
THE DEGREE OF SHAPE PRESERVING WEIGHTED
POLYNOMIAL APPROXIMATION

DANY LEVIATAN AND DORON S. LUBINSKY

Abstract. We analyze the degree of shape preserving weighted poly-
nomial approximation for exponential weights on the whole real line. In
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1. Introduction

Shape preserving polynomial approximation has been an active research
topic for decades. There are many interesting features, and a great many
complex examples, and exceptional cases. Perhaps the oldest modern result
is due to O. Shisha [14]. For continuous f : [�1; 1]! R, let

En [f ] = inf
deg(P )�n

kf � PkL1[�1;1] :

In addition, let

E(1)n [f ] = inf
deg(P )�n

n
kf � PkL1[�1;1] : P monotone in [�1; 1]

o
:

Shisha [14] essentially proved that when f 0 is non-negative and continuous,
for n � 1;
(1.1) E(1)n [f ] � 2En�1

�
f 0
�
:

This simple estimate is disappointing, in that one loses a factor of 1n , when
compared to Jackson-Favard estimates. However, it is best possible in the
class of functions to which it applies [13].
Similar results hold for convex functions, and more generally, k-monotone

functions. Recall that a function f is called k-monotone, if for any distinct
x0; x1; :::; xk in the interval of de�nition,

[x0; x1; :::; xk; f ] =

kX
i=0

f (xi)

!0 (xi)
� 0;
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where

! (x) =
kY
j=0

(x� xj) :

The case k = 1 corresponds to monotone functions, and k = 2 to convex
functions. The natural generalisation of (1.1) to k-monotone functions is

E(k)n [f ] � 2En�k
h
f (k)

i
;

for n � k. Again, this is a disappointing estimate, as one loses a factor of
n�k when compared with unconstrained approximation. However, it turns
out that this estimate may not, in general, be improved, see [4]. See also
[3], [5].
A recent interesting paper of O. Maizlish [10] seems to be the �rst extend-

ing shape preserving approximation to weighted polynomial approximation
on the whole real line. Recall that for � > 0,

W� (x) = exp (� jxj�) ; x 2 R;
is an exponential weight, often called a Freud weight. The polynomials are
dense in the weighted space of continuous functions generated by W� i¤
� � 1. Thus, if � � 1, and f : R! R is continuous, with

lim
jxj!1

(fW�) (x) = 0;

while
En [f ]W�

= inf
deg(P )�n

k(f � P )W�kL1(R) ;

we have
lim
n!1

En [f ]W�
= 0:

This is a special case of the classical solution of Bernstein�s weighted polyno-
mial approximation problem, involving more general weightsW , by Achieser,
Mergelyan, and Pollard [2], [7], [9].
For W�; � > 1, the Jackson theorem takes the form

En [f ]W�
� Cn�1+1=�

f 0W�


L1(R) ;

provided f 0 is continuous in R. Here C is independent of f and n. In-
terestingly enough, there is no estimate of this type for W1, even though
the polynomials are dense. There are Jackson theorems involving weighted
moduli of continuity, see [1], [8], [9].
Let k � 1, and let

(1.2)

E(k)n [f ]W�
= inf
deg(P )�n

n
k(f � P )W�kL1(R) : P is k �monotone in R

o
:

Maizlish proved that if f is k times continuously di¤erentiable on R and f (k)
is non-negative, then

lim
n!1

E(k)n [f ]W�
= 0:
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Somewhat more is true: let

� (x) =
q
f (k)

�
21=�x

�
; x 2 R;

and

rn = 4

�
2n

�

�1=�
; n � 1:

Maizlish also proved that then there exists a polynomial Pn of degree at
most 2n+ k that is k�monotone, and such that

k(f � Pn)W�kL1[�rn;rn] �M1En [�]W�
k�W�kL1(R)

and

k(f � Pn)W�kL1(Rn[�rn;rn]) �M1n
�1+1=�En [�]W�

k�W�kL1(R) :

Here M1 is independent of f and n. Note that � can be somewhat less
smooth than f (k).
In this paper, we prove results of this type that are closer in spirit to

the unweighted Shisha type theorems. Throughout, [x] denotes the greatest
integer � x.

