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Abstract

Let I = [0,d), where d is finite or infinite. Let W, (z) = z”exp (—Q (z)), where
o> —-% and @ is continuous and increasing on [/, with limit oo at d. We obtain
further bounds on the orthonormal polynomials associated with the weight W2, finer
spacing on their zeros, and estimates of their associated fundamental polynomials
of Lagrange interpolation. In addition, we obtain weighted Markov and Bernstein
inequalities. '

In Honor of Barry Simon’s 60th Birthday

1 Introduction and Results!

Let
1=10,d), (L)
where 0 < d < co. Let @ : I — [0, 00) be continuous, and
W =exp (—Q) (1.2)

be such that all moments f; "W (x) dx,n > 0, exist. We call W an exponential
weight on I. For p > —1, we set

W, (x) .= =W (), zel
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The orthonormal polynomial of degree n for W? is denoted by p, (W?,x) or
just p, (x). That for W7 is denoted by p,, (W}f, x) or just py,, {x). Thus

[ o (@) Prn (8) 2 W? (@) d = i

and :
Drp (T) = YnpT" + -,
where 7, , = Y (Wf) > 0.

In the predecessor to this paper [3], we established bounds for py, ,, estimates
of the associated Christoffel functions, spacing of the zeros of the orthonormal
polynomials, and restricted range inequalities. In this paper, we shall establish
further bounds on the orthonormal polynomials, more precise spacing of their
zeros, estimates for their fundamental polynomials, and Markov-Bernstein in-
equalities. We denote the zeros of p,, by

Inn < Tp—1,n < 7" < Top < Tip-

~ Asin [3], we use results from [2] by defining an even weight W* corresponding
to the one-sided weight W. Given I and W as in (1.1) and (1.2}, let

I o= (VA Va)

and for z € I*,

We say that f: 1 — (0,c0) is quasi-increasing if there exists C' > 0 such that
flx) <Cf(y), l<z<y<d.

Of course, any increasing function is quasi-increasing. The notation

flz) ~ g(z)

means that there are positive constants Cy, C such that for the relevant range

of z,
C1 < fz)/9(x) < Ca.
Similar notation is used for sequences and sequences of functions.

Throughout, C, C, Cs, ... denote positive constants independent of n, z, ¢ and
polynomials P of degree at most n. We write C = C(}), C %= C(A) to indicate
dependence on, or independence of, a parameter A. The same symbol does not

e
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necessarily denote the same constant in different occurrences. We denote the
polynomials of degree < n by P,.

- Following is our class of weights:

Definition 1.1 Let W = ™9 where @ : I — [0, c0)satisfies the following
properties:

(a) \/2Q' (x) is continuous in I, with limit 0 ot 0 and Q(0) = 0;

(b) Q" exists in (0, d), while @* is positive in (0, \/3) :

(c) A |
lim Q (z) = 0.
r—d—

(d) The function

T(a) = ”"ggg) z € (0,d) (1.3)

is quasi-increasing in (0, d), with

T(@)> A > -;- z€(0,d). | (1.4)
(e) There exists C; > 0 such that
% < cl%, a.e. z € (0,d). (1.5)

Then we write W € £ (C?). If also there exists a compact subinterval J of I*,
and C5 > 0 such that

M > M a.e. z € I"\J, (1.6)

Q=) = 7% Q@)
then we write W € L (C?+).

Remarks See [3] for further orientation on this class of weights and this
topic. Here are sorne exarmples of @ that satisfy the above conditions:

)

Q(z) = =, x € [0, 00)
where o > -;-
(D)
Q(x) = expi(z”) —expi(0),  z € [0,00)
where ¢ > % and k& > 0. Here we set

exp, (z) ==

and for k > 1, :
expy, (z) = exp(exp(exp - - -exp (x)) -~ -)

k times




is the kth iterated exponential.
(IIT) An example on the finite interval I =[0,1) is

Q(z) = exp((1 —2)7) —exp(1),  z€[0,1),
where a > 0 and k£ > 0.

One of the important descriptive quantities we need is the Mhaskar-Rakhma-
nov-Saff number a;, [2], [4], [5] defined for ¢ > 0 as the positive root of the
equation

1/u(1—u

Theorem 1.2 Let p > —1, 0 < B <1, and let W € L(C?+). Let ppp () be
the nth orthonormal polynomial for the weight W7. Then uniformly forn > 1,

One of our main results is:

G \ P n Y 1/2 .
suplms )W @) (4 3) ~ () 0s)
and )P
sup [y @IW (@) (2+5) ~ a2 (T @), (19)
w€lagn.d) LR

If W € L(C?), these estimates hold with ~ replaced by < C.

