GREEN EQUILIBRIUM MEASURES AND REPRESENTATIONS OF AN EXTERNAL FIELD

A.L. LEVIN ${ }^{1}$ AND D.S. LUBINSKY ${ }^{2}$

Abstract

We establish a representation for external fields involving Green potentials. This is the analogue of the representation of Rakhmanov and Buyarov involving logarithmic potentials. We also establish related results, and present an example.

1. Introduction

Let Q be convex on \mathbb{R}, with

$$
\min _{\mathbb{R}} Q=0
$$

and with Q growing at ∞ faster than $\log |x|$. Then Q admits the representation

$$
\begin{equation*}
Q(x)=\int_{0}^{\infty} g_{S_{\tau}}(x) d \tau, x \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

where $\left\{S_{\tau}\right\}$ is a suitable increasing sequence of compact intervals and $g_{S_{\tau}}$ denotes the Green function for $\mathbb{C} \backslash S_{\tau}$ with pole at ∞. This representation was discovered by Rakhmanov [14], and it turned out to be indispensable in the study of orthogonal polynomials for the weight $W=\exp (-Q)$, and in several other contexts [2], [6], [7]. Actually (1.1) was proved in [14] for a special class of convex Q. The general result was announced in [3].

Inspired by that paper, the authors proved (1.1) in [9], using results of Totik [17] on equilibrium measures for the family of weights $\left\{w^{\lambda}\right\}_{\lambda>0}$. This was then applied in studying orthogonal properties for non-even weights. A far reaching generalisation of (1.1) appeared in a recent paper of Buyarov and Rakhmanov [4]. They proved that (1.1) holds (for $x \in \cup_{\tau} S_{\tau} \subseteq \mathbb{R}$), for example, for any continuous function Q, and beyond. Note that (1.1) may be rewritten as

$$
\begin{equation*}
Q(x)=\int_{0}^{\infty}\left\{\log \frac{1}{\operatorname{cap} S_{\tau}}-U^{\omega_{\tau}}(x)\right\} d \tau \tag{1.2}
\end{equation*}
$$

where

$$
U^{\omega_{\tau}}(x):=\int \log \frac{1}{|x-s|} d \omega_{\tau}(s)
$$

is the (logarithmic) equilibrium potential for the set S_{τ}.
Since the study of rational functions is intimately connected with Green potentials, there is good reason to believe that an analogue of (1.2) for Green potentials will be useful for problems involving rational functions, just as (1.2) is useful for problems involving polynomials. For a wide class of functions Q on a set E (that is

[^0]not necessarily a real interval) in a domain $G \subseteq \mathbb{C}$, we show that there is a suitable increasing family of compact sets $S_{\tau} \subseteq E, \tau>0$, such that for $t>0$ and $z \in S_{t}$,
\[

$$
\begin{equation*}
Q(z)=\int_{0}^{t}\left\{\frac{1}{\operatorname{cap}_{G} S_{\tau}}-V^{\omega_{\tau}^{G}}(z)\right\} d \tau \tag{1.3}
\end{equation*}
$$

\]

Here $\operatorname{cap}_{G} S_{\tau}$ denotes the Green capacity for the set S_{τ}, and if $g(z, \xi)$ denotes the Green's function for G with pole at ξ,

$$
V^{\omega_{\tau}^{G}}(z):=\int_{S_{\tau}} g(z, \xi) d \omega_{\tau}^{G}(\xi)
$$

denotes the Green potential for the Green equilibrium measure ω_{τ}^{G} for S_{τ}. We emphasise that in the sequel the symbol V is associated with Green (and not logarithmic) potentials.

Since $\left\{S_{\tau}\right\}_{\tau>0}$ is increasing, so that the integrand in (1.3) is 0 for $\tau>t$, one also deduces from (1.3) that

$$
\begin{equation*}
Q(z)=\int_{0}^{\infty}\left\{\frac{1}{\operatorname{cap}_{G} S_{\tau}}-V^{\omega_{\tau}^{G}}(z)\right\} d \tau, z \in \cup_{\tau>0} S_{\tau} \tag{1.4}
\end{equation*}
$$

But what is a suitable $\left\{S_{\tau}\right\}_{\tau>0}$? This is easy to explain. We have

$$
\int_{0}^{t} V^{\omega_{\tau}^{G}}(z) d \tau=\int_{0}^{t}\left[\int_{S_{\tau}} g(z, \xi) d \omega_{\tau}^{G}(\xi)\right] d \tau
$$

Hence if we define the measure μ_{t} on S_{t} by

$$
\begin{equation*}
\mu_{t}:=\int_{0}^{t} \omega_{\tau}^{G} d \tau \tag{1.5}
\end{equation*}
$$

we obtain, by Fubini, that

$$
\begin{equation*}
\int_{0}^{t} V^{\omega_{\tau}^{G}}(z) d \tau=\int_{S_{t}} g(z, \xi) d \mu_{t}(\xi)=V^{\mu_{t}}(z) \tag{1.6}
\end{equation*}
$$

where $V^{\mu_{t}}$ is the Green potential of μ_{t}. We also see from (1.5) that

$$
\mu_{t}\left(S_{t}\right)=\int_{0}^{t} \omega_{\tau}^{G}\left(S_{t}\right) d \tau=\int_{0}^{t} d \tau=t
$$

(Recall that ω_{τ}^{G} has mass 1 and is supported on $S_{\tau} \subseteq S_{t}$). Thus μ_{t} has mass t, and is supported on S_{t}. Now assuming that (1.3) holds, we obtain from (1.6) that

$$
\begin{equation*}
V^{\mu_{t}}(z)+Q(z)=c_{t}, z \in S_{t} \tag{1.7}
\end{equation*}
$$

where we set

$$
\begin{equation*}
c_{t}:=\int_{0}^{t} \frac{d \tau}{\operatorname{cap}_{G} S_{\tau}} \tag{1.8}
\end{equation*}
$$

Moreover, assuming, for the moment, that

$$
E=\bigcup_{\tau>0} S_{\tau}
$$

(which is not always the case), and keeping in mind that

$$
\begin{equation*}
V^{\omega_{\tau}^{G}}(z) \leq \frac{1}{\operatorname{cap}_{G} S_{\tau}}, z \in G \tag{1.9}
\end{equation*}
$$

we obtain from (1.4) that

$$
\begin{equation*}
V^{\mu_{t}}(z)+Q(z) \geq c_{t}, z \in E \tag{1.10}
\end{equation*}
$$

The relations (1.7), (1.10) imply that μ_{t} is the Green equilibrium measure of mass t for the external field Q. Hence if (1.3) holds, then the set S_{t} must coincide with the support of μ_{t}.

In the next section, we describe the class of functions for which (1.3) will be proved, and present the main theorem. We also recall some basic notions and results from potential theory. The rest of the paper is devoted to proofs. We could prove (1.3) using the above-mentioned results of Totik (which can be extended to deal with Green potentials), but we preferred to follow the same steps as in [4], thereby obtaining some other useful results, parallel to those proved in [4].