Theorem 1.1
Let � > 1, and k � 1. Let A > 1. There exist B;C > 0 with the following
property: for every f : R ! R that is k times continuously di¤erentiable
and k�monotone, satisfying

(1.3) lim
jxj!1

�
f (k)W�

�
(x) = 0;

we have for n � 1;

(1.4) E
(k)
[An]+k [f ]W�

� C
�
En

h
f (k)

i
W�

+
f (k)W�


L1(R)

e�Bn
�
:

Conversely, given any B > 0, there exists su¢ ciently large A for which this
last inequality holds for all n � 1:
We may replace the geometric factors e�Bn by factors that decay more

slowly, and then allow [An] to be replaced by something smaller. We may
also consider more general Freud weights, or even exponential weights on a
�nite interval. For simplicity, we shall consider only even weights W = e�Q,
de�ned on a symmetric interval I = (�d; d), where 0 < d � 1. Accordingly,
we de�ne

(1.5) En [f ]W = inf
deg(P )�n

k(f � P )WkL1(I) ;

and

(1.6) E(k)n [f ]W = inf
deg(P )�n

n
k(f � P )WkL1(I) : P is k �monotone in I

o
:
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We start with a generalization of Theorem 1.1 for Freud weights:

Theorem 1.2
Let W = e�Q, where Q : R ! R is even, and Q0 is continuous in R, while
Q00 exists in (0;1). Assume in addition, that
(i) Q0 > 0 in (0;1) and Q (0) = 0;
(ii) Q00 > 0 in (0;1) ;
(iii) For some �;� > 1;

(1.7) � � tQ0 (t)

Q (t)
� �, t 2 (0;1) ;

(iv)

(1.8)
Q00 (t)

Q0 (t)
� C1

Q0 (t)

Q (t)
; t 2 (0;1) :

Let A > 1 and 2 � `n � An + 1, n � 1. Let k � 1. There exist B;C > 0
with the following property: for every f : R! R that is k times continuously
di¤erentiable and k�monotone, satisfying

lim
jxj!1

�
f (k)W

�
(x) = 0;

we have for n � 1;

(1.9) E
(k)
n+`n+k

[f ]W � C
�
En

h
f (k)

i
W
+
f (k)W

L1(R)
e�Bn

�1=2`
3=2
n

�
:

Observe that Theorem 1.1 is the special case in which Q (x) = jxj� and
`n = [(A� 1)n]. Given a positive integer j, if we choose

`n =
h
rn1=3 (log n)2=3

i
;

with large enough r, we obtain

(1.10) E
(k)

n+[rn1=3(logn)2=3]+k
[f ]W � C

�
En

h
f (k)

i
W
+
f (k)W

L1(R)
n�j

�
:

Finally, we turn to general even exponential weights. For these, we need
the concept of the nth Mhaskar-Rakhmanov-Sa¤number an, associated with
W = e�Q. This is the positive root of the equation

(1.11) n =
2

�

Z 1

0
antQ

0 (ant)
dtp
1� t2

:

It is uniquely de�ned if tQ0 (t) is positive and strictly increasing in (0; d)
with limits 0 and 1 at 0 and d respectively. One of its features is the
Mhaskar-Sa¤ identity [6], [12]

(1.12) kPWkL1(I) = kPWkL1[�an;an] ;
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for all polynomials P of degree � n. Moreover, an is essentially the smallest
number for which this holds. We shall also need the function

(1.13) T (x) =
xQ0 (x)

Q (x)
; x 2 (0; d) :

We shall say that T is quasi-increasing in (0; d) if there exists C > 0 such
that

T (x) � CT (y) for all 0 < x < y < d:

Our most general theorem is:

