded as z ! �;
(iii) g (z; �) = 0 for q.e. z 2 @G where q.e. (quasi-everywhere) means except for a
set of capacity 0:
Given a �nite positive measure � on G, we recall that its Green potential V � is
de�ned by

V � (z) =

Z
g (z; �) d� (�) ; z 2 G:

The support of � will be denoted by S�, and we always assume that S� is a compact
subset of G. Such a V � is l.s.c. (lower semi-continuous) and superharmonic in G.
Also

(2.1) lim
z!x2@G

V � (z) = 0 for q.e. x 2 @G:

Hence by the minimum principle, V � > 0 in G (but may attain the value 1).
Furthermore, V � is continuous in the �ne topology (this is the weakest topology

making all potentials continuous). This implies that for any z0 2 G and any " > 0,
the set

(2.2) fz 2 G : jV � (z)� V � (z0)j � "g
(with obvious adjustment for the case V � (z0) =1) is thin at z0. All these notions
and facts can be found in, for example, [16, Chapters 1, 2] or [8, Theorem 5.11].
When using the �ne topology, we shall say so. Thus, unless otherwise mentioned,
all limits and topological notions are with respect to the usual Euclidean topology.
Given a function Q : E ! (�1;1], we say that Q is admissible on E if the

following properties hold for E and Q:

(A.1) E is closed in G:
(That is, E is closed relative to G).

(A.2) E is not thin at any of its points.
(Such an E is called regular).
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(A.3) E has empty interior, and for any compact K � E, the complement GnK is
connected.

(A.4) Q is l.s.c. on E and the set fz 2 E : Q (z) <1g has positive capacity.
(In particular, cap (E) > 0, though this follows from (A.2) as well).

(A.5) For any z0 2 E with Q (z0) �nite and for any " > 0, the set

(2.3) fz 2 E : jQ (z)�Q (z0)j < "g

is not thin at z0.
(Since Q is l.s.c., this also gives

lim inf
z!z0

Q (z) = Q (z0)):

(A.6) If z0 2 @G or z0 =1 is a limit point of E, then

lim
z!z0;z2E

Q (z) =1:

Note that (A.1), (A.4) and (A.6) imply that for anyN > 0, the set fz 2 E : Q (z) � Ng
is a compact subset of G.

Remarks
(a) If Q is admissible on E, then Q + V � is also admissible, as follows from the
properties of V � above.
(b) All of the above are satis�ed if, for example, E is a smooth arc, possibly un-
bounded, and Q is piecewise continuous on E, satisfying (A.6).
(c) For some of our results, we do not need all of (A.1) to (A.6), and shall point
this out where relevant.
Next, we need well known results on Green equilibrium potentials: let

Mt :=Mt (E) := f� : S� � E and � (E) = tg :

For � 2Mt, consider its energy integral

I (�) : = I (�;Q)

: =

Z Z
[g (z; �) +Q (z) +Q (�)] d� (z) d� (�)

=

Z
V �d�+ 2t

Z
Qd�:

Theorem 2.1
Assume (A.1), (A.4) and (A.6).
(a) There exists a unique �t 2Mt such that

(2.4) It := It (�t) := inf fI (�) : � 2Mtg :
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Moreover, It is �nite, and �t has �nite energy:

(0 �)
Z
V �td�t <1:

(b) The support S�t of �t is a compact subset of G, and more precisely for some
N ,

S�t � fz 2 E : Q (z) � Ng :
(c) Setting

ct := ct (Q) := t
�1
�
It �

Z
Qd�t

�
;

we have

(2.5) V �t (z) +Q (z) � ct; q.e. z 2 E;

(2.6) V �t (z) +Q (z) � ct; all z 2 S�t :
This measure �t is called the equilibrium measure of mass t for the external �eld
Q, and ct is called the equilibrium (or extremal) constant.