2. Preliminaries and Main Theorem

Let G be any domain in $\overline{\mathbb{C}}$, whose boundary ∂G has positive capacity, and let $g(z, \xi)$ denote the Green function for G with pole at ξ. So g is characterized by the following properties:
(i) As a function of z, with ξ fixed, $g(z, \xi)$ is non-negative, subharmonic in $\overline{\mathbb{C}} \backslash\{\xi\}$ and harmonic in $G \backslash\{\xi\}$;
(ii) $g(z, \xi)+\log |z-\xi|$ remains bounded as $z \rightarrow \xi$;
(iii) $g(z, \xi)=0$ for q.e. $z \in \partial G$ where q.e. (quasi-everywhere) means except for a set of capacity 0 .
Given a finite positive measure μ on G, we recall that its Green potential V^{μ} is defined by

$$
V^{\mu}(z)=\int g(z, \xi) d \mu(\xi), z \in G
$$

The support of μ will be denoted by S_{μ}, and we always assume that S_{μ} is a compact subset of G. Such a V^{μ} is l.s.c. (lower semi-continuous) and superharmonic in G. Also

$$
\begin{equation*}
\lim _{z \rightarrow x \in \partial G} V^{\mu}(z)=0 \text { for q.e. } x \in \partial G . \tag{2.1}
\end{equation*}
$$

Hence by the minimum principle, $V^{\mu}>0$ in G (but may attain the value ∞).
Furthermore, V^{μ} is continuous in the fine topology (this is the weakest topology making all potentials continuous). This implies that for any $z_{0} \in G$ and any $\varepsilon>0$, the set

$$
\begin{equation*}
\left\{z \in G:\left|V^{\mu}(z)-V^{\mu}\left(z_{0}\right)\right| \geq \varepsilon\right\} \tag{2.2}
\end{equation*}
$$

(with obvious adjustment for the case $V^{\mu}\left(z_{0}\right)=\infty$) is thin at z_{0}. All these notions and facts can be found in, for example, [16, Chapters 1, 2] or [8, Theorem 5.11]. When using the fine topology, we shall say so. Thus, unless otherwise mentioned, all limits and topological notions are with respect to the usual Euclidean topology.

Given a function $Q: E \rightarrow(-\infty, \infty]$, we say that Q is admissible on E if the following properties hold for E and Q :
(A.1) E is closed in G.
(That is, E is closed relative to G).
(A.2) E is not thin at any of its points.
(Such an E is called regular).
(A.3) E has empty interior, and for any compact $K \subseteq E$, the complement $G \backslash K$ is connected.
(A.4) Q is l.s.c. on E and the set $\{z \in E: Q(z)<\infty\}$ has positive capacity. (In particular, $\operatorname{cap}(E)>0$, though this follows from (A.2) as well).
(A.5) For any $z_{0} \in E$ with $Q\left(z_{0}\right)$ finite and for any $\varepsilon>0$, the set

$$
\begin{equation*}
\left\{z \in E:\left|Q(z)-Q\left(z_{0}\right)\right|<\varepsilon\right\} \tag{2.3}
\end{equation*}
$$

is not thin at z_{0}.
(Since Q is l.s.c., this also gives

$$
\left.\liminf _{z \rightarrow z_{0}} Q(z)=Q\left(z_{0}\right)\right)
$$

(A.6) If $z_{0} \in \partial G$ or $z_{0}=\infty$ is a limit point of E, then

$$
\lim _{z \rightarrow z_{0}, z \in E} Q(z)=\infty
$$

Note that (A.1), (A.4) and (A.6) imply that for any $N>0$, the set $\{z \in E: Q(z) \leq N\}$ is a compact subset of G.

Remarks

(a) If Q is admissible on E, then $Q+V^{\mu}$ is also admissible, as follows from the properties of V^{μ} above.
(b) All of the above are satisfied if, for example, E is a smooth arc, possibly unbounded, and Q is piecewise continuous on E, satisfying (A.6).
(c) For some of our results, we do not need all of (A.1) to (A.6), and shall point this out where relevant.

Next, we need well known results on Green equilibrium potentials: let

$$
M_{t}:=M_{t}(E):=\left\{\mu: S_{\mu} \subseteq E \text { and } \mu(E)=t\right\}
$$

For $\mu \in M_{t}$, consider its energy integral

$$
\begin{aligned}
I(\mu) & : \quad=I(\mu, Q) \\
& : \quad=\iint[g(z, \xi)+Q(z)+Q(\xi)] d \mu(z) d \mu(\xi) \\
& =\int V^{\mu} d \mu+2 t \int Q d \mu
\end{aligned}
$$

Theorem 2.1

Assume (A.1), (A.4) and (A.6).
(a) There exists a unique $\mu_{t} \in M_{t}$ such that

$$
\begin{equation*}
I_{t}:=I_{t}\left(\mu_{t}\right):=\inf \left\{I(\mu): \mu \in M_{t}\right\} \tag{2.4}
\end{equation*}
$$

Moreover, I_{t} is finite, and μ_{t} has finite energy:

$$
(0 \leq) \int V^{\mu_{t}} d \mu_{t}<\infty
$$

(b) The support $S_{\mu_{t}}$ of μ_{t} is a compact subset of G, and more precisely for some N,

$$
S_{\mu_{t}} \subseteq\{z \in E: Q(z) \leq N\}
$$

(c) Setting

$$
c_{t}:=c_{t}(Q):=t^{-1}\left[I_{t}-\int Q d \mu_{t}\right]
$$

we have

$$
\begin{align*}
& V^{\mu_{t}}(z)+Q(z) \geq c_{t}, \text { q.e. } z \in E \tag{2.5}\\
& V^{\mu_{t}}(z)+Q(z) \leq c_{t}, \text { all } z \in S_{\mu_{t}} \tag{2.6}
\end{align*}
$$

This measure μ_{t} is called the equilibrium measure of mass t for the external field Q, and c_{t} is called the equilibrium (or extremal) constant.

Remark

Since $t^{-1} Q$ satisfies the same conditions as does Q, it suffices to prove the theorem for $t=1$. For this case, it appears in [16, Theorem II.5.10], but under two additional restrictions. First, instead of (A.6), it is assumed in [16] that $Q(z)-\log |z| \rightarrow \infty$ as $z \rightarrow \infty$ (if E is unbounded), while we only assumed that $Q(z) \rightarrow \infty$ in this case. Second, no assumption on Q is made in [16], if E has limit points on ∂G. This is due to the (tacit) agreement that the phrase "closed subset $E \subset G$ " used there, actually means that the closure of E in \mathbb{C} still belongs to G (otherwise the result is incorrect, if Q is bounded near $\partial G)$. Yet the proof of Theorem 1 requires only minor modifications of that in [16], so we only indicate two places where (A.6) comes into play.

Proof

(a) Being l.s.c., and since $Q>-\infty$ on E, Q is bounded below on compact subsets of E. Then (A.6) ensures that Q is bounded below on the whole of E (and of course attains its minimum on E). Since $V^{\mu} \geq 0$, it follows that the infimum in (2.4) is $>-\infty$. That it cannot be ∞, is proved by standard methods, using (A.4). Denote this infimum by I_{1} (that is, I_{t} with $t=1$).
(b) Let

$$
E_{N}:=\{z \in E: Q(z) \leq N\}
$$

According to (A.6), E_{N} is compact and we use (A.6) again to show that for N large enough,

$$
\begin{equation*}
I_{1}=\inf \left\{I(\mu): \mu \in M_{t}, S_{\mu} \subseteq E_{N}\right\} \tag{2.7}
\end{equation*}
$$

Once we have this, the rest of the proof is exactly the same as indicated in [16, pp. 28-29, p.132]. To prove (2.7), it is enough in turn, to show that for N large enough,

$$
\begin{equation*}
g(z, \xi)+Q(z)+Q(\xi)>1+I_{1},(z, \xi) \notin E_{N} \times E_{N} \tag{2.8}
\end{equation*}
$$

(see [16, pp. 29-30] for deduction of (2.7) from (2.8)). But (2.8) is obvious for large N, since $g \geq 0, Q$ is bounded from below, and either $Q(z)$ or $Q(\xi)$ is larger than N.