Theorem 1.3
Let I = (�d; d), where 0 < d � 1. Let W = e�Q, where Q : I ! R is even,
and Q0 is continuous in I, while Q00 exists in (0; d). Assume in addition,
that
(i) Q (0) = 0 and limt!d�Q (t) =1;
(ii) Q0 > 0 in (0; d) ;
(iii) Q00 > 0 in (0; d) ;
(iv) For some � > 1;

(1.14) T (t) � �, t 2 (0; d) ;

while T is quasi-increasing there.
(v)

(1.15)
Q00 (t)

Q0 (t)
� C1

Q0 (t)

Q (t)
; t 2 (0; d) :

Let A > 1 and 2 � `n � An + 1, n � 1. Let k � 1. There exist B;C > 0
with the following property: for every f : I ! R that is k times continuously
di¤erentiable and k�monotone, and for which

lim
jxj!d�

�
f (k)W

�
(x) = 0;

we have for n � 1;

E
(k)
n+`n+k

[f ]W � C
�
En

h
f (k)

i
W
+
f (k)W

L1(I)
e�B(nT (an))

�1=2`
3=2
n

�
:

(1.16)

Here an is the nth Mhaskar-Rakhmanov-Sa¤ number for Q.
Examples of such weights on the interval (�1; 1) include

(1.17) W (x) = exp
�
1�

�
1� x2

����
or

(1.18) W (x) = exp
�
expk (1)� expk

��
1� x2

�����
;
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where � > 1, and
expk = exp (exp (::: exp ()))

k times| {z }
is the kth iterated exponential. On the whole real line, in addition to the
Freud weights, one may choose

(1.19) W (x) = exp (expk (0)� expk (jxj�)) ;
where k � 1 and � > 1. For W of (1.17), [6, p. 31, Example 3]

T (an) � n
1

�+1
2 :

This means that the ratio of the two sides is bounded above and below by
positive constants independent of n. For W of (1.18), [6, p. 33, Example 4]

T (an) � (logk n)1+
1
�

k�1Y
j=1

logj n;

where
logk = log (log (::: log ()))

k times| {z }
is the kth iterated logarithm. For W of (1.19), [6, p. 30, Example 2]

T (an) �
kY
j=1

logj n:

We note that all our weights lie in the class F
�
C2
�
considered in [6,

p. 7]. We may actually consider the non-even weights there, as well as the
more general class F

�
Lip12

�
, but avoid this for notational simplicity.

The main new idea in this paper over that of Maizlish is the use of non-
negative polynomials, obtained from discretizing potentials, and that were
constructed in [6, Theorem 7.4, p. 171]. We shall use many of Maizlish�s
ideas, as well as devices from the unweighted theory of shape preserving
approximation. The proofs are contained in the next section.

2. Proof of Theorem 1.3

We begin with some background on potential theory with external �elds
[12]. Let us assume the hypotheses of Theorem 1.3. The Mhaskar-Rakhmanov-
Sa¤ number at may be de�ned by (1.11), for any t > 0, not just for integer
n: thus for t > 0;

t =
2

�

Z 1

0
atuQ

0 (atu)
dup
1� u2

:

The function t! at is a continuous strictly increasing function of t, so has
an inverse function b, de�ned by

b (at) = t, t > 0:
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For each t > 0, there is an equilibrium density �t, that satis�esZ at

�at
�t = t:

The equilibrium potential

V �t (z) =

Z at

�at
log

1

jz � uj�t (u) du

satis�es
V �t +Q = ct in [�at; at] ;

where ct is a characteristic constant. We shall need mostly the function

Ut (x) = � (V �t (x) +Q (x)� ct) ; x 2 I:

It satis�es
Ut (x) = 0, x 2 [�at; at] ;

Ut (x) < 0, x 2 In [�at; at] :
We shall need an alternative representation for Ut. For an interval [a; b], the
Green�s function for Cn [a; b] with pole at 1, is

g[a;b] (z) = log

���� 2

b� a

�
z � a+ b

2
+
p
(z � a) (z � b)

����� :
It vanishes on [a; b], is non-negative in the plane, and behaves like log jzj+
O (1), as z !1. There is the representation [6, Corollary 2.9, p. 50]

(2.1) Ut (x) = �
Z bx

t
g[�a� ;a� ] (x) d�; x 2 [0; d):

It is really this that we shall need, not so much the other quantities above.

