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Abstract. Let q > p > 0, and consider the Nikolskii constants

Λn,p,q = inf
deg(P )≤n−1

‖P‖p
‖P‖q

,

where the norm is with respect to normalized Lebesgue measure on the unit
circle. We prove that

lim sup
n→∞

n
1
p
− 1
q Λp,q ≤ Ep,q ,

where

Ep,q = inf
‖f‖Lp(R)
‖f‖Lq(R)

,

and the inf is taken over all entire functions f of exponential type at most π.
We conjecture that the lim sup can be replaced by a limit.
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1. Introduction1

Define the normalized Lp norms of polynomials P on the unit circle:

‖P‖p =

(
1

2π

∫ π

−π

∣∣P (eiθ)∣∣p dθ)1/p , if p <∞
and

‖P‖∞ = sup
|z|=1

|P (z)| .

Classic Nikolskii inequalities assert that given q > p > 0, there exists C depending
on p, q, such that for n ≥ 1 and polynomials P of degree ≤ n,

(1.1)
‖P‖p
‖P‖q

≥ Cn
1
q−

1
p .

These inequalities are useful in studying convergence of orthonormal expansions and
Lagrange interpolation, and in analyzing quadrature and discretization of integrals.
A proof for trigonometric polynomials, which includes this case, appears in [1,
Theorem 2.6, page 102]. The converse sharp inequality, namely

‖P‖p
‖P‖q

≤ 1

follows from Hölder’s inequality. It is a longstanding problem to determine the
sharp constants in (1.1). In a recent paper dealing with Lp Christoffel functions,
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we obtained the asymptotically sharp (n → ∞) form for q = ∞, and p > 0 [4]. In
this paper, we obtain asymptotic upper bounds for q > p > 0. We emphasize that
p and q are not necessarily dual/conjugate Lp exponents.
The asymptotics involve the Paley-Wiener space Lpπ, 0 < p ≤ ∞. This is the set

of all entire functions f satisfying ‖f‖Lp(R) <∞, and for some C > 0,

|f (z)| ≤ Ceπ|z|, z ∈ C.
Note that Lpπ ⊂ Lqπ for q > p. We define

(1.2) Ep,q = inf

{
‖f‖Lp(R)
‖f‖Lq(R)

: f ∈ Lpπ

}
.

Also define for n ≥ 1, the nth Nikolskii constant,

(1.3) Λn,p,q = inf
deg(P )≤n−1

‖P‖p
‖P‖q

.

We prove:

Theorem 1
Let q > p > 0. Then

(1.4) lim sup
n→∞

Λn,p,qn
1
p−

1
q ≤ Ep,q.

In [4], we showed that
lim
n→∞

Λn,p,∞n
1
p = Ep,∞,

so for q =∞, the lim sup can be replaced by a limit. We offer:

Conjecture

(1.5) lim
n→∞

Λn,p,qn
1
p−

1
q = Ep,q.

In the sequel, C,C1, C2, ..., denote positive constants independent of n, x, t, and
polynomials of degree ≤ n. The same symbol does not necessarily denote the same
constant in different occurrences. For real x, we use [x] to denote the greatest
integer ≤ x, and [x]+ = max {0, x}. We prove the upper bound in Theorem 1 in
Section 2, and discuss some of the diffi culties of proving the Conjecture in Section 3.

Acknowledgement
In an earlier version of this paper, we proved a weak asymptotic lower bound, as
some evidence towards the conjecture. A closer look at this bound showed, however,
that it is zero and therefore useless. We thank Vili Totik for this observation.

2. Proof of Theorem 1

We shall use Lagrange interpolation at the roots of unity. Let n ≥ 2, and for
|j| ≤ [n/2], we let

zjn = e2πij/n,

and define the corresponding fundamental polynomial

(2.1) `jn (z) =
1

n

zn − 1

zzjn − 1
.
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Throughout, we also use the sinc kernel

S (t) =
sinπt

πt
.

We start with:

Lemma 2.1
Assume that C > 1 and k = k (n) is such that

C−1 ≤ k

n
≤ C, n ≥ 1.