Remark
Since t�1Q satis�es the same conditions as does Q, it su¢ ces to prove the theorem
for t = 1. For this case, it appears in [16, Theorem II.5.10], but under two additional
restrictions. First, instead of (A.6), it is assumed in [16] that Q (z) � log jzj ! 1
as z ! 1 (if E is unbounded), while we only assumed that Q (z) ! 1 in this
case. Second, no assumption on Q is made in [16], if E has limit points on @G.
This is due to the (tacit) agreement that the phrase �closed subset E � G�used
there, actually means that the closure of E in C still belongs to G (otherwise the
result is incorrect, if Q is bounded near @G). Yet the proof of Theorem 1 requires
only minor modi�cations of that in [16], so we only indicate two places where (A.6)
comes into play.
Proof
(a) Being l.s.c., and since Q > �1 on E, Q is bounded below on compact subsets
of E. Then (A.6) ensures that Q is bounded below on the whole of E (and of course
attains its minimum on E). Since V � � 0, it follows that the in�mum in (2.4) is
> �1. That it cannot be 1, is proved by standard methods, using (A.4). Denote
this in�mum by I1 (that is, It with t = 1).
(b) Let

EN := fz 2 E : Q (z) � Ng :
According to (A:6), EN is compact and we use (A.6) again to show that for N large
enough,

(2.7) I1 = inf fI (�) : � 2Mt; S� � ENg :
Once we have this, the rest of the proof is exactly the same as indicated in [16, pp.
28-29, p.132]. To prove (2.7), it is enough in turn, to show that for N large enough,

(2.8) g (z; �) +Q (z) +Q (�) > 1 + I1; (z; �) =2 EN � EN
(see [16, pp. 29-30] for deduction of (2.7) from (2.8)). But (2.8) is obvious for large
N , since g � 0; Q is bounded from below, and either Q (z) or Q (�) is larger than
N . �
Under additional assumptions on E and Q, one can strengthen (c) of Theorem

2.1:
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Theorem 2.2
Assume (A.1), (A.2) and (A.4) - (A.6), that is, we only drop the geometrical con-
dition (A.3) on E. Then (2.5) can be re�ned to

(2.9) V �t (z) +Q (z) � ct; all z 2 E;

so that (2.6) becomes

(2.10) V �t (z) +Q (z) = ct all z 2 S�t :

Moreover, Q is continuous on S�t , and V
�t is continuous and bounded on G:

Proof
This is standard. By (2.5), the exceptional set

E0 := fz 2 E : V �t (z) +Q (z) < ctg

has capacity 0, so it is thin at every point of E. Then the continuity of V �t in the
�ne topology (see (2.2)) together with (A.2), (A.5) ensures, for any z0 2 E, the
existence of fzng � EnE0 such that

(V �t +Q) (zn)! (V �t +Q) (z0) ; n!1:

Then (2.9) follows from (2.5). Since V �t is l.s.c., while ct � Q is u.s.c. (upper
semi-continuous), (2.10) shows that V �t and Q are continuous on S�t . Then V

�t

is continuous in G (cf. [16, Thm. II.3.5] and recall that the Green potential of �t
di¤ers from the logarithmic potential by a harmonic function). The boundedness
of V �t in G follows by the maximum principle for Green potentials (cf. [16, Cor.
II. 5.9]). �
Finally, recall that for the case Q � 0, the following classical result holds:

Theorem 2.3
Let K be a compact subset of G, with cap (K) > 0. There exists a unique probability
measure !GK , supported on K and such that for some constant c > 0;

(2.11) V !
G
K (z) = c q.e. z 2 K;

(2.12) V !
G
K (z) � c all z 2 G:

We call !GK the Green equilibrium measure for K. Furthermore if E := K also
satis�es (A.3), then

(2.13) cap
�
KnS!GK

�
= 0

and the Green equilibrium measures formed for K and for S!GK coincide. Also,

(2.11) holds at every regular point of K; if K is regular, then S!GK = K and V !
G
K

is continuous in G.