Lemma 2.1
(a) For n � 1, and polynomials Pn of degree � n;

(2.2) jPnW j (x) � eUn(x) kPnWkL1(R) ; jxj > an:

(b) Let D > 1. For n � m � Dn, and x � am;

(2.3) (Un � Um) (x) � �C
n

T (an)
1=2

�
1� n

m

�3=2
:

Here C is independent of m;n; x:
Proof
(a) This is a classical inequality of Mhaskar and Sa¤ that can be found, for
example, in [6, Lemma 4.4, p. 99] or [12, p. 153, Thm. 2.1].
(b) From (2.1), for x > am;

Un (x)� Um (x) = �
Z m

n
g[�a� ;a� ] (x) d�; x 2 [0; d):
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Here for each � 2 [n;m], g[�a� ;a� ] (x) is an increasing function of x � am,
as the Green�s function g[a;b] increases as we move to the right of [a; b]. It
follows that for x � am;

Un (x)� Um (x)

� Un (am)� Um (am) = �
Z m

n
g[�a� ;a� ] (am) d� :(2.4)

Next, by Lemma 4.5(a) in [6, p. 101], followed by (3.51) of Lemma 3.11(a)
in [6, p. 81], for � 2 [n;m] ;

g[�a� ;a� ] (am) � C
�
am
a�
� 1
�1=2

� C

T (an)
1=2

�m
�
� 1
�1=2

(Note that in the even case, in [6], �n = an, and a2n � Can). Then (2.3)
follows easily from (2.4). �
We also need polynomials constructed by discretizing the potential V �t .

The method is due to Totik, but the form we need was proved in [6, Theo-
rem 7.4, p. 171]:

Lemma 2.2
There exists C0 > 1 with the following property: for even n � 2, there exists
a polynomial Rn of degree � n such that

(2.5) 1 � RnW � C0 in [�an; an] ;

and moreover,

(2.6) RnW � eUn in I:

Now we can use this to generate non-negative weighted polynomial ap-
proximations to non-negative functions:

Lemma 2.3
Let g : I ! R be a continuous non-negative function such that

(2.7) kgWkL1(I) = 1,

and
lim
jxj!d

(gW ) (x) = 0:

Assume that D > 0 and f`ng is a sequence of positive integers with 2 �
`n � Dn + 1. Then there exist B;C > 0; and for n � 1, a polynomial P#n
of degree � n+ `n such that

(2.8) P#n � 0 in I

and

(2.9)
�g � P#n �W

L1(I)
� C

�
En [g]W + e�B(nT (an))

�1=2`
3=2
n

�
:
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Here C 6= C (n; g) :
Proof
Choose a polynomial Pn such that

k(g � Pn)WkL1(I) = En [g]W :
As g � 0, we have
(2.10) PnW � �En [g]W in [�an; an] :
Let m = m (n) = 2

�
n+`n
2

�
, an even integer. Note that m � n + 1. Let Rm

be the polynomial of Lemma 2.2. Let

Sn (x) = Pn (x) +
�
En [g]W + e�B(nT (an))

�1=2`
3=2
n

�
Rm (x) ;

a polynomial of degree � m. From (2.5) and (2.10), we have in [�am; am] ;
(SnW ) (x) � 0:

From Lemma 2.1(a), for jxj 2 (an; d) ;
jPnW j (x) � kPnWkL1(I) e

Un(x)

�
�
kgWkL1(I) + En [g]W

�
eUn(x)

� 2eUn(x);

recall our normalization (2.7). Then from Lemma 2.2, for x 2 (am; d) ;