Then as n→∞,

(2.2) `jk

(
e2πit/n

)
= (−1)

j
eiπtk/nS

(
tk

n
− j
)

+ o (1) ,

uniformly for j and t with

(2.3)
|j|
n

= o (1) ;
t

n
= o (1) .

Proof
We see that

`jk

(
e2πit/n

)
=

1

k

eiπtk/n sin
(
πtk
n

)
eiπ( t

n−
j
k ) sin

(
π tn − π

j
k

)
=

1

k

eiπtk/n (−1)
j

sin
(
π
(
tk
n − j

))
eiπ( t

n−
j
k ) sin

(
π
k

(
tk
n − j

))
=

eiπtk/n (−1)
j
S
(
tk
n − j

)
eiπ( t

n−
j
k )S

(
1
k

(
tk
n − j

)) .
Here eiπ( t

n−
j
k ) = 1 + o (1) uniformly for j and t satisfying (2.3). Moreover, by

continuity of S at 0, S
(
1
k

(
tk
n − j

))
= S

(
t
n −

j
k

)
= 1 + o (1) uniformly for the same

range of j and t. �

Now for each f ∈ Lpπ, and any p > 0, a result of Plancherel and Polya [2, p. 506],
[5] asserts that

(2.4)
∞∑

n=−∞
|f (n)|p ≤ C

∫ ∞
−∞
|f (t)|p dt,

where C is independent of f . The converse inequality, with appropriate C, holds
only for p > 1. Thus for p > 1, and some C1, C2 independent of f , [3, p. 152]

(2.5) C1

∞∑
n=−∞

|f (n)|p ≤
∫ ∞
−∞
|f (t)|p dt ≤ C2

∞∑
n=−∞

|f (n)|p .

As a consequence, any such function f admits an expansion

(2.6) f (z) =

∞∑
j=−∞

f (j)S (z − j) ,
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that converges locally uniformly in the plane. Indeed, for p > 1, this follows from
the Plancherel-Polya theorem [3, p. 152] that we have just quoted. For p ≤ 1, (2.4),
(2.5) also imply that f ∈ L2π, so yet again (2.6) holds. Note too that Lpπ ⊂ Lqπ for
q > p. In particular, if f ∈ Lpπ for some p > 0, then ‖f‖L∞(R) <∞.

Lemma 2.2
Let q > p > 1. Then

lim sup
n→∞

n
1
p−

1
q Λn,p,q ≤ Ep,q.

Proof
Let f ∈ Lpπ, not the zero function. Fix m ≥ 1 so large that at least one of
f (j) , |j| ≤ m, is not 0. Let

(2.7) Sn (z) =
∑
|j|≤m

f (j) (−1)
j
`jn (z) .

We have

Λn,p,q ≤
‖Sn‖p
‖Sn‖q

.

Let r > 1 and s > 0. Lemma 2.1 gives

lim
n→∞

n

2π

∫ 2πr/n

−2πr/n

∣∣Sn (eiθ)∣∣s dθ = lim
n→∞

∫ r

−r

∣∣∣Sn (e2πit/n)∣∣∣s dt =

∫ r

−r

∣∣∣∣∣∣
∑
|j|≤m

f (j)S (t− j)

∣∣∣∣∣∣
s

dt.

(2.8)

Next, we estimate the rest of the integral. Let z = eiθ, θ ∈ [0, π]. If 0 ≤ j ≤ [n/2] ,
(2.9)

|`jn (z)| ≤ min

{
1,

2

n |z − zjn|

}
≤ min

1,
1

n
∣∣∣sin( θ−2jπ/n2

)∣∣∣
 ≤ min

{
1,

π

|nθ − 2jπ|

}
,

by the inequality |sin t| ≥ 2
π |t| , |t| ≤

π
2 . For 0 > j ≥ − [n/2], we have instead

|`jn (z)| ≤ |`−jn (z)| ≤ min

{
1,

π

|nθ − 2 |j|π|

}
.