The Green capacity of K (relative to G) is de�ned by

(2.14) capG (K) = c
�1;

where, of course, c is as in (2.11-12).
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Next, for a measure � supported on E, we set

(2.15) c (�) := c (�;Q) := min
E
(V � +Q) ;

and

(2.16) S� := S� (Q) := fz 2 E : V � (z) +Q (z) = c (�)g :
Notice that S� is a compact subset of G (by (A.1), (A.4) and (A.6)). We see from
these de�nitions, that the equilibrium conditions (2.9), (2.10) are equivalent to the
inclusion

(2.17) S� � S�:
Hence, under the assumptions of Theorem 2.2, (2.17) holds with � = �t (and with
c (�) in (2.15) equal to ct). Moreover, �t is the only measure in Mt that satis�es
(2.17) (see [16, Theorem II.5.12]). Now we can formulate the main result. It will
be convenient to use the abbreviations

St : = S�t ; S
t := S�t ; V t := V �t ;

!t : = !GS�t ; !
t := !GS�t ;(2.18)

and recall that ct coincides with c (�t). Thus !t is the (unweighted, classical) Green
equilibrium measure for the support S�t = St of �t; and !

t plays the same role for
the set St where V �t +Q = V t+Q attains its minimum. Also, as �t is not a¤ected
if we replace Q by Q+ Const, we assume that

(2.19) min
E
Q = 0:

Theorem 2.4
Let Q be admissible on E and satisfy (2.19).
(a) The family fStgt>0 is an increasing family of sets. Moreover, if we set

S0 := fz 2 E : Q (z) = 0g ;
then

(2.20) S0 =
\
t>0

St:

(b) There holds

St =
[
�<t

S� �
\
�>t

S� = S
t; t > 0;

and there exists a countable set N � (0;1) such that
cap

�
StnSt

�
= 0; t =2 N .

(c) The equilibrium measure �t and the extremal constant ct have the representa-
tions

(2.21) �t =

Z t

0

!�d� ; ct =

Z t

0

1

capGS�
d� :

(d) The external �eld Q has the representation

(2.22) Q (z) =

Z 1

0

�
1

capGSt
� V !t (z)

�
dt; z 2

[
t>0

St:
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Remarks
(a) Let

S1 :=
[
t>0

St:

It follows from Theorem 2.2 that if S1 6= E, then
(2.23) Q (z) � sup

t

�
ct � V t (z)

	
; z 2 EnS1;

and one can assign Q an arbitrary value on EnS1 (but subject to (2.23)) without
a¤ecting the family fS�g�>0. Obviously,

fz : Q (z) =1g � EnS1;
but it is worth noting that there may exist z 2 EnS1 with Q (z) <1:
(b) The convergence of the integral for ct in (2.21) implies that capGS� cannot
approach 0 too rapidly as � ! 0+; in particular it is not possible that

capGS� = O (�) ; � ! 0 + :

3. Extremal Properties of ct; St

We �rst establish

Theorem 3.1
Under the assumptions of Theorem 2.2, we have

(3.1) ct = c (�t) = sup fc (�) : � 2M� ; � � tg :
Moreover, if (A.3) is satis�ed, that is, Q is admissible, then equality holds in (3.1)
only for � = �t:
Proof
For any measure � on E, we have, by the de�nition (2.15) of c (�), and by Theorem
2.2:

(3.2) V � +Q� c (�) � 0 = V t +Q� ct on St:
Hence

(3.3) V � � V t + c (�)� ct on St:
Let � > 0 and � 2M� . Then by (2.12), (2.14),Z

V �d!t =

Z
V !td� � �

capGSt
:

Similarly by (2.11), Z
V td!t =

Z
V !td�t =

t

capGSt
:

(Note that although E is regular, St need not be regular, so that (2.11) holds q.e.
in St. However �t has �nite energy, hence it is C-absolutely continuous, that is,
sets of capacity 0 have zero �t�measure). On integrating (3.3) against !t, we thus
obtain