Remark In [3], we proved the estimate

P
SUp [P, ()| W (2) (a: + a_g) | (a: + ann—2) (an — z) V4 ~ 1, (1.10)
el T

assuming that W € £ (C?).

Next, we turn to pointwise bounds on orthogonal polynomials and their deriva-
tives. Let

= (tT (@),  t>0, (1.11)
and
Zjé‘fi;iﬁii;?’), z € [0,a4;
er(T) = { pylay), T > 0y (1.12)
| 1 (0), z < 0.

Recall that the fundamental polynomials at the zeros of Pn,p are polynomials
£;n, € Py satisfying
Ejn(xkn) = 6kj-

Theorem 1.3 Let W € L(C?*+) and p > —%. There exists ng such thal
uniformly for n > no, 1<3<n,




(a)

118, Wl (Zim) ~ n(@in) ™" [gn (an — )] "4 (1.13)
(b)
|pn-——1,pr|(mjn) ~ G«;l [mjn (an - xjn)]1/4 ; (1'14)
(c) ,
max|n@W @) (2 +5) | W e ~ 1 @9

(d) For j <n—1 and z € [Zj+1.m, Tin)s

lpn,pr| (37) ~ mln{|$ - xjn| ; |37 - $j+1,n|}
X On(@in) ™ (i (an — zin)] (1.16)

If we assume instead that W € £ (C?), then (a) holds with ~ replaced by < C
and (b) holds with ~ replaced by > C.

Concerning the spacing of the zeros, we prove

Theorem 1.4 Let W e L(C?*+) and p > —3. Uniformly for n > 1 and
I1<i<m,
Bjn = Tt ~ Pn{Tin)- (1.17) _

In [3], we proved the upper bound implicit in (1.17), assuming that W &
L(C?). _ :

Finally, we turn to Markov-Bernstein Inequalities. For these, we need a mod-
ification of ¢;, namely

O @ - e, sepal, (9

and

(Pf (z) = Wf (), T > ag. (1.19)

Theorem 1.5 {(Bernstein Inequality) Let W € L£L(C?). Let 0 < p < o0
and let 8 > —%,z’fp< coand 3 > 0 if p = co. Then forn > 1 and P € Py,
and for some C # C{n, P), :

I(PW) (2) i (@) 2°|| 1y < CIl (PW) (2) 2 || y)- (1.20)

Theorem.1.6 (Markov Inequality) Let W € £(C?). Let 0 < p < o0,
0<7<1.Letﬁ>—z—1J ifp<ocoand B>0ifp=oco. Then forn > 1 and
PeP,, '

1EW) @) Pl < O (P @ Py (120




and

I P'W) () 2° || Ly forma) < C%\/T(an)ll (PW) () 2°||,(2)- (1.22)

Since T (a,) << n?, we see from the last two inequalities, the special role
played by 0: the rate of growth of P'W can be far larger near 0 than near ay.
We shall show that (1.21) is sharp as regards the rate of growth in n, at least
in Ly and for 3 = 0. More precisely, in Section 7, we show that

: n?
lpaWllzany ~ —llPaWllzamy, 21 - (123
£

We note that all the above results are valid under weaker conditions on W.
All we need is that W™ satisfies the conditions for the corresponding result
in [2]. However, for simplicity, we use just one class of weights in this paper.
We note too that for the case where @ is of polynomial growth on I = [0, 00},
Theorems 1.3 and 1.4 follow from results of Kasuga and Sakai {1}].

This paper is organised as follows. In the next section, we list technical es-
timates. In Section 3, we prove the Markov-Bernstein inequalities of Theo-
rems 1.5 and 1.6. In Section 4 we estimate a certain function A#,p (z). In
Section 5, we prove Theorem 1.2 and Theorem 1.3(a), (b). In Section 6, we
prove Theorem 1.3(c), (d) and Theorem 1.4. Finally in Section 7, we prove
(1.23). :

Finally, we illustrate some of the results above on specific weights. Throughout
p, p, 3 are as in Theorem 1.6.

Example 1 Let I = [0,00), @ > 3 and
Q{x) =z, z € {0, 00).