Under additional assumptions on E and Q, one can strengthen (c) of Theorem 2.1:

Theorem 2.2

Assume (A.1), (A.2) and (A.4) - (A.6), that is, we only drop the geometrical condition (A.3) on E. Then (2.5) can be refined to

$$
\begin{equation*}
V^{\mu_{t}}(z)+Q(z) \geq c_{t}, \text { all } z \in E \tag{2.9}
\end{equation*}
$$

so that (2.6) becomes

$$
\begin{equation*}
V^{\mu_{t}}(z)+Q(z)=c_{t} \text { all } z \in S_{\mu_{t}} . \tag{2.10}
\end{equation*}
$$

Moreover, Q is continuous on $S_{\mu_{t}}$, and $V^{\mu_{t}}$ is continuous and bounded on G.
Proof
This is standard. By (2.5), the exceptional set

$$
E^{\prime}:=\left\{z \in E: V^{\mu_{t}}(z)+Q(z)<c_{t}\right\}
$$

has capacity 0 , so it is thin at every point of E. Then the continuity of $V^{\mu_{t}}$ in the fine topology (see (2.2)) together with (A.2), (A.5) ensures, for any $z_{0} \in E$, the existence of $\left\{z_{n}\right\} \subseteq E \backslash E^{\prime}$ such that

$$
\left(V^{\mu_{t}}+Q\right)\left(z_{n}\right) \rightarrow\left(V^{\mu_{t}}+Q\right)\left(z_{0}\right), n \rightarrow \infty
$$

Then (2.9) follows from (2.5). Since $V^{\mu_{t}}$ is l.s.c., while $c_{t}-Q$ is u.s.c. (upper semi-continuous), (2.10) shows that $V^{\mu_{t}}$ and Q are continuous on $S_{\mu_{t}}$. Then $V^{\mu_{t}}$ is continuous in G (cf. [16, Thm. II.3.5] and recall that the Green potential of μ_{t} differs from the logarithmic potential by a harmonic function). The boundedness of $V^{\mu_{t}}$ in G follows by the maximum principle for Green potentials (cf. [16, Cor. II. 5.9]).

Finally, recall that for the case $Q \equiv 0$, the following classical result holds:

Theorem 2.3

Let K be a compact subset of G, with cap $(K)>0$. There exists a unique probability measure ω_{K}^{G}, supported on K and such that for some constant $c>0$,

$$
\begin{gather*}
V^{\omega_{K}^{G}}(z)=c \text { q.e. } z \in K \tag{2.11}\\
V^{\omega_{K}^{G}}(z) \leq c \text { all } z \in G \tag{2.12}
\end{gather*}
$$

We call ω_{K}^{G} the Green equilibrium measure for K. Furthermore if $E:=K$ also satisfies (A.3), then

$$
\begin{equation*}
\operatorname{cap}\left(K \backslash S_{\omega_{K}^{G}}\right)=0 \tag{2.13}
\end{equation*}
$$

and the Green equilibrium measures formed for K and for $S_{\omega_{K}^{G}}$ coincide. Also, (2.11) holds at every regular point of K; if K is regular, then $S_{\omega_{K}^{G}}=K$ and $V^{\omega_{K}^{G}}$ is continuous in G.

The Green capacity of K (relative to G) is defined by

$$
\begin{equation*}
\operatorname{cap}_{G}(K)=c^{-1} \tag{2.14}
\end{equation*}
$$

where, of course, c is as in (2.11-12).

Next, for a measure σ supported on E, we set

$$
\begin{equation*}
c(\sigma):=c(\sigma, Q):=\min _{E}\left(V^{\sigma}+Q\right), \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
S^{\sigma}:=S^{\sigma}(Q):=\left\{z \in E: V^{\sigma}(z)+Q(z)=c(\sigma)\right\} . \tag{2.16}
\end{equation*}
$$

Notice that S^{σ} is a compact subset of G (by (A.1), (A.4) and (A.6)). We see from these definitions, that the equilibrium conditions (2.9), (2.10) are equivalent to the inclusion

$$
\begin{equation*}
S_{\sigma} \subseteq S^{\sigma} . \tag{2.17}
\end{equation*}
$$

Hence, under the assumptions of Theorem 2.2, (2.17) holds with $\sigma=\mu_{t}$ (and with $c(\sigma)$ in (2.15) equal to c_{t}). Moreover, μ_{t} is the only measure in M_{t} that satisfies (2.17) (see [16, Theorem II.5.12]). Now we can formulate the main result. It will be convenient to use the abbreviations

$$
\begin{align*}
& S_{t}:=S_{\mu_{t}} ; S^{t}:=S^{\mu_{t}} ; V^{t}:=V^{\mu_{t}} ; \\
& \omega_{t}:=\omega_{S_{\mu_{t}}}^{G} ; \omega^{t}:=\omega_{S^{\mu_{t}}}^{G}, \tag{2.18}
\end{align*}
$$

and recall that c_{t} coincides with $c\left(\mu_{t}\right)$. Thus ω_{t} is the (unweighted, classical) Green equilibrium measure for the support $S_{\mu_{t}}=S_{t}$ of μ_{t}; and ω^{t} plays the same role for the set S^{t} where $V^{\mu_{t}}+Q=V^{t}+Q$ attains its minimum. Also, as μ_{t} is not affected if we replace Q by $Q+$ Const, we assume that

$$
\begin{equation*}
\min _{E} Q=0 . \tag{2.19}
\end{equation*}
$$

Theorem 2.4

Let Q be admissible on E and satisfy (2.19).
(a) The family $\left\{S_{t}\right\}_{t>0}$ is an increasing family of sets. Moreover, if we set

$$
S_{0}:=\{z \in E: Q(z)=0\},
$$

then

$$
\begin{equation*}
S_{0}=\bigcap_{t>0} S_{t} . \tag{2.20}
\end{equation*}
$$

(b) There holds

$$
S_{t}=\overline{\bigcup_{\tau<t} S_{\tau}} \subseteq \bigcap_{\tau>t} S_{\tau}=S^{t}, t>0
$$

and there exists a countable set $N \subset(0, \infty)$ such that

$$
\operatorname{cap}\left(S^{t} \backslash S_{t}\right)=0, t \notin N .
$$

(c) The equilibrium measure μ_{t} and the extremal constant c_{t} have the representations

$$
\begin{equation*}
\mu_{t}=\int_{0}^{t} \omega_{\tau} d \tau ; c_{t}=\int_{0}^{t} \frac{1}{\operatorname{cap}_{G} S_{\tau}} d \tau . \tag{2.21}
\end{equation*}
$$

(d) The external field Q has the representation

$$
\begin{equation*}
Q(z)=\int_{0}^{\infty}\left(\frac{1}{\operatorname{cap}_{G} S_{t}}-V^{\omega_{t}}(z)\right) d t, z \in \bigcup_{t>0} S_{t} . \tag{2.22}
\end{equation*}
$$