(SnW ) (x) � �2eUn(x) +
�
En [g]W + e�B(nT (an))

�1=2`
3=2
n

�
eUm(x):

This will be non-negative if

(Un � Um) (x) � log
 
En [g]W + e�B(nT (an))

�1=2`
3=2
n

2

!
:

From Lemma 2.1(b), it su¢ ces in turn that for some large enough C;

C
n

T (an)
1=2

�
1� n

m

�3=2
�
�����log

 
e�B(nT (an))

�1=2`
3=2
n

2

!����� ;
or

C

(nT (an))
1=2
`3=2n � 2B (nT (an))�1=2 `3=2n :

So we can choose B = C=2, and ensure non-negativity of Sn in [0; d). The
interval (�d; 0) may be handled similarly. Finally,

k(g � Sn)WkL1(I)

� k(g � Pn)WkL1(I) +
�
En [g]W + e�B(nT (an))

�1=2`
3=2
n

�
kRmWkL1(I)

� En [g]W + C0

�
En [g]W + e�B(nT (an))

�1=2`
3=2
n

�
;

where C0 is as in Lemma 2.2. �
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Proof of Theorem 1.3
By the last lemma, we can choose a polynomial Pn of degree � n+ `n such
that Pn � 0 in I, and�f (k) � Pn�W

L1(I)

� C

�
En

h
f (k)

i
W
+
f (k)W

L1(I)
e�B(nT (an))

�1=2`
3=2
n

�
=:Mn;

say. We have taken account of the need to divide f (k) by
f (k)W

L1(I)
, in

order to satisfy the normalization (2.7). Now, let

P �n (x) =

Z x

0

Z tk�1

0
:::

Z t1

0
Pn (t0) dt0dt1:::dtk�1 +

k�1X
j=0

f (j) (0)

j!
xj :

Then P �n is k monotone. For x > 0, we have, following Maizlish�s ideas,

j(f � P �n)W j (x)

=

����W (x)

Z x

0

Z tk�1

0
:::

Z t1

0

�
f (k) � Pn

�
(t0) dt0dt1:::dtk�1

����(2.11)

� MnW (x)

Z x

0

Z tk�1

0
:::

Z t1

0
W�1 (t0) dt0dt1:::dtk�1

= Mn

Z x

0

W (x)

W (tk�1)

Z tk�1

0

W (tk�1)

W (tk�2)
:::

Z t1

0

W (t1)

W (t0)
dt0dt1:::dtk�1:(2.12)

Fix r 2 (0; d). Here by monotonicity of Q; for t1 > 0;Z t1

0

W (t1)

W (t0)
dt0 � t1

while by its convexity, for t1 � r;Z t1

r

W (t1)

W (t0)
dt0 �

Z t1

r
e�Q

0(r)(t1�t0)dt0 �
1

Q0 (r)
:

It follows that for all t 2 (0; d) ;Z t1

0

W (t1)

W (t0)
dt0 � r +

1

Q0 (r)
:

Applying this repeatedly to (2.11) gives

j(f � P �n)W j (x) �Mn

�
r +

1

Q0 (r)

�k
:

The case x < 0 is similar, so we obtain

E
(k)
n+`n+k

[f ]W �
�
r +

1

Q0 (r)

�k
C

�
En

h
f (k)

i
W
+
f (k)W

L1(I)
e�B(nT (an))

�1=2`
3=2
n

�
:

�

Proof of Theorem 1.2
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This is a special case of Theorem 1.3, where T is bounded above and below
by positive constants. �

Proof of Theorem 1.1
This is the special case W =W� of Theorem 1.2. We can choose

`n = [(A� 1)n]
when that is at least 2. For the remaining �nitely many n, we can set `n = 2
and use the elementary inequality

E
(k)
k [f ]W�

� C
f (k)W

L1(R)
:

The fact that we may choose B as large as we please, with correspondingly
large A, is easily seen from the proof of Lemma 2.3. �
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