In this special case
I (o)

‘ /e
o (Friy)

M = (cut)_2/3 , t > 0.
(I) The Markov inequality takes the following form: for n > 1 and P € P,

_and

. ' _i
| (P'W) (2) 2 | 1y0,00) < O™ || (PW) () 2 £, 0,00)-
Moreover, gi{ren 0<y<l,

1 (P'W) (2) 28| y(armce) < OV (PW) (2) 2 1, 0,00)-




(IT) The sup norm bound on the orthonormal polynomials takes the form

an\? il 1
”pn:p (z) W (x) (-’L" + E) ||Lm(0,o'o) ~ n2[1 a].

Moreover,

=

s @YW (@) (5+ 23 ) [zntamey ~ 05,
Example 2 Let I =[0,00), k> 1 and a > 1. Let
Q(x) = expy(z®) —expi(0), €0, 00).
We also need the jth iterated logarithm: let log, (x) := # and for § > 1,

log; (¢) = log(og(log - g @), &> exp_y (0).

.

j times

Here as n — oo,
an = (logim) "/ (1 + 0 (1));

k
T (an) ~ [ ] log;n;
i=1

(I) The Markov inequality takes the following form: for n > expj (1) and
PPy, '

n2

P'W) (z) 2° o) L O —rme
1PW) @) 2000 < C "

1 (PW) () 2° | £.0,00)-

Moreover, for n > expy (1},

% 1/2
n
| W) @) 2 rytomon) < C i (H log, ”) | (W) (@) 2l zy(0.0)
. k

j=1

(IT) The sup norm bound on the orthonormal polynomials takes the form

) e
Pr.p () W () (5'3 + n—’;) | eo0,00) ~ '7? (log m) /3.

Moreover, for n > exp, (1),

1/6
tn \* —1/(2ex k
WD, () W (z) (58 + '7;,"2") | Loo (@ym,e0) ~ (lOgr 1) 1/(22) (nﬂlogj n) _
=1




Example 3 Let { = [0, 1) a >0, and
Qzy=(1-2)%-1, z € [0,1).

Here .

1—an~n_(°‘i%);, | :
T {a,) ~ n""1

2als
nn ~ 7} 3(2a+1

(I} The Markov inequality takes the following form: for n > 1 and P € P,
1 (PW) () 2°| 1,0, < Cr?|| (PW) (@) 2°|| 10,1

Moreover, given 0 < v < 1, \

22 :
I (P'W) (£) 2°|| oy < O35t || (PW) (2) 28 1, p0,1-
(I1) The sup norm bound on the orthonormal polynomials takes the form
p,
ns @)W (@) (24 22) 1o ~ .

Moreover,

e
l—i
o
(=100

an\?
1w, () W () (w + n—Z) | oofayn,1] ~ R 2TLE.
Example 4 Let I =[0,1), k > 1 and o > 0. Let

Qz) = expp((1 — 2)7%) —expi(1),  z€[0,1).

Here as n — o0,

1—a, = (logy ) /> (1 +0(1));

k—1
T (ay) ~ (log, )"+ [ log;

=1

k-1 —2/3
T ~ (n (logy, n) "/« [ log; n) )

j=1

(I) The Markov inequality takes the following form: assume that p, 3 are as
above. Then forn > 1 and P P, -

I (P'W) (z) 2%l L, o,y < CP*|| (PW) () 2°l|0,1-



Moreover,

NPW) (@) 2L pfam,y

E—1 1/2
< Cn ((logk n) T ] log; n) I (PW) () 2° || L, j0,1-

j=1
(IT) The sup norm bound on the orthonormal polynomials takes the form

Gp,

o
lns @ W @) (5 + 22) Nzepory ~ 2

Moreover,

ny : b1 1/6
[0 @ W @) (24 2) Nitorn ~ (n (logi. )"+ ] log, n) .

j=1
2 Technical Estimates

The dlasses £ (C2) and £ (C*+) are defined in such a way that W* becomes
part of the corresponding classes F (C?) and F(C?+) in [2, p. 7). In [3,
Lemma 2.2] we proved that

WEE(C&)@W*E}"(CZ)

and ,
W e L(C%) & W e F(C%4).
Thus we can apply results from [2] to W*. We denote the (positive) Mhaskar-
Rakhmanov-Saff number for W* by a}. In 3, eqn. (2.6)] we showed that
ayz = aj?. ; (2.1)

We shall also use the quantity 7, = ({7 (a;))~*?, and its analogue for Q*

np = {t7” (a1)} 7,

where
. Q' (x)
T (x) ==z o (@) _= 2T (mz) :
We note that [3, (2.9)] .
= Ay 22)




Lemma 2.1 Let W e L (C?).
(a) Uniformly for t > 0, we have

Q(a) ~ =T, | 23)

t

/
(b) For fited L > 1 and uniformly fort > 0,

ars ~ as. (2.4)
(¢) Fiz L > 0. Then uniformly for t > 0,
Qace) ~ Q(ae); Tlaw) ~T(a) and  nu ~ (2.5)
(d) For some € > 0, and for large enough t,

T(a,) < Ct** - (26)

and -
T (ag) < Ct™% = o(1). (27

Proof. See Lemma 3.1 in [3]. O
Some further estimates involving a;:

Lemma 2.2 Let W € L (C?).
(a) We have fort >0,

a: 1 t

1 s
A -2 S<i<o. .