(3.4) ct � c (�) �
t� �
capGSt

:
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This holds for any � , and if � � t, we get (3.1). Next, if � = �� , where � > 0, we
obtain that

(3.5) ct � c� �
t� �
capGSt

:

Reversing the roles of t and � , we also get

(3.6) ct � c� �
t� �
capGS�

:

(We shall use (3.5) and (3.6) later on). Assume now that � 2 M� ; � � t, and
c (�) = ct. Then (3.4) shows that � = t. Also, (3.3) then becomes

V � � V t on St:
Integrating this against !t, we obtain as before

(3.7)
t

capGSt
�
Z
V �d!t �

Z
V td!t =

t

capGSt
:

Hence Z �
V � � V t

�
d!t = 0;

and since the integrand is non-negative, the set

K := S!t \
�
z :
�
V � � V t

�
(z) > 0

	
has !t-measure 0. On the other hand, K being an intersection of S!t with an open
set (recall that V t is continuous while V � is l.s.c.) must have positive !t�measure,
if it is non-empty. We have thus showed that K is empty, so

(3.8) V t (z) = V � (z) all z 2 S!t :
Now the assumption (A.3) comes into play. It implies (via the maximum principle
for harmonic functions) that strict inequality holds:

V !t (z) <
1

capGSt
; z 2 GnS!t :

Therefore, if S� * S!t , Z
V �d!t =

Z
V !td� <

t

capGSt

and we obtain a contradicition to (3.7). So S� � S!t and then (3.8) shows that
V � is bounded on S�, hence has �nite energy. Since we have simultaneously (from
(3.8))

V � � V t on S� and V t � V � on St;
we conclude by the principle of domination for Green potentials (cf. [16, Theorem
II.5.8]) that V � = V t in G and hence � = �t. �

Next, given a compact K � E of positive capacity, we set for t > 0;

(3.9) Ft (K) := Ft (K;Q) := �
t

capGK
�
Z
Qd!K :

This functional was introduced in [10] and it is an analogue of the so-called F
functional of Mhaskar and Sa¤ [16, p.194]. The latter plays an important role in
the determination of the support of the equilibrium measure. The functional (3.9)
plays a similar role in the context of this paper - see the example in Section 5. For
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the following result, we recall the notation (2.18).

Theorem 3.2
Let K � E be compact, with cap(K) > 0. Under the assumptions of Theorem 2.2,
there holds

(3.10) Ft (K) � Ft (St) = �ct:
Moreover, if (A.3) is also satis�ed, then equality occurs in (3.10) i¤

(3.11) St � S!K � St:
Proof
This is very similar to the proof of Theorem 3.1. On integrating

V t +Q � ct in E
against !K , we obtain

ct �
Z �

V t +Q
�
d!K �

t

capGK
+

Z
Qd!K = �Ft (K) ;

with equalities if K = St. So we have (3.10). Moreover, equalities can occur i¤

(3.12) V t +Q = ct; !K a.e.,

and

(3.13) V !K =
1

capGK
; �t a.e.

Now as S!K cannot contain isolated points (for example, by (2.12)), we see that
(3.12) must hold on a dense subset of S!K , that is this subset is contained in S

t.
Since St is closed, we obtain the second inclusion in (3.11). Note that we did not
use (A.3) here. Similarly, equality (3.13) must hold on a dense subset of St. Also,
due to (A.3), we have

V !K <
1

capGK

outside S!K , so that the above dense subset of St is contained in S!K . Since the
latter set is closed, we conclude that St � S!K . �

Now, for any " > 0, the set

E" := fz 2 E : Q (z) � "g
is compact, and it has positive capacity by (A.5), while minE Q = 0 (recall (2.19)).
Then (3.10) gives, with K = E";

ct � �Ft (E") � "+
t

capGE"
:

Here ct � 0, since it is the minimum of the non-negative function V t + Q - recall
that the Green�s function g (z; �) is non-negative. On letting �rst t ! 0 and then
"! 0, we obtain