Hence if r ≥ 2m, and π ≥ θ ≥ 2πr/n

|Sn (z)| ≤

 ∑
|j|≤m

|f (j)|

 2π

n |θ| .
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The same estimate holds for −π ≤ θ ≤ −2πr/n. Then for some C independent of
n, f, r,

n

2π

∫
2πr/n≤|θ|≤π

|Sn (z)|p dθ

≤ C

 ∑
|j|≤m

|f (j)|

p

n

∫
2πr/n≤|θ|≤π

dθ

|nθ|p

≤ C

 ∑
|j|≤m

|f (j)|

p

r1−p,(2.10)

where again, C is independent of n and r. Combined with (2.8), for s = q, p, this
gives

lim sup
n→∞

n
1
p−

1
q Λn,p,q ≤ lim sup

n→∞

(
n
2π

∫ π
−π |Sn (z)|p dθ

)1/p
(
n
2π

∫ π
−π |Sn (z)|q dθ

)1/q
≤

(∫ r
−r

∣∣∣∑|j|≤m f (j)S (t− j)
∣∣∣p dt+ C

(∑
|j|≤m |f (j)|

)p
r1−p

)
(∫ r
−r

∣∣∣∑|j|≤m f (j)S (t− j)
∣∣∣q dt)1/q

1/p

.

Recall that m is fixed. Letting r →∞ gives

lim sup
n→∞

n
1
p−

1
q Λn,p,q ≤

(∫∞
−∞

∣∣∣∑|j|≤m f (j)S (t− j)
∣∣∣p dt)1/p(∫∞

−∞

∣∣∣∑|j|≤m f (j)S (t− j)
∣∣∣q dt)1/q .

Now the triangle inequality and the Polya-Plancherel equivalence (2.5) allow us to
let m→∞, giving

lim sup
n→∞

n
1
p−

1
q Λn,p,q ≤

‖f‖Lp(R)
‖f‖Lq(R)

.

As we may choose any f ∈ Lpπ, we obtain the result. �
Next, we handle the more diffi cult case p ≤ 1. We let

Uk (z) =
1

k

k−1∑
j=0

zj =
1

k

1− zk
1− z = `0,k (z) .

Observe that from Lemma 2.1, uniformly for t in compact sets, as k →∞ subject
to the restrictions C−1 ≤ k/n ≤ C,

(2.11) Uk

(
e2πit/n

)
= eiπtk/nS

(
tk

n

)
+ o (1) .

Lemma 2.3
Let 0 < p ≤ 1 and q > p. Then

lim sup
n→∞

n
1
p−

1
q Λn,p,q ≤ Ep,q.
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Proof
Let f ∈ Lpπ. Let ε ∈

(
0, 12
)
. Choose a positive integer k such that kp ≥ 2 and let

Sn (z) =

 ∑
|j|≤[logn]

f (j) (−1)
j
`j,n−[εn] (z)

U[ εkn] (z)
k
,

a polynomial of degree ≤ n − 1. Fix r > 0, s > 0. As
∣∣∣U[ εkn] (z)

∣∣∣ ≤ 1 for |z| ≤ 1,

we have from Lemma 2.1 and (2.11),

n

2π

∫ 2πr/n

−2πr/n
|Sn (z)|s dθ

=

∫ r

−r

∣∣∣∣∣∣
 ∑
|j|≤[logn]

f (j) (−1)
j
`j,n−[εn]

(
e2πit/n

)Uk[ εkn]

(
e2πit/n

)∣∣∣∣∣∣
s

dt

=

∫ r

−r

∣∣∣∣∣∣
∑

|j|≤[logn]

f (j)S (t (1− ε)− j) + o

 ∑
|j|≤[logn]

|f (j)|

∣∣∣∣∣∣
s (∣∣∣S ( ε

k
t
)∣∣∣+ o (1)

)ks
dt

=

∫ r

−r

∣∣∣∣∣∣
∑

|j|≤[logn]

f (j)S (t (1− ε)− j)

∣∣∣∣∣∣
s ∣∣∣S ( ε

k
t
)∣∣∣ks dt+ o (1) .