Remarks

(a) Let

$$
S_{\infty}:=\bigcup_{t>0} S_{t}
$$

It follows from Theorem 2.2 that if $S_{\infty} \neq E$, then

$$
\begin{equation*}
Q(z) \geq \sup _{t}\left\{c_{t}-V^{t}(z)\right\}, z \in E \backslash S_{\infty} \tag{2.23}
\end{equation*}
$$

and one can assign Q an arbitrary value on $E \backslash S_{\infty}$ (but subject to (2.23)) without affecting the family $\left\{S_{\tau}\right\}_{\tau>0}$. Obviously,

$$
\{z: Q(z)=\infty\} \subseteq E \backslash S_{\infty}
$$

but it is worth noting that there may exist $z \in E \backslash S_{\infty}$ with $Q(z)<\infty$.
(b) The convergence of the integral for c_{t} in (2.21) implies that cap ${ }_{G} S_{\tau}$ cannot approach 0 too rapidly as $\tau \rightarrow 0+$; in particular it is not possible that

$$
\operatorname{cap}_{G} S_{\tau}=O(\tau), \tau \rightarrow 0+
$$

3. Extremal Properties of c_{t}, S_{t}

We first establish

Theorem 3.1

Under the assumptions of Theorem 2.2, we have

$$
\begin{equation*}
c_{t}=c\left(\mu_{t}\right)=\sup \left\{c(\sigma): \sigma \in M_{\tau}, \tau \leq t\right\} . \tag{3.1}
\end{equation*}
$$

Moreover, if (A.3) is satisfied, that is, Q is admissible, then equality holds in (3.1) only for $\sigma=\mu_{t}$.
Proof
For any measure σ on E, we have, by the definition (2.15) of $c(\sigma)$, and by Theorem 2.2:

$$
\begin{equation*}
V^{\sigma}+Q-c(\sigma) \geq 0=V^{t}+Q-c_{t} \text { on } S_{t} . \tag{3.2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
V^{\sigma} \geq V^{t}+c(\sigma)-c_{t} \text { on } S_{t} \tag{3.3}
\end{equation*}
$$

Let $\tau>0$ and $\sigma \in M_{\tau}$. Then by (2.12), (2.14),

$$
\int V^{\sigma} d \omega_{t}=\int V^{\omega_{t}} d \sigma \leq \frac{\tau}{\operatorname{cap}_{G} S_{t}}
$$

Similarly by (2.11),

$$
\int V^{t} d \omega_{t}=\int V^{\omega_{t}} d \mu_{t}=\frac{t}{\operatorname{cap}_{G} S_{t}}
$$

(Note that although E is regular, S_{t} need not be regular, so that (2.11) holds q.e. in S_{t}. However μ_{t} has finite energy, hence it is C-absolutely continuous, that is, sets of capacity 0 have zero μ_{t}-measure). On integrating (3.3) against ω_{t}, we thus obtain

$$
\begin{equation*}
c_{t}-c(\sigma) \geq \frac{t-\tau}{\operatorname{cap}_{G} S_{t}} \tag{3.4}
\end{equation*}
$$

This holds for any τ, and if $\tau \leq t$, we get (3.1). Next, if $\sigma=\mu_{\tau}$, where $\tau>0$, we obtain that

$$
\begin{equation*}
c_{t}-c_{\tau} \geq \frac{t-\tau}{\operatorname{cap}_{G} S_{t}} \tag{3.5}
\end{equation*}
$$

Reversing the roles of t and τ, we also get

$$
\begin{equation*}
c_{t}-c_{\tau} \leq \frac{t-\tau}{\operatorname{cap}_{G} S_{\tau}} \tag{3.6}
\end{equation*}
$$

(We shall use (3.5) and (3.6) later on). Assume now that $\sigma \in M_{\tau}, \tau \leq t$, and $c(\sigma)=c_{t}$. Then (3.4) shows that $\tau=t$. Also, (3.3) then becomes

$$
V^{\sigma} \geq V^{t} \text { on } S_{t}
$$

Integrating this against ω_{t}, we obtain as before

$$
\begin{equation*}
\frac{t}{\operatorname{cap}_{G} S_{t}} \geq \int V^{\sigma} d \omega_{t} \geq \int V^{t} d \omega_{t}=\frac{t}{\operatorname{cap}_{G} S_{t}} \tag{3.7}
\end{equation*}
$$

Hence

$$
\int\left(V^{\sigma}-V^{t}\right) d \omega_{t}=0
$$

and since the integrand is non-negative, the set

$$
K:=S_{\omega_{t}} \cap\left\{z:\left(V^{\sigma}-V^{t}\right)(z)>0\right\}
$$

has ω_{t}-measure 0 . On the other hand, K being an intersection of $S_{\omega_{t}}$ with an open set (recall that V^{t} is continuous while V^{σ} is l.s.c.) must have positive ω_{t}-measure, if it is non-empty. We have thus showed that K is empty, so

$$
\begin{equation*}
V^{t}(z)=V^{\sigma}(z) \text { all } z \in S_{\omega_{t}} \tag{3.8}
\end{equation*}
$$

Now the assumption (A.3) comes into play. It implies (via the maximum principle for harmonic functions) that strict inequality holds:

$$
V^{\omega_{t}}(z)<\frac{1}{\operatorname{cap}_{G} S_{t}}, z \in G \backslash S_{\omega_{t}}
$$

Therefore, if $S_{\sigma} \nsubseteq S_{\omega_{t}}$,

$$
\int V^{\sigma} d \omega_{t}=\int V^{\omega_{t}} d \sigma<\frac{t}{\operatorname{cap}_{G} S_{t}}
$$

and we obtain a contradicition to (3.7). So $S_{\sigma} \subseteq S_{\omega_{t}}$ and then (3.8) shows that V^{σ} is bounded on S_{σ}, hence has finite energy. Since we have simultaneously (from (3.8))

$$
V^{\sigma} \leq V^{t} \text { on } S_{\sigma} \text { and } V^{t} \leq V^{\sigma} \text { on } S_{t}
$$

we conclude by the principle of domination for Green potentials (cf. [16, Theorem II.5.8]) that $V^{\sigma}=V^{t}$ in G and hence $\sigma=\mu_{t}$.

Next, given a compact $K \subseteq E$ of positive capacity, we set for $t>0$,

$$
\begin{equation*}
F_{t}(K):=F_{t}(K, Q):=-\frac{t}{\operatorname{cap}_{G} K}-\int Q d \omega_{K} \tag{3.9}
\end{equation*}
$$

This functional was introduced in [10] and it is an analogue of the so-called F functional of Mhaskar and Saff [16, p.194]. The latter plays an important role in the determination of the support of the equilibrium measure. The functional (3.9) plays a similar role in the context of this paper - see the example in Section 5. For
the following result, we recall the notation (2.18).

Theorem 3.2

Let $K \subseteq E$ be compact, with $\operatorname{cap}(K)>0$. Under the assumptions of Theorem 2.2, there holds

$$
\begin{equation*}
F_{t}(K) \leq F_{t}\left(S_{t}\right)=-c_{t} . \tag{3.10}
\end{equation*}
$$

Moreover, if (A.3) is also satisfied, then equality occurs in (3.10) iff

$$
\begin{equation*}
S_{t} \subseteq S_{\omega_{K}} \subseteq S^{t} \tag{3.11}
\end{equation*}
$$

Proof
This is very similar to the proof of Theorem 3.1. On integrating

$$
V^{t}+Q \geq c_{t} \text { in } E
$$

against ω_{K}, we obtain

$$
c_{t} \leq \int\left(V^{t}+Q\right) d \omega_{K} \leq \frac{t}{\operatorname{cap}_{G} K}+\int Q d \omega_{K}=-F_{t}(K)
$$

with equalities if $K=S_{t}$. So we have (3.10). Moreover, equalities can occur iff

$$
\begin{equation*}
V^{t}+Q=c_{t}, \omega_{K} \text { a.e., } \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
V^{\omega_{K}}=\frac{1}{\operatorname{cap}_{G} K}, \quad \mu_{t} \text { a.e. } \tag{3.13}
\end{equation*}
$$

Now as $S_{\omega_{K}}$ cannot contain isolated points (for example, by (2.12)), we see that (3.12) must hold on a dense subset of $S_{\omega_{K}}$, that is this subset is contained in S^{t}. Since S^{t} is closed, we obtain the second inclusion in (3.11). Note that we did not use (A.3) here. Similarly, equality (3.13) must hold on a dense subset of S_{t}. Also, due to (A.3), we have

$$
V^{\omega_{K}}<\frac{1}{\operatorname{cap}_{G} K}
$$

outside $S_{\omega_{K}}$, so that the above dense subset of S_{t} is contained in $S_{\omega_{K}}$. Since the latter set is closed, we conclude that $S_{t} \subseteq S_{\omega_{K}}$.