(3.14) lim
t!0+

ct = 0:

Next, we have seen above, that the equilibrium relations (2.9), (2.10) of Theorem
2.2 can be written in the form�

S�t =
�
St � St (= S�t) :
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It is easy to construct Q for which strict inclusion occurs. Then V t+Q may attain
its minimum on E also outside St. This can never happen for other � 2Mt. More
precisely, we have

Theorem 3.3
Let Q be admissible on E. For any measure � 2 M� with � � t and � 6= �t, we
have

(3.15) S� � St:
Proof
Consider the function

u (z) := [V � (z)� c (�)]�
�
V t (z)� ct

�
;

which is superharmonic in GnSt and bounded below (V � � 0 while V t is bounded).
Furthermore, we have by (2.1), for q.e. x 2 @G;

lim
z!x

u (z) = 0 + ct � c (�) � 0;

the last inequality following by Theorem 3.1. Next, as V t is continuous and V � is
l.s.c., we obtain for x 2 St;

lim inf
z!x;z2GnSt

u (z) � u (x) � 0

(recall (3.2)). Since � 6= �t, u is non-constant and the minimum principle for
superharmonic functions yields

u (z) > 0; z 2 GnSt:
(We need (A.3) here). Since u � 0 on S� (recall (2.15), (2.9)), we obtain (3.15). �

We conclude this section with a concavity property of the functions ct and
ct � V t (z), with z �xed.

Theorem 3.4
Assume the conditions of Theorem 2.2 and �x z 2 G. Then the functions ct and
ct � V t (z) are concave functions of t.
Proof
Let t = �t1 + (1� �) t2, where � 2 (0; 1) and consider the function
(3.16) u (z) := �V t1 (z) + (1� �)V t2 (z)� V t (z) ; z 2 G:
By Theorem 2.2,

(3.17) u (z) � �ct1 + (1� �) ct2 � ct; z 2 St;
so that Z

ud!t � �ct1 + (1� �) ct2 � ct:

On the other hand, an integration of (3.16) yieldsZ
ud!t � [�t1 + (1� �) t2 � t]

1

capGSt
= 0:

We have used here the equilibrium relations of Theorem 2.3. Therefore

(3.18) �ct1 + (1� �) ct2 � ct � 0
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and the concavity of ct follows. Now u is superharmonic in GnSt, and tends to 0 as
z ! z0 2 @G, at least for q.e. z0. Also, u is continuous, bounded, and is bounded
below on St by a non-positive constant (see (3.17), (3.18)). Hence (3.17) holds for
all z 2 G. After substituting there u (z) from (3.16) and rearrangement, we obtain
that ct � V t (z) is concave. �

4. Proof of Theorem 2.4

Proof of part (a) of Theorem 2.4
We start with the proof of (2.20). Assume that z 2 St, for all t > 0. Then as
V t > 0 and Q � 0 by our assumption (2.19), we obtain from (2.10) that

0 � Q (z) � ct for all t > 0:
Then (3.14) gives Q (z) = 0, that is z 2 S0. This proves the inclusion\

t>0

St � S0.

For the other direction, we consider two cases.
Case 1: E is compact
Let 0 < " < t. Since E is regular, we have for all z 2 E,

V "!E (z) +Q (z) =
"

capGE
+Q (z) :

Hence the left-hand side attains its minimum on E exactly for z 2 S0. This means
that

(4.1) S0 = S
"!E and c ("!E) =

"

capGE

(recall (2.15), (2.16)). Then the inclusion

(4.2) S0 � St; t > 0;
follows by Theorem 3.3 (obviously "!E 6= �t as " < t).
Case 2: E is not compact
Then Q (z) ! 1 as z ! @G (or as z ! 1). Hence one can �nd a bounded open
set G1 with G1 � G such that

Q (z) � 1; z 2 E \ (GnG1) :

We set
K := E \G1

and note that K is a compact subset of G, and every z 2 K that belongs to G1 is
a regular point for K. Thus, for " > 0;

V "!K (z) +Q (z) =
"

capGK
+Q (z) ; z 2 E \G1;

while for z 2 E \ (GnG1), the left-hand side is at least Q (z), that is � 1. It then
follows, as in Case 1, that if " is small enough, (4.1) holds with E replaced by K
and we deduce (4.2) as before.