It s IERNE L P L 28)

(b) Given fized L > 1, we have uniformly for t > 0,

ar: 1
o T(a;) (29)
(c) For z € {0, a),

ct (2.10)

Q'(x) < ——\/QC(T—_——LE)..

(d) Assume also W € L{C?+) and let L > 1. There exist C' and ty such that
fort =1,

ar:Q’ (aLt) ‘ _
_——atQ' (a0) >14C. (2'11,)

Proof.
(a), (b) See Lemma 3.2 in [3].

10



(c) See Lemma 3.3 in [3].
(d} Note that (cf. (2.1))

VA (o) _ @ (e
el @ Qi) = TC

by Proposition 13.1 in [3, pp. 359-360]. Since az; = a;, we then obtain
(2.11). O

Next, a lemma on the functions @, and ¢¥. We shall also sometimes need
the corresponding function for W*, which we denote by ¢},. This is defined in

[_a:m a';q,] [2, P 19] by

Dk
A,

(2.12)
maflz + ag| + atai/|z — at| + agnt,

|22 — a

o (T =

and to be constant in (—oo0, —al,] and {af,, co).

Lemma 2.3 Let W € L (C?).
(a) For z € [0,an],

, _¢m () 0% (z) -
~ = . 2.1
Pom, (\/E) W ) \/E . ( 3)
(b) Let C > 0. Uniformly for m and n such that
-2l < crenm, (@1)
we have uniformly for x € 1 _
pn () ~ om () - T (215)
Moreover, uniformly for x € I*, 7
on (@)~ o (). (2.16)

¢) Forn>1 and z € [a,n~2,d),
()
cpn# (z) £ Cx. (2.17)

(d) Let L >0, 0 < 8 < 1. Then uniformly for n > 1 and = € [a,/n?, agn],

on (@) o (an 1+ L] — )] 2 o D=, 219

(e) Let €, L > 0. Then uniformly for n > land x € [gay, an (1 + L)),

on (2) [z (an.[l + Ln,] — x)]1/2 N m ‘

11

n (2.19)




(f) Uniformly forn>1,1<j<n—1, and T € [Zj11,0; Tjn],

Pn (mjn) ~ @n {T). {2.20)

Proof.
(a) Since a}Z, = a,,, we see that in [0, a,,)],

o (\/5) _ |z — aam)
2m -
my/|VE + V@] + it |VE — V] + i
Ggm — L Pml@)  _ oh()
Mg =+ @l VZ+amm™2  Jz '

by (1.12) and (1.18).
(b) Firstly Lemma 9.7 in (2, p. 264] gives (2.16). Using (a), we obtain in [0, a,],

~~

Pm ($) ~ Pn ({B)

Vr+a,m2 zT+an—2

Here (2.14) and (2.7) show that 1—" — 0,n — co. Hence m ~ n, 50 an, ~ ayn.
Then (2.15) follows in {0, a,,]. Since we may assume m > n and ¢, and ¢,y are
constant outside [0, a,} and [0, ay,] respectively, we obtain (2.15) in I.

(c) Now in [0, a,), we see from (1.18) and then (2.9), (2.7) that

‘P# (z) ~ Qon — & _
x nﬁv Op, — T+ Apln
e -~ { %: T E [O:a‘n/Q] 3

fin,
T (an G~ amtn T e [an/m an]

SC{%’ T E [0,an/2],

1
| sy * € [“n/%“'ﬂ]

<Cze [ann"z,an] , (2..21)

recall that 7, = (nT (a,))"¥® = 0(1). Since ¢¥ (x) = ¢¥ (@), & > ay, this
inequality persists in [ay, d).
(d) For this range of x,

|z — agn| ~ |z —an] and ap—z+ anp ~ an —z,

while z + a,/n® ~ x, so (2.18) follows casily from (1.12).
(e) For this range of z,