Now, for any $\varepsilon>0$, the set

$$
E_{\varepsilon}:=\{z \in E: Q(z) \leq \varepsilon\}
$$

is compact, and it has positive capacity by (A.5), while $\min _{E} Q=0$ (recall (2.19)). Then (3.10) gives, with $K=E_{\varepsilon}$,

$$
c_{t} \leq-F_{t}\left(E_{\varepsilon}\right) \leq \varepsilon+\frac{t}{\operatorname{cap}_{G} E_{\varepsilon}}
$$

Here $c_{t} \geq 0$, since it is the minimum of the non-negative function $V^{t}+Q$ - recall that the Green's function $g(z, \xi)$ is non-negative. On letting first $t \rightarrow 0$ and then $\varepsilon \rightarrow 0$, we obtain

$$
\begin{equation*}
\lim _{t \rightarrow 0+} c_{t}=0 \tag{3.14}
\end{equation*}
$$

Next, we have seen above, that the equilibrium relations (2.9), (2.10) of Theorem 2.2 can be written in the form

$$
\left(S_{\mu_{t}}=\right) S_{t} \subseteq S^{t}\left(=S^{\mu_{t}}\right)
$$

It is easy to construct Q for which strict inclusion occurs. Then $V^{t}+Q$ may attain its minimum on E also outside S_{t}. This can never happen for other $\sigma \in M_{t}$. More precisely, we have

Theorem 3.3

Let Q be admissible on E. For any measure $\sigma \in M_{\tau}$ with $\tau \leq t$ and $\sigma \neq \mu_{t}$, we have

$$
\begin{equation*}
S^{\sigma} \subseteq S_{t} \tag{3.15}
\end{equation*}
$$

Proof
Consider the function

$$
u(z):=\left[V^{\sigma}(z)-c(\sigma)\right]-\left[V^{t}(z)-c_{t}\right]
$$

which is superharmonic in $G \backslash S_{t}$ and bounded below ($V^{\sigma} \geq 0$ while V^{t} is bounded). Furthermore, we have by (2.1), for q.e. $x \in \partial G$,

$$
\lim _{z \rightarrow x} u(z)=0+c_{t}-c(\sigma) \geq 0
$$

the last inequality following by Theorem 3.1. Next, as V^{t} is continuous and V^{σ} is l.s.c., we obtain for $x \in S_{t}$,

$$
\liminf _{z \rightarrow x, z \in G \backslash S_{t}} u(z) \geq u(x) \geq 0
$$

(recall (3.2)). Since $\sigma \neq \mu_{t}, u$ is non-constant and the minimum principle for superharmonic functions yields

$$
u(z)>0, z \in G \backslash S_{t} .
$$

(We need (A.3) here). Since $u \leq 0$ on S^{σ} (recall (2.15), (2.9)), we obtain (3.15).
We conclude this section with a concavity property of the functions c_{t} and $c_{t}-V^{t}(z)$, with z fixed.

Theorem 3.4

Assume the conditions of Theorem 2.2 and fix $z \in G$. Then the functions c_{t} and $c_{t}-V^{t}(z)$ are concave functions of t.
Proof
Let $t=\alpha t_{1}+(1-\alpha) t_{2}$, where $\alpha \in(0,1)$ and consider the function

$$
\begin{equation*}
u(z):=\alpha V^{t_{1}}(z)+(1-\alpha) V^{t_{2}}(z)-V^{t}(z), z \in G \tag{3.16}
\end{equation*}
$$

By Theorem 2.2,

$$
\begin{equation*}
u(z) \geq \alpha c_{t_{1}}+(1-\alpha) c_{t_{2}}-c_{t}, z \in S_{t} \tag{3.17}
\end{equation*}
$$

so that

$$
\int u d \omega_{t} \geq \alpha c_{t_{1}}+(1-\alpha) c_{t_{2}}-c_{t}
$$

On the other hand, an integration of (3.16) yields

$$
\int u d \omega_{t} \leq\left[\alpha t_{1}+(1-\alpha) t_{2}-t\right] \frac{1}{\operatorname{cap}_{G} S_{t}}=0
$$

We have used here the equilibrium relations of Theorem 2.3. Therefore

$$
\begin{equation*}
\alpha c_{t_{1}}+(1-\alpha) c_{t_{2}}-c_{t} \leq 0 \tag{3.18}
\end{equation*}
$$

and the concavity of c_{t} follows. Now u is superharmonic in $G \backslash S_{t}$, and tends to 0 as $z \rightarrow z_{0} \in \partial G$, at least for q.e. z_{0}. Also, u is continuous, bounded, and is bounded below on S_{t} by a non-positive constant (see (3.17), (3.18)). Hence (3.17) holds for all $z \in G$. After substituting there $u(z)$ from (3.16) and rearrangement, we obtain that $c_{t}-V^{t}(z)$ is concave.

4. Proof of Theorem 2.4

Proof of part (a) of Theorem 2.4
We start with the proof of (2.20). Assume that $z \in S_{t}$, for all $t>0$. Then as $V^{t}>0$ and $Q \geq 0$ by our assumption (2.19), we obtain from (2.10) that

$$
0 \leq Q(z) \leq c_{t} \text { for all } t>0
$$

Then (3.14) gives $Q(z)=0$, that is $z \in S_{0}$. This proves the inclusion

$$
\bigcap_{t>0} S_{t} \subseteq S_{0}
$$

For the other direction, we consider two cases.
Case 1: E is compact
Let $0<\varepsilon<t$. Since E is regular, we have for all $z \in E$,

$$
V^{\varepsilon \omega_{E}}(z)+Q(z)=\frac{\varepsilon}{\operatorname{cap}_{G} E}+Q(z)
$$

Hence the left-hand side attains its minimum on E exactly for $z \in S_{0}$. This means that

$$
\begin{equation*}
S_{0}=S^{\varepsilon \omega_{E}} \text { and } c\left(\varepsilon \omega_{E}\right)=\frac{\varepsilon}{\operatorname{cap}_{G} E} \tag{4.1}
\end{equation*}
$$

(recall (2.15), (2.16)). Then the inclusion

$$
\begin{equation*}
S_{0} \subseteq S_{t}, t>0 \tag{4.2}
\end{equation*}
$$

follows by Theorem 3.3 (obviously $\varepsilon \omega_{E} \neq \mu_{t}$ as $\varepsilon<t$).
Case 2: E is not compact
Then $Q(z) \rightarrow \infty$ as $z \rightarrow \partial G$ (or as $z \rightarrow \infty$). Hence one can find a bounded open set G_{1} with $\overline{G_{1}} \subset G$ such that

$$
Q(z) \geq 1, z \in E \cap\left(G \backslash G_{1}\right)
$$

We set

$$
K:=E \cap \overline{G_{1}}
$$

and note that K is a compact subset of G, and every $z \in K$ that belongs to G_{1} is a regular point for K. Thus, for $\varepsilon>0$,

$$
V^{\varepsilon \omega_{K}}(z)+Q(z)=\frac{\varepsilon}{\operatorname{cap}_{G} K}+Q(z), z \in E \cap G_{1}
$$

while for $z \in E \cap\left(G \backslash G_{1}\right)$, the left-hand side is at least $Q(z)$, that is ≥ 1. It then follows, as in Case 1, that if ε is small enough, (4.1) holds with E replaced by K and we deduce (4.2) as before.