Next, we prove that the family fStg is increasing in t. We shall prove a stronger
statement, namely

(4.3) St � St � St+� 8t; � > 0:
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The �rst inclusion is clear (recall (2.17) and the remarks thereafter) and the second
follows from Theorem 3.3, if we replace t there by t+ � and take � := �t. �

Proof of part (b) of Theorem 2.4
We �rst show that the family f�tgt>0 is increasing, and continuous in the weak �
sense. Both assertions follow from the relation

(4.4) �t+� � �t 2M� 8t; � > 0:

The proof of (4.4) is exactly the same as in [4], but we include the proof for the
reader�s convenience. Let

Qt := V
t +Q� ct:

Then Qt is also admissible on E (see Remark (a) after the de�nition of admissible
Q), Qt � 0 on E, and Qt = 0 precisely on St. Thus

S0 (Qt) = S
t:

Let � := �� (Qt) be the equilibrium measure of mass � for Qt. By what was already
proved, we have

St � St = S0 (Qt) � S�:
(The last inclusion follows from Theorem 2.4(a)). Hence

S�+�t = S�;

so that the equilibrium relations for � can be stated as

V � +Qt = const = min
E
(V � +Qt) on S�+�t :

Inserting here Qt, we arrive at

V �+�t +Q = const = min
E

�
V �+�t +Q

�
on S�+�t .

This means that the measure �+�t (of mass t+ �) is the equilibrium measure �t+�
for the original Q. Hence (4.4) follows. �

Now let

(4.5) St�0 :=
[
�<t

S� ; St+0 :=
\
�>t

S�

so that (see (4.3))

(4.6) St�0 � St�0 � St � St � St+0
Since �� converges weakly to �t as � ! t (by (4.4)), we must have

(4.7) St �
[
�<t

S� = St�0:

Next, if x 2 St+0, then x 2 S� ; � > t, so that

(4.8) V � (x) +Q (x) = c� ; � > t:

By Theorem 3.4, both c� and V � (x) are concave functions of � , therefore they are
continuous, and if we let in (4.8), � ! t+ 0, we obtain

V t (x) +Q (x) = ct;8x 2 St+0:
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This shows that St+0 � St, and together with (4.6), (4.7), we have the �rst state-
ment of part (b), namely

St = St�0 � St+0 = St:
Next, by well known properties of capacities (see [15, p. 128, Theorem 5.13 (a), (b)]
for a proof for classical capacities, but the same proof works for Green capacities),
we have

(4.9) lim
�!t�0

capGS� = capGSt�0:

Since the family fS�g�>0 is increasing, capGS� is an increasing function of � . Hence
it is continuous if t =2 N , some countable set N . Then (4.9), (4.6) show that for
t =2 N;
(4.10) capGSt�0 = capGSt = capGS

t = capGSt+0:

Since St � St, this implies that the Green equilibrium measure formed for St

coincides with that formed for St. Therefore (see (2.13) of Theorem 2.3 and recall
that we are assuming (A.3) in the present proof), we have

cap
�
StnSt

�
= 0

and this completes the proof of (b). Another consequence of (4.10) is that for t =2 N;
(4.11) !� converges weakly to !t as � ! t:

Indeed, let �n % t; n ! 1. Then !�n ! !St�0 in the weak � sense, by Lemma
2.10 in [8, p. 154]. Moreover the proof of that lemma shows that the �rst equality
of (4.10) ensures that !St�0 = !t. Thus we get (4.11) provided � ! t� 0. Now let
�n & t; n!1, and assume that !�n converges weakly to �. Clearly

S� � St+0 = St:
Also,

capGS�n ! capGSt:

Therefore the equilibrium relations (2.11), (2.12) yield (via the lower envelope the-
orem and the principle of descent), that � = !St . But !St = !St , as we have
already mentioned, and this completes the proof of (4.11). �

Proof of parts (c), (d) of Theorem 2.4
By (3.5), (3.6) and the above properties of capGSt, we obtain that

d

dt
ct =

1

capGSt
; t =2 N .