Here we are using the fact that

D =

∞∑
j=−∞

|f (j)| ≤ ‖f‖1−pL∞(R)

∞∑
j=−∞

|f (j)|p <∞,

recall (2.4), and that each f ∈ Lpπ is bounded on the real line. Next, uniformly for
t ∈ [−r, r] , ∣∣∣∣∣∣f (t (1− ε))−

∑
|j|≤[logn]

f (j)S (t (1− ε)− j)

∣∣∣∣∣∣
≤

∑
|j|>[logn]

|f (j)| → 0, as n→∞.

It follows that

lim
n→∞

n

2π

∫ 2πr/n

−2πr/n
|Sn (z)|s dθ

=

∫ r

−r
|f (t (1− ε))|s

∣∣∣S ( ε
k
t
)∣∣∣ks dt.(2.12)

Next, for all |z| ≤ 1, |`jn (z)| ≤ 1, so with z = eiθ, θ ∈ [−π, π] ,

|Sn (z)| ≤ D
∣∣∣U[ εkn] (z)

∣∣∣k
≤ D

(
2[

ε
kn
]
|1− z|

)k
≤ D

(
π[

ε
kn
]
|θ|

)k
.
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Hence,

n

2π

∫
2πr/n≤|θ|≤π

|Sn (z)|p dθ

≤ CDpn

∫
2πr/n≤|θ|≤π

(
1[

ε
kn
]
|θ|

)kp
dθ

≤ CDp

∫
|t|≥2πr

|t|−kp dt ≤ CDpr−kp+1.

Here C is independent of r, n, but depends on ε, k. Combining this with (2.12)
gives

lim sup
n→∞

n
1
p−

1
q Λn,p,q

≤ lim sup
n→∞

(
n
2π

∫ π
−π |Sn (z)|p dθ

)1/p
(
n
2π

∫ π
−π |Sn (z)|q dθ

)1/q
≤ lim sup

n→∞

(
n
2π

∫ π
−π |Sn (z)|p dθ

)1/p
(
n
2π

∫ 2πr/n
−2πr/n |Sn (z)|q dθ

)1/q
≤

(∫ r
−r |f (t (1− ε))|p

∣∣S ( εk t)∣∣kp dt+ CDpr−kp+1
)1/p

(∫ r
−r |f (t (1− ε))|q

∣∣S ( εk t)∣∣kq dt)1/q .

Since the left-hand side is independent of r, we can let r →∞ to obtain

lim sup
n→∞

n
1
p−

1
q Λn,p,q ≤

(∫∞
−∞ |f (t (1− ε))|p

∣∣S ( εk t)∣∣kp dt)1/p(∫∞
−∞ |f (t (1− ε))|q

∣∣S ( εk t)∣∣kq dt)1/q

=

(
1

1− ε

)1/p−1/q (∫∞−∞ |f (t)|p
∣∣∣S ( ε

k(1−ε) t
)∣∣∣kp dt)1/p(∫∞

−∞ |f (t)|q
∣∣∣S ( ε

k(1−ε) t
)∣∣∣kq dt)1/q .

Now we can let ε → 0+, and use dominated convergence, noting that |S (t)| ≤ 1
for all t and S (0) = 1. We obtain

lim sup
n→∞

n
1
p−

1
q Λn,p,q ≤

‖f‖Lp(R)
‖f‖Lq(R)

.

and taking the inf’s over all f gives the result. �

3. Remarks on Proving the Conjecture

One needs to prove

lim inf
n→∞

Λn,p,qn
1
p−

1
q ≥ Ep,q.
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This was achieved for q =∞ in [4], but is much easier in that case. The reason is
that in considering

‖P‖p
‖P‖∞

,

one can assume ‖P‖∞ = P (0) = 1, and then only has to deal with integrals
in the numerator. For q < ∞, one has to consider the fact that integrals over
several different subarcs may make substantial contributions to ‖P‖q. It is very
likely that in an extremal polynomial P attaining the inf Λn,p,q, the polynomial
is "concentrated" around the point, where its maximum modulus on the circle is
attained. That is, the absolute value of the polynomial decays away from this point,
which can be assumed to be 1. Once one has a suitable form of concentration, one
can estimate tail integrals much as in Section 2. Unfortunately, all our attempts to
prove this "concentration" or "decay" failed.
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