Next, we prove that the family $\left\{S_{t}\right\}$ is increasing in t. We shall prove a stronger statement, namely

$$
\begin{equation*}
S_{t} \subseteq S^{t} \subseteq S_{t+\delta} \forall t, \delta>0 \tag{4.3}
\end{equation*}
$$

The first inclusion is clear (recall (2.17) and the remarks thereafter) and the second follows from Theorem 3.3, if we replace t there by $t+\delta$ and take $\sigma:=\mu_{t}$.

Proof of part (b) of Theorem 2.4

We first show that the family $\left\{\mu_{t}\right\}_{t>0}$ is increasing, and continuous in the weak $*$ sense. Both assertions follow from the relation

$$
\begin{equation*}
\mu_{t+\delta}-\mu_{t} \in M_{\delta} \forall t, \delta>0 \tag{4.4}
\end{equation*}
$$

The proof of (4.4) is exactly the same as in [4], but we include the proof for the reader's convenience. Let

$$
Q_{t}:=V^{t}+Q-c_{t}
$$

Then Q_{t} is also admissible on E (see Remark (a) after the definition of admissible $Q), Q_{t} \geq 0$ on E, and $Q_{t}=0$ precisely on S^{t}. Thus

$$
S_{0}\left(Q_{t}\right)=S^{t}
$$

Let $\mu:=\mu_{\delta}\left(Q_{t}\right)$ be the equilibrium measure of mass δ for Q_{t}. By what was already proved, we have

$$
S_{t} \subseteq S^{t}=S_{0}\left(Q_{t}\right) \subseteq S_{\mu}
$$

(The last inclusion follows from Theorem 2.4(a)). Hence

$$
S_{\mu+\mu_{t}}=S_{\mu}
$$

so that the equilibrium relations for μ can be stated as

$$
V^{\mu}+Q_{t}=\text { const }=\min _{E}\left(V^{\mu}+Q_{t}\right) \text { on } S_{\mu+\mu_{t}}
$$

Inserting here Q_{t}, we arrive at

$$
V^{\mu+\mu_{t}}+Q=\text { const }=\min _{E}\left(V^{\mu+\mu_{t}}+Q\right) \text { on } S_{\mu+\mu_{t}}
$$

This means that the measure $\mu+\mu_{t}$ (of mass $t+\delta$) is the equilibrium measure $\mu_{t+\delta}$ for the original Q. Hence (4.4) follows.

Now let

$$
\begin{equation*}
S_{t-0}:=\bigcup_{\tau<t} S_{\tau} ; S_{t+0}:=\bigcap_{\tau>t} S_{\tau} \tag{4.5}
\end{equation*}
$$

so that (see (4.3))

$$
\begin{equation*}
S_{t-0} \subseteq \overline{S_{t-0}} \subseteq S_{t} \subseteq S^{t} \subseteq S_{t+0} \tag{4.6}
\end{equation*}
$$

Since μ_{τ} converges weakly to μ_{t} as $\tau \rightarrow t$ (by (4.4)), we must have

$$
\begin{equation*}
S_{t} \subseteq \overline{\bigcup_{\tau<t} S_{\tau}}=\overline{S_{t-0}} \tag{4.7}
\end{equation*}
$$

Next, if $x \in S_{t+0}$, then $x \in S_{\tau}, \tau>t$, so that

$$
\begin{equation*}
V^{\tau}(x)+Q(x)=c_{\tau}, \tau>t \tag{4.8}
\end{equation*}
$$

By Theorem 3.4, both c_{τ} and $V^{\tau}(x)$ are concave functions of τ, therefore they are continuous, and if we let in (4.8), $\tau \rightarrow t+0$, we obtain

$$
V^{t}(x)+Q(x)=c_{t}, \forall x \in S_{t+0}
$$

This shows that $S_{t+0} \subseteq S^{t}$, and together with (4.6), (4.7), we have the first statement of part (b), namely

$$
S_{t}=\overline{S_{t-0}} \subseteq S_{t+0}=S^{t}
$$

Next, by well known properties of capacities (see [15, p. 128, Theorem 5.13 (a), (b)] for a proof for classical capacities, but the same proof works for Green capacities), we have

$$
\begin{equation*}
\lim _{\tau \rightarrow t \pm 0} \operatorname{cap}_{G} S_{\tau}=\operatorname{cap}_{G} S_{t \pm 0} \tag{4.9}
\end{equation*}
$$

Since the family $\left\{S_{\tau}\right\}_{\tau>0}$ is increasing, $\operatorname{cap}_{G} S_{\tau}$ is an increasing function of τ. Hence it is continuous if $t \notin N$, some countable set N. Then (4.9), (4.6) show that for $t \notin N$,

$$
\begin{equation*}
\operatorname{cap}_{G} S_{t-0}=\operatorname{cap}_{G} S_{t}=\operatorname{cap}_{G} S^{t}=\operatorname{cap}_{G} S_{t+0} \tag{4.10}
\end{equation*}
$$

Since $S_{t} \subseteq S^{t}$, this implies that the Green equilibrium measure formed for S^{t} coincides with that formed for S_{t}. Therefore (see (2.13) of Theorem 2.3 and recall that we are assuming (A.3) in the present proof), we have

$$
\operatorname{cap}\left(S^{t} \backslash S_{t}\right)=0
$$

and this completes the proof of (b). Another consequence of (4.10) is that for $t \notin N$,

$$
\begin{equation*}
\omega_{\tau} \text { converges weakly to } \omega_{t} \text { as } \tau \rightarrow t \tag{4.11}
\end{equation*}
$$

Indeed, let $\tau_{n} \nearrow t, n \rightarrow \infty$. Then $\omega_{\tau_{n}} \rightarrow \omega_{S_{t-0}}$ in the weak $*$ sense, by Lemma 2.10 in [8, p. 154]. Moreover the proof of that lemma shows that the first equality of (4.10) ensures that $\omega_{S_{t-0}}=\omega_{t}$. Thus we get (4.11) provided $\tau \rightarrow t-0$. Now let $\tau_{n} \searrow t, n \rightarrow \infty$, and assume that $\omega_{\tau_{n}}$ converges weakly to σ. Clearly

$$
S_{\sigma} \subseteq S_{t+0}=S^{t}
$$

Also,

$$
\operatorname{cap}_{G} S_{\tau_{n}} \rightarrow \operatorname{cap}_{G} S_{t}
$$

Therefore the equilibrium relations (2.11), (2.12) yield (via the lower envelope theorem and the principle of descent), that $\sigma=\omega_{S^{t}}$. But $\omega_{S^{t}}=\omega_{S_{t}}$, as we have already mentioned, and this completes the proof of (4.11).