— lgy| ~ =2 d z~
|z — agn] T (o) an T~ ay,

12

~




and so at least in [0, a,)],

al/? 1
n () ~ T (an) Van — x + an=?
whence \
EEPRNL VI
Pn () [7 (an [1 + 2Lmp] — )] T (0

This persists in [a,, a, (1 + L)}, since ¢, is constant there.
(f) This follows from (7.14) (and its preceding lines) in [3] and Lemma 4.3
there. O

Next, we restate some restricted range inequalities from [3]. For ¢ > 0, we
denote by P, the set of all functions of the form

P(z) =cexp (f log |z — §|du(§)) ,

where v > 0, v(C) < i, ¢ > 0, and the support of v is compact. These
_are the exponentials of potentials of mass < ¢. In particular if ¢ > n, then
PeP,=|PleP,.

Lemma 2.4 Let W € L{C?). Let0<p<oo,a€R and L,A > 0. Let
6>—~zfp<oocmdﬁ>02fp 0C.
(a) There exist C1,1y such that for t > ty and P € Py,

| (PW) (x) 2|1,y < C1ll (PW) () 2°|| L [zast2,0 1= Nmo)}- (2.22)

(b) Given r > 1, we have for some C,ty, a > Oand t > 1y, and P € P,

I {(PW) (z) 2° || yaresy
< exp (—Ct*) | (PW) (#) 2° |l 000)- (2.23)

(¢} There exist Cy, ty > 0 such that fort >ty and P € Py,

1PW) @) (54 5) zatn < G PP @) (54 %) Dttat-sacizmor
, (2.24)

Proof.
(a), (b) See Theorem 5.2 in [3].
(c) In Lemma 8.7 in [3], we proved that

§PW) @) (2+ %) lzatm

14 23
< Gl (PW) @) (24 %) Nipltant-2 ant-rma

13




So it suffices to estimate || (PW)({z) (x—l— %&)a || Lpfoe(1-Ane) a2 (1-Anzr)]- We see
that it is bounded by a constant times || (PW) (z) 7} 2, la;(1—3ns),a2:(1—3mae)) 20
if ¢ > 0, we can apply (a) of this Lemma to deduce (2.24). I instead ¢ < 0,
we use S

N (PW) () 57 Ly au (3= dpe) e (= Arze)]
< Caf|| (PW) (&) || Lplae(1—Ane),aze (1=Amze)]
< Caf || (PW) (%) || L (zact2.ac1=2m)]

a a
<Ol (PW) @) (+ ) Nosltaut-saa-s000
by first (a) of this lemmma and then as o < 0. O
Finally, we need polynomials that behave like z* :
/

Lemma 2.5 Letp e R and L € (0,1). Forn > 1, there exist polynomials R,
of degree < n such that

R (z) ~ (a: + Z—?-)p 2 € [0, azn]; | (2.25)
|\R! (z)] < Cz*t, zTE [Laﬂn_z, azn] . (2.26)

Proof. See Lemma 6.3 in [3]. O

3 Markov-Bernstein Inequalities

We begin by proving:

Lemma 3.1 Letk be a non-negative integer and 0 < p < oo. Let W € L (C?).,
Then forn > 1 and P € Py,

! E__ L . . k_ .1
I (PWY (1) o )y 5 |, < CL (PW) () y3 5|1, (3.1)

Proof. Let us suppose that p < o0, (p = oc is simpler) and let
| R(z):=z*P (332) : |
By Theorem 10.1(a) in [2, p. 293,
| CRWY Ghyalliptr < CIRW 1,00
Since |

(RW*)' (z) = 22%+1 (PWY (2°) + kot~ (PW) (2%) , -

14




we obtain after a substitution z = /7,

/’2@; (PWY (y )+ky 7 (PW) | Pon-tk \/_)p

kp dy ‘ v -
? ( —Z
< C/ |PWP (1) y'% Nk (3-2)
Here by Lemma 2.3(b),
Cantk (VY) ~ P (VY) 5
while by Lemma 2.3(a),
I =Ry

'\/Inin {y,00} +apn=? \/m-in 1Y, 6n}

uniformly for n > 1 and y € I. (For ¥ > a,, this follows by constancy of ¢,
and so on.) Then we obtain from (3.2} and (3.3} that