Being concave, ct is absolutely continuous, and in view of (3.14), we conclude that

(4.12) ct =

Z t

0

1

capGS�
d�:

To show that �t and Q have the desired representations, one may proceed exactly
as in [4, pp. 800-801], replacing there gt (the Green function for St with pole at
1), by 1

capGSt
� V !t , in the present notation.

We suggest, however, a di¤erent proof. We shall show that for t; � > 0,

(4.13) !t+�jSt �
1

�

h
�t+�jSt � �t

i
� !t;
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where �jS denotes the restriction of the measure � to S. Based on this, we complete
the proof of Theorem 2.4 as follows. By (4.13), (with a similar inequality for t� �
instead of t), and (4.11), there holds

d�t
dt

= !t; t =2 N .

Since �t is absolutely continuous in t (recall (4.4)), we obtain the desired represen-
tation

�t =

Z t

0

!�d� :

Then the equilibrium relation (2.10) gives (see (1.6) and (4.12)) that

Q (z) =

Z t

0

�
1

capGS�
� V !� (z)

�
d� ; z 2 S� ;

and since fStg is increasing, while V !� (z) = 1
capGS�

q.e. in St for � � t, we obtain
the last statement (2.22) of Theorem 2.4. �

Proof of (4.13)
For the case of logarithmic potentials this result was proved by Totik (cf. [16, The-
orem IV.4.9] or [17, Lemma 5.7]). The proof is basically the same for our case,
but some changes are required. Also our notation is di¤erent from that in [16], so
we provide the details. The main ingredient is the following analogue of Theorem
IV.4.5 in [16].

Theorem
Let �; � be measures of compact support in G, having �nite potentials. Assume that
for some constant c we have

(4.14) V � (z) � V � (z) + c 8z 2 G:

Let A be a subset of G in which equality holds in (4.14). Then

�jA � �jA:

Assuming this theorem, we proceed as follows. Since St � St+�, we have, by
Theorems 2.2 and 2.3,

(4.15)
�
V t � ct

�
+ �

�
V !t+� � 1

capGSt+�

�
� V t+� � ct+�, q.e. in St+�:

Furthermore, equality holds q.e. in St. Therefore, if we set

a := ct+� � ct �
�

capGSt+�

we can rewrite (4.15) as

(4.16) V �t+� � V �t+�!t+� + a; q.e. in St+�
with equality q.e. in St. Now, (3.5) ensures that a � 0. Also �t+� is C�absolutely
continuous, hence (4.16) holds �t+� a.e., and we conclude by the principle of domi-
nation (cf. [16, Theorem II.5.8]) that (4.16) holds everywhere in G. Since equality
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holds q.e. in St, we obtain by the above theorem that

(�t + �!t+�)jSt �
�
�t+�

�
jSt
:

(Note that all measures involved are C�absolutely continuous, hence they vanish
on sets of capacity 0). So we have the �rst inequality in (4.13). The proof of the
second is similar: we have�

V t � ct
�
+ �

�
V !t � 1

capGSt

�
� V t+� � ct+�, q.e. in St

(actually equality holds q.e. in St). On setting

b :=
�

capGSt
� (ct+� � ct)

we obtain that
V �t+�!t � V �t+� + b; q.e. in St;

with actual equality q.e. in St. Here b � 0, by (3.6). We then continue as before,
and obtain �

�t+�
�
jSt
� (�t + �!t)jSt

and this is the second inequality in (4.13).