Proof of parts (c), (d) of Theorem 2.4

By (3.5), (3.6) and the above properties of $\operatorname{cap}_{G} S_{t}$, we obtain that

$$
\frac{d}{d t} c_{t}=\frac{1}{\operatorname{cap}_{G} S_{t}}, t \notin \mathcal{N} .
$$

Being concave, c_{t} is absolutely continuous, and in view of (3.14), we conclude that

$$
\begin{equation*}
c_{t}=\int_{0}^{t} \frac{1}{\operatorname{cap}_{G} S_{\tau}} d \tau \tag{4.12}
\end{equation*}
$$

To show that μ_{t} and Q have the desired representations, one may proceed exactly as in [4, pp. 800-801], replacing there g_{t} (the Green function for S_{t} with pole at $\infty)$, by $\frac{1}{\operatorname{cap}_{G} S_{t}}-V^{\omega_{t}}$, in the present notation.

We suggest, however, a different proof. We shall show that for $t, \delta>0$,

$$
\begin{equation*}
\omega_{t+\delta \mid S_{t}} \leq \frac{1}{\delta}\left[\mu_{t+\delta \mid S_{t}}-\mu_{t}\right] \leq \omega_{t} \tag{4.13}
\end{equation*}
$$

where $\nu_{\mid S}$ denotes the restriction of the measure ν to S. Based on this, we complete the proof of Theorem 2.4 as follows. By (4.13), (with a similar inequality for $t-\delta$ instead of t), and (4.11), there holds

$$
\frac{d \mu_{t}}{d t}=\omega_{t}, t \notin \mathcal{N} .
$$

Since μ_{t} is absolutely continuous in t (recall (4.4)), we obtain the desired representation

$$
\mu_{t}=\int_{0}^{t} \omega_{\tau} d \tau
$$

Then the equilibrium relation (2.10) gives (see (1.6) and (4.12)) that

$$
Q(z)=\int_{0}^{t}\left(\frac{1}{\operatorname{cap}_{G} S_{\tau}}-V^{\omega_{\tau}}(z)\right) d \tau, z \in S_{\tau}
$$

and since $\left\{S_{t}\right\}$ is increasing, while $V^{\omega_{\tau}}(z)=\frac{1}{\operatorname{cap}_{G} S_{\tau}}$ q.e. in S_{t} for $\tau \geq t$, we obtain the last statement (2.22) of Theorem 2.4.

Proof of (4.13)

For the case of logarithmic potentials this result was proved by Totik (cf. [16, Theorem IV.4.9] or [17, Lemma 5.7]). The proof is basically the same for our case, but some changes are required. Also our notation is different from that in [16], so we provide the details. The main ingredient is the following analogue of Theorem IV.4.5 in [16].

Theorem

Let μ, ν be measures of compact support in G, having finite potentials. Assume that for some constant c we have

$$
\begin{equation*}
V^{\mu}(z) \leq V^{\nu}(z)+c \forall z \in G \tag{4.14}
\end{equation*}
$$

Let A be a subset of G in which equality holds in (4.14). Then

$$
\nu_{\mid A} \leq \mu_{\mid A}
$$

Assuming this theorem, we proceed as follows. Since $S_{t} \subseteq S_{t+\delta}$, we have, by Theorems 2.2 and 2.3,

$$
\begin{equation*}
\left(V^{t}-c_{t}\right)+\delta\left(V^{\omega_{t+\delta}}-\frac{1}{\operatorname{cap}_{G} S_{t+\delta}}\right) \geq V^{t+\delta}-c_{t+\delta}, \text { q.e. in } S_{t+\delta} \tag{4.15}
\end{equation*}
$$

Furthermore, equality holds q.e. in S_{t}. Therefore, if we set

$$
a:=c_{t+\delta}-c_{t}-\frac{\delta}{\operatorname{cap}_{G} S_{t+\delta}}
$$

we can rewrite (4.15) as

$$
\begin{equation*}
V^{\mu_{t+\delta}} \leq V^{\mu_{t}+\delta \omega_{t+\delta}}+a \text {, q.e. in } S_{t+\delta} \tag{4.16}
\end{equation*}
$$

with equality q.e. in S_{t}. Now, (3.5) ensures that $a \geq 0$. Also $\mu_{t+\delta}$ is C-absolutely continuous, hence (4.16) holds $\mu_{t+\delta}$ a.e., and we conclude by the principle of domination (cf. [16, Theorem II.5.8]) that (4.16) holds everywhere in G. Since equality
holds q.e. in S_{t}, we obtain by the above theorem that

$$
\left(\mu_{t}+\delta \omega_{t+\delta}\right)_{\mid S_{t}} \leq\left(\mu_{t+\delta}\right)_{\mid S_{t}}
$$

(Note that all measures involved are C-absolutely continuous, hence they vanish on sets of capacity 0). So we have the first inequality in (4.13). The proof of the second is similar: we have

$$
\left(V^{t}-c_{t}\right)+\delta\left(V^{\omega_{t}}-\frac{1}{\operatorname{cap}_{G} S_{t}}\right) \leq V^{t+\delta}-c_{t+\delta}, \text { q.e. in } S_{t}
$$

(actually equality holds q.e. in S_{t}). On setting

$$
b:=\frac{\delta}{\operatorname{cap}_{G} S_{t}}-\left(c_{t+\delta}-c_{t}\right)
$$

we obtain that

$$
V^{\mu_{t}+\delta \omega_{t}} \leq V^{\mu_{t+\delta}}+b, \text { q.e. in } S_{t},
$$

with actual equality q.e. in S_{t}. Here $b \geq 0$, by (3.6). We then continue as before, and obtain

$$
\left(\mu_{t+\delta}\right)_{\mid S_{t}} \leq\left(\mu_{t}+\delta \omega_{t}\right)_{\mid S_{t}}
$$

and this is the second inequality in (4.13).
Thus it remains to prove the above theorem. Since the Green potentials V^{μ}, V^{ν} differ from the corresponding logarithmic ones U^{μ}, U^{ν} by a harmonic function, we see that (4.14) is equivalent to

$$
U^{\mu}(z) \leq U^{\nu}(z)+u(z), \forall z \in G
$$

where $u(z)$ is harmonic in G. If $u(z)$ were a constant c say, this would be Theorem IV.4.5 in [16]. However, the only property of c used in the proof of that Theorem is, that the average of c over a circle centred at some point is independent of the radius of this circle. Since harmonic functions enjoy this property, we see that Theorem IV.4.5 actually was proved in [16] for c replaced by a harmonic function. This completes the proof.

5. An Example

Let

$$
G:=\{z: \operatorname{Re} z>0\} ; E:=(0, \infty)
$$

and let Q be convex. Then the convexity of Q and the convexity of the Green's function for the right-half plane guarantee that S_{t} is a compact interval, say,

$$
S_{t}=\left[a_{t}, b_{t}\right] \subset(0, \infty)
$$

(This follows just as for logarithmic potentials). We place a symmetry hypothesis on Q, which is akin to that of evenness when dealing with logarithmic potentials:

$$
Q(x)=Q\left(x^{-1}\right), x \in(0, \infty)
$$

Then the uniqueness of μ_{t} gives

$$
a_{t} b_{t}=1
$$

Now if $0<a<1$,

$$
\operatorname{cap}_{G}\left[a, a^{-1}\right]=\operatorname{cap}_{G}\left[a^{2}, 1\right]=\frac{K^{\prime}\left(a^{2}\right)}{\pi K\left(a^{2}\right)}
$$

where K and K^{\prime} are complete elliptic integrals:

$$
K(k)=\int_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}} ; K^{\prime}(k)=K\left(k^{\prime}\right) ; k^{2}+k^{\prime 2}=1
$$