[ |eewy wf-'(y>|f’y”z‘—ldy

< C/I |’£IE:‘|‘;1— (PW) (y) Conk m’

pdy

P
sC’fIIPWF’() dy+cw/|PW|P W)y ( NN, iﬁnﬁ,a}) dy

< C/I |PW|p (y) yhpz_—ldy _|_ C'kpf Ipw|p ( ) ((Pny(y))
(3.4)

by Lemma 2.3(c), and since ¢¥ (y) = @i (an) ,¥ > an. Of course if k = 0, the
second term vanishes. We now assume that k > 1. From (2.21) in the proof of
Lemma 2.3(c), we see that

ann” (1) k=1 (/G \”
PWP (y)y"7 (‘Pn ) dy <0[ PWP (y)y" (m) d
[ 1PwP gy ” C1ewP )y )
' p
<C f PWP () /% (‘/“7) dy,
WP @y 7)) @
by our restrlcted range mequa.hty Lemma 2.4(a). ThlS is applicable since k >-1,
so that

We continue this as

fof;nn PP () ((Pny(y)) dy < / | PW|P )y 5 dy.

15




This and (3.4) give the result. O

Now we can prove a preliminary form of Theorem 1.5. There are no restrictions
on the power zf here, so the result has some independent interest.

Theorem 3.2 Let 0 <p< oo, L >0 and S € R. Let W € L(C?). Then for
n>1 and P € P,, and for some C # C(n, P),

I(PWY' (2) 0 () 2° || 2y(zamn-20 < CI (PW) (@) & | Lyfamn-2,0m)-  (3-5)

Proof. Assume p < oo. The case p = o0 is easier. We split

/d y #|"P 4P dy
Lann—2
1

— ! 3

= (fL n_2+/ )](PW) o () Pdy

=: Il + IQ. '
Choose p € R such that

1
Pp=—5+pp

and let {R,} be the polynomials from Lemma 2. 5, satisfying (2.25) and (2. 26)
Note that PR, has degree at most 2n. We see that

1
San
L =/L: L lewy ot @)y
l“n » _1
<c [ WY et @) B Gy 3y
=C 7" |[PRWY — PWRL] o[ (y)y>dy
Lapn—2
-l-an
<c (PRW)Y o[ () y 2y
Lann*z
+C ]PW | Wy~ 2dy
Lapn—2

<C [IPRWP (y)y ™y
F WY
+C PWP (y ("oﬂ y) Sy,
f I I ( y )V

by Lemma 3.1 with k = 0, since ¢%, ~ ¢# in [ann -2 lan] and by (2.26). Using

our restricted range inequality Lemma 2.4(a) and using (2.25) and (2.17), we
can continue this as

a2n
L<C [ PP @)y
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Lemma 2.4(c) allows us to continue this as
L<C ] | PWP () yrdy. (3.6)

Next, to handle I, we choose a positive integer k so large that

kp—1

< 0.
2

A= Pp—
Then

L= 1 |(PWY o[ )y dy

b
2

< (fo) L
<C (—a )AfIPVle W)y T dy,

by Lemma 3.1. Usmg our restricted range inequality Lemma, 2. 4(a), and A < 0,
we continue this as

A ‘_1
B<C(gm) [ IPWE @)y dy
<c " IPWP @)y

Together this and (3.6) give (3.5). O

Proof of Theorem 1.6 Let P € P,. We shall use Theorem 3.2 and treat
P as a polynomial of degree < 2n. First write

(P'W) (z)] -
< |[(PWY (z) ohy () 2°| 0, ()7 + [(PW) (@) 27| @ (). (3.7)

Here in [a,n72, a,),

& N Qap — T & 5 an,
(pz'n ( ) 2n .\/a2n —_r _E_ a2nn2n —_— (Pzrn, ( ) n

note that by (2.9) and (2.6),

In
T (a,) -

Qgn — & ~ G2n — T + Qopljon = Q2n — Gn ~
Also by (2.10), in [a,n72, a,],

Q’(:L‘)S"’L<Cmax{n2 n_____\‘T,(an)} Tb2

~
x {Qop — ) tn G

H

Qn,
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by (2.6). Our restricted range inequality Lemma 2.4(a), followed by (3.7), give
I (P'W) (2) 2% ||,y < CIl (P'W) (2) 27| 2, fann2,0)

2
< 0= (I (PW) (2) ¢k, (@) 2° lnptsan=son) + | (PW) (@) 2 o)

n

2
T

< C—||(PW) (@) 28 || Loy
n

by Theorem 3.2. Thus we have (1.21). The proof of (1.22) is similar: in [ay,, d),
" G
95, (@) ~ pan (z) 2 Copan (Gyn) ~
2 ? Ay ny/T (ay)
while in {@n; a,] (cf. (2.3)),