Thus it remains to prove the above theorem. Since the Green potentials V �; V �

di¤er from the corresponding logarithmic ones U�; U� by a harmonic function, we
see that (4.14) is equivalent to

U� (z) � U� (z) + u (z) ;8z 2 G;
where u (z) is harmonic in G. If u (z) were a constant c say, this would be Theorem
IV.4.5 in [16]. However, the only property of c used in the proof of that Theorem
is, that the average of c over a circle centred at some point is independent of the
radius of this circle. Since harmonic functions enjoy this property, we see that
Theorem IV.4.5 actually was proved in [16] for c replaced by a harmonic function.
This completes the proof.

5. An Example

Let
G := fz : Re z > 0g ;E := (0;1) ;

and let Q be convex. Then the convexity of Q and the convexity of the Green�s
function for the right-half plane guarantee that St is a compact interval, say,

St = [at; bt] � (0;1) :
(This follows just as for logarithmic potentials). We place a symmetry hypothesis
on Q, which is akin to that of evenness when dealing with logarithmic potentials:

Q (x) = Q
�
x�1

�
; x 2 (0;1) :

Then the uniqueness of �t gives
atbt = 1:

Now if 0 < a < 1;

capG
�
a; a�1

�
= capG

�
a2; 1

�
=
K 0 �a2�
�K (a2)

;
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where K and K 0 are complete elliptic integrals:

K (k) =

Z 1

0

dxp
(1� x2) (1� k2x2)

;K 0 (k) = K (k0) ; k2 + k02 = 1:

Also,

d![a;a�1] =
1

K 0 (a2)

dxp
(x2 � a2) (1� a2x2)

:

(All these may be easily derived from Example 5.14 in [16, pp.133-134], by mapping
G conformally onto the unit ball in such a way that

�
a; a�1

�
or
�
a2; 1

�
is mapped

onto [��; �] for some 0 < � < 1. One uses the conformal map to transform the
equilibrium density w.r.t. the unit ball to that w.r.t. G. See [11] for a very similar
situation; some of the necessary calculations appear in [1, p.121 ¤.].) Thus for the
set

�
a; a�1

�
, Ft is

�Ft(a) := �Ft
��
a; a�1

��
= t

�K
�
a2
�

K 0 (a2)
+

1

K 0 (a2)

Z a�1

a

Q (x)
dxp

(x2 � a2) (1� a2x2)
:

If we take
Q (x) := x+ x�1;

then

�Ft (a) =
�

K 0 (a2)

�
tK
�
a2
�
+
1

a

�
=

�

K 0 (k)

�
tK (k) +

1p
k

�
;

with k := a2. Di¤erentiating with respect to k and setting = 0 gives

(5.1)
�
t
dK

dk
� 1

2k3=2

�
K 0 (k)�

�
tK (k) +

1p
k

�
dK 0

dk
= 0:

Since [5, 8.123.2, p.907]
dK

dk
=

E

kk02
� K
k
;

where

E (k) :=

Z 1

0

r
1� k2x2
1� x2 dx

is the complete elliptic integral of the second kind, we also obtain

dK 0

dk
=
dK

dk0
(k0)

dk0

dk
= � k

k0

�
E0

k0k2
� K

0

k0

�
:

Then (5.1) can be rearranged to�
t

�
E

kk02
� K
k

�
� 1

2k3=2

�
K 0 +

�
tK +

1p
k

��
E0

kk02
� K

0k

k02

�
= 0;

or

t
1

kk02
[EK 0 + E0K �KK 0]

= K 0 k
02 + 2k2

2k3=2k02
� E0

k3=2k02
= K 0 1 + k

2

2k3=2k02
� E0

k3=2k02
:
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Since the term in [] in the left-hand side is �=2 [5, 8.122, p.907], we obtain that the
de�ning equation for at is

�t = K 0 1 + k
2

p
k

� 2 E
0

p
k
; k = a2t ;

that is,
�t = atK

0 �a2t � �a�2t + a2t
�
� 2E0

�
a2t
�
=at:
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