Also,

$$
d \omega_{\left[a, a^{-1}\right]}=\frac{1}{K^{\prime}\left(a^{2}\right)} \frac{d x}{\sqrt{\left(x^{2}-a^{2}\right)\left(1-a^{2} x^{2}\right)}}
$$

(All these may be easily derived from Example 5.14 in [16, pp.133-134], by mapping G conformally onto the unit ball in such a way that $\left[a, a^{-1}\right]$ or $\left[a^{2}, 1\right]$ is mapped onto $[-\alpha, \alpha]$ for some $0<\alpha<1$. One uses the conformal map to transform the equilibrium density w.r.t. the unit ball to that w.r.t. G. See [11] for a very similar situation; some of the necessary calculations appear in [1, p. 121 ff.$]$.) Thus for the set $\left[a, a^{-1}\right], F_{t}$ is
$-F_{t}(a):=-F_{t}\left(\left[a, a^{-1}\right]\right)=t \frac{\pi K\left(a^{2}\right)}{K^{\prime}\left(a^{2}\right)}+\frac{1}{K^{\prime}\left(a^{2}\right)} \int_{a}^{a^{-1}} Q(x) \frac{d x}{\sqrt{\left(x^{2}-a^{2}\right)\left(1-a^{2} x^{2}\right)}}$.
If we take

$$
Q(x):=x+x^{-1}
$$

then

$$
\begin{aligned}
-F_{t}(a) & =\frac{\pi}{K^{\prime}\left(a^{2}\right)}\left\{t K\left(a^{2}\right)+\frac{1}{a}\right\} \\
& =\frac{\pi}{K^{\prime}(k)}\left\{t K(k)+\frac{1}{\sqrt{k}}\right\}
\end{aligned}
$$

with $k:=a^{2}$. Differentiating with respect to k and setting $=0$ gives

$$
\begin{equation*}
\left[t \frac{d K}{d k}-\frac{1}{2 k^{3 / 2}}\right] K^{\prime}(k)-\left[t K(k)+\frac{1}{\sqrt{k}}\right] \frac{d K^{\prime}}{d k}=0 \tag{5.1}
\end{equation*}
$$

Since [5, 8.123.2, p.907]

$$
\frac{d K}{d k}=\frac{E}{k k^{\prime 2}}-\frac{K}{k}
$$

where

$$
E(k):=\int_{0}^{1} \sqrt{\frac{1-k^{2} x^{2}}{1-x^{2}}} d x
$$

is the complete elliptic integral of the second kind, we also obtain

$$
\frac{d K^{\prime}}{d k}=\frac{d K}{d k^{\prime}}\left(k^{\prime}\right) \frac{d k^{\prime}}{d k}=-\frac{k}{k^{\prime}}\left\{\frac{E^{\prime}}{k^{\prime} k^{2}}-\frac{K^{\prime}}{k^{\prime}}\right\} .
$$

Then (5.1) can be rearranged to

$$
\left[t\left\{\frac{E}{k k^{\prime 2}}-\frac{K}{k}\right\}-\frac{1}{2 k^{3 / 2}}\right] K^{\prime}+\left(t K+\frac{1}{\sqrt{k}}\right)\left\{\frac{E^{\prime}}{k k^{\prime 2}}-\frac{K^{\prime} k}{k^{\prime 2}}\right\}=0
$$

or

$$
\begin{aligned}
& t \frac{1}{k k^{\prime 2}}\left[E K^{\prime}+E^{\prime} K-K K^{\prime}\right] \\
= & K^{\prime} \frac{k^{\prime 2}+2 k^{2}}{2 k^{3 / 2} k^{\prime 2}}-\frac{E^{\prime}}{k^{3 / 2} k^{\prime 2}}=K^{\prime} \frac{1+k^{2}}{2 k^{3 / 2} k^{\prime 2}}-\frac{E^{\prime}}{k^{3 / 2} k^{\prime 2}} .
\end{aligned}
$$

Since the term in [] in the left-hand side is $\pi / 2$ [5, 8.122, p.907], we obtain that the defining equation for a_{t} is

$$
\pi t=K^{\prime} \frac{1+k^{2}}{\sqrt{k}}-2 \frac{E^{\prime}}{\sqrt{k}} ; k=a_{t}^{2}
$$

that is,

$$
\pi t=a_{t} K^{\prime}\left(a_{t}^{2}\right)\left(a_{t}^{-2}+a_{t}^{2}\right)-2 E^{\prime}\left(a_{t}^{2}\right) / a_{t}
$$

Acknowledgement

The authors thank Arno Kuijlaars for several important comments that simplified and clarified some proofs.

References

[1] N.I. Akhiezer, Elements of the Theory of Elliptic Functions, Translations of the American Mathematical Society, Vol. 79, American Mathematical Society, Providence, 1990.
[2] B. Beckermann and A.B.J. Kuijlaars, Superlinear convergence of Conjugate Gradients, to appear in SIAM J. Numer. Anal.
[3] V.S. Buyarov, Logarithmic Asymptotics of Polynomials Orthogonal with Asymmetric Weights, Math. Notes of the Acad. Sc. USSR., 50(1992), 789-795.
[4] V.S. Buyarov and E.A. Rakhmanov, Families of Equilibrium Measures in an External Field on the Real Axis, Math. Sbornik, 190(1999), 11-22.
[5] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, 4th edn., Academic Press, San Diego, 1980.
[6] A.B.J. Kuijlaars, On the finite-gap ansatz in the continuum limit of the Toda lattice, Duke Math. J., 104(2000), 433-462.
[7] A.B.J. Kuijlaars and K. T-R McLaughlin, Generic Behaviour of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields, Comm. Pure Appl. Math., 53(2000), 736-785.
[8] N.S. Landkof (translated by A.P. Doohovskoy), Foundations of Modern Potential Theory, Springer, Berlin, 1972.
[9] A.L. Levin and D.S. Lubinsky, Orthogonal Polynomials for Exponential Weights, to appear.
[10] A.L. Levin and E.B. Saff, Fast Decreasing Rational Functions, Israel J. Mathematics, 114(1999), 125-148.
[11] D.S. Lubinsky, Sharp Estimates for the Maximum over Minimum Modulus of Rational Functions, manuscript.
[12] H.N. Mhaskar, Introduction to the Theory of Weighted Polynomial Approximation, World Scientific, 1996.
[13] H.N. Mhaskar and E.B. Saff, Where Does The Sup Norm of a Weighted Polynomial Live?, Constr. Approx, 1(1985), 71-91.
[14] E.A. Rakhmanov, Strong Asymptotics for Orthogonal Polynomials Associated with Exponential Weights on \mathbb{R}, (in) Methods of Approximation Theory in Complex Analysis and Mathematical Physics, (eds. A.A. Gonchar and E.B. Saff), Nauka, Moscow, 1992, pp. 71-97.
[15] T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995.
[16] E.B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer, Berlin, 1997.
[17] V. Totik, Weighted Approximation with Varying Weights, Springer Lecture Notes in Maths., Vol. 1300, Springer, Berlin, 1994.
${ }^{1}$ Mathematics Department, The Open University of Israel, Ramat Aviv, Tel Aviv 61392 , Israel, ${ }^{2}$ The John Knopfmacher Centre for Applicable Analysis and Number Theory, Department of Mathematics, Witwatersrand University, Wits 2050, South Africa.

E-mail address: elile@oumail.openu.ac.il 036dsl@cosmos.wits.ac.za

[^0]: Date: February 21, 2001
 1991 Mathematics Subject Classification: 30E10, 30C15, 31A15, 41A21.