Q (2) ~ Q' (an) ~ /T (an). | o

G,

Finally we turn to the

Proof of Theorem 1.5 In view of Theorem 3.2, we need only estimate the
norm over (0, a,n"2). Now

HPWY (2) 0% (2) 2l 10,0072

< C|I (PW) (2) ¢ (2) 2z, 000n2)

HHPW) @)@ @) 6 (1) 1yg000n-2)

=C [Il + _[2] .
Note that '
@ A a
oI () ~ 'n,n < CE’ T € [D,R—g} - (3.8)

Then (1.21) gives
1< O (PW) (2) 2l < C1 (PW) () 5 1,00,

Next, by (3.8) and then (2.10), for z € [0,a,n"?],

So
I < CH (PW)(z) 2% L1y

Thus we have shown that

I PWY (@) 0% (2) 2| y00mm-2 < CIl (PW) (@) 2°| .
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This and Theorem 3.2 give the result. O

4 Estimation of A7 (x)

!

We now estimate the function
® xrJI Y ’

where

Q) Q')
Q1) = 2,

It plays a key role in estimation of p,, , (). Using our bound (1.10) for p,, , we
shall prove: '

Theorem 4.1 Assume that W € L(C?+), that p > —% and let L > 1. Then
3C, ng > 0such that forn > ng and x € [ann=2/L, a, (1 + L),

A (@) ~ onl@) ™ 2 (an(l + 2Lm,) — )] 2. (4.1)

If we assume instead that W € L (C?), this holds with ~ replaced by < C.

Proof of the upper bound in (4.1) We fix M > 1,¢ € (0,2) and set

a
%= (550 50n]

We assume, as in {3, eqn. (8.18)] that M is large enough so that

Gn
:I;-n,n’p > an .

Let, as in [3, eqns. (8.20)—(8.21)},

() := (P, W)*(2) (QH_ %)210' (x N %,21) (@ — )|

and
O (z) = A (2)¢n(z)|2(an — z)|"2.
We distinguish two ranges of z:
(I) Upper bounds for =z € [a,n"%/M, ca,)
We note that for this range of z,

z (an(l +2Lny) — x) ~ 2 {0y — z)
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with constants in ~ independent of n and z. Then
AE (@) on(w) [ (an(1 + 2Ln,) — 2)]'2 ~ B, ().
By Lemma 8.6 in [3], for somme € > 0,
180l < C+ [ ¥alliwtty < Cy-
by (1.10). So choosing M > L, we have the upper bound implicit in (4.1) for

this range of x.
(II) Upper Bounds for x € [ea,, a,(1 + Lny,)]

Write
an(l + 2L} = am,
so that -
1-— Gn M-
7

We choose m in this way to ensure that for some small enough «, 8 and large
enough 7,

(B ™, @ (1~ 0mn)] 2 6, an (1+ L)) . (42)
By (2.8) and (2.7), '

1= 2 T (a) (1= 22) ~ T (an) 1 =0, (43)

oy,

as n — 00. Moreover, for x € [0,a, (1 — 7,)], we have
lam — | ~ |ap — z]
so (1.10) gives the bound

: a5\ N1/
oo @ W @] (2+ 22 3 (am — )V < C. (44)

By our restricted range inequality Lemma 2.4(a), this then holds throughout
I. We split ‘

ann” G ton d —_—
Aﬁp(m)=i—-l fo +[ ] + ] 2 ] (Pn, o W,)? (1) Q (=, t)dt

=L+ hL+L+ 1

2

Estimation of I;
For t € [0, a,n™?], the monotonicity of uQ’ (u) gives

Q(z,t) < CQ' (z)
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so our bound (1.10) on p, , gives

1 < @@ e 1 ( ¢ )29 dt
t= z Jo A a1=2) (@ — 1) \E+ @nn 2

1 s \?
()"
s+1\s+1

where we made the substitution ¢ = a,n~2s. Then from Lemma 2.3(e) and
using monoctonicity of u@)’ (u) and the fact that m ~ n gives

Lgn () [ (an(1 + 2Lm) — )]
Q’ (am) O‘% < _

< <C.
ann 1T (an) — ny/T (@) ™
Estimation of I
Our bound (4.4} on p,,, gives
12<—f Q@1 dt<£ T (@),

\/74 n=3
\/'_xfm

is the density of the equilibrinm measure of total mass m for the field Q. It is
shown in [3, (4.10)] that

where

om (z) ~ @, (x) in [ﬁamm_z, G (1 — anm)]

for any fixed B, > 0, s0

L < ————y ().
T, (am - IL‘)

Here %, ~ 1. Now for small enough «, 3, we saw at (4.2) that this last range
contains [edy, an(l + L1,)], while Lemma 2.3(b) and (4.3) show that @, ~ ¢p.
Then

I2(Pn (33') [-'L‘ (an(l 4- 2L7)n) - $)]1/2
< Clhm (x) [ (ay — x)]1/2 <C.

Estimation of I;
For ¢ € [ay, ag,) there exists s € [q,, ag,] such that

Qlz, 1) = Q' (u)jys = Q" (5) + @ (5).
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Here by (1.5),

5Q (5) < ng ((j))z — CT(5)Q' (5)

and as T is bounded below, while s@’ (s} is increasing, we see that
Qe,8) < CT(5)Q' (5) S O (a20) @ (an) S C T (an)*?,
recall (2.3). Then

L
ay &m i (f} - an)

< O (@) (aan — ) V" < O=52

nT (as)
a2

Then (2.19) gives -
Ison (2) [z (an(1 + 2Lm,) — 3)) 2 < C.

Estimation of I,
Next,

<< [ G ()tQ' ©) 4

Gy Vazn
C

Ty (azﬂ —a, (1 + Lnn ) ‘/ﬂzn (pw, 0)2(75)th (i;)

< Gr( a’“) f (pn V)2 ()Y (2)
C'nT(

2 H
a’n

y (2.8) and the identity -

12 ) W (s =n+p 4 5. (@.5)

The latter follows by integrating by parts and using orthogonality. Using (2.19)
again, we obtain

Lign (z) [z (an(l + 2Ln,) — 5)]2 < C.
Finally combining the estimates for I, I, I3, I; gives
AL @)en @) [ (@m(l+2In) —2)] P <C. O
In proving the lower bounds for A¥ , we need an estimate related to the

0}
identity (4.5):
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Theorem 4.2 Let W € L (C?). There exists o > 1 such that uniformly for
r € [0, 2n]

J (Pn,oW,)* (0)4Q (1) dt ~ . (46)

[O’aZR]\[ar/a;aarl

Proof. We use (4.5} and show that the integrals over [as,, d) and [ar/a, aw]
are small. Write

p=pL+]
where 0 < 0 and j is a non-negative integer. Then

d
28 2
](pnp ()1 (1) di < 5B [ PW) = (WP 1) at,
where _

P (1) =7, (1) 7.
Integrating by parts gives

fd P® % (—w* @) dt = (PW?) () + [ i P OW? (@) dt.

Because of our bounds on p,,, we know that in [0,a, (1 —m.)], |P|W? is
bounded by a power of n (recall a, is of polynomial growth). Our restricted
range inequality then shows that it is bounded in I by a power of n and
- moreover Lemma 2.4(b) gives that for some C > 0,

).

Our Markov-Bernstein inequality Theorem 1.6 then shows that P'W?is bounded
by a power of n in I. The same is then true of the L; norm of P’'W? over
[0, ag,]. Another application of our restricted range inequalities to the weight
W? (rather than W) shows that (at least for large enough n),

C

(PW?) (azn) = O(e™

/ “p HOW2 ) dt =0 (e-n") .

So

/(pn,p 2()1Q (t)dt =0 ().

In view of (4.5), it now suffices to show that given 5 > 0, there exists « € (1,3]
such that uniformly for r € [0, 2n],

Orfo

= [ 0n, W) (O)1Q (®)dt < . (.7)

We note first that it is an easy consequence of (2.8) and (2.5) that

Oy 1
— < — .
Gor = Grja = CT(ar) (a a) “ 8),
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with C independent of ,a, since a € [1, 2]. Moreover, by our bound (1.10)
on Py, 5, and by (2.5),

Qe ’ dt
I<c Q0 4 < cob@an) . ’

Gr/a «./t|a,n — t] /e «./]an — ¢

If aor < a,, we continue this as

I< Ca Q (CL,-) \/—- < Ca*rQ (ar)\/aar — Qr/o _

Qr/o

1 1,/2 1/2
gC’r(a—a) <Cn{a-1)"%,
by (4.8) and .(2.3). If ag/r > an, we similarly continue this as

I<C’aer’ ar)/ < Cn(a-1)Y2.

/o 1,/t — Uy /g

If aw > Gy > Ga/r, We continue this as

I< C’a Q’(aﬂdaar /o < < Cn(a—1)"2,

In summary, in all cases, if « is close enough to 1, we obtain (4.7). O

Proof of the Lower Bounds for A# (a:) Let us write z = a, for x €
[ann™2/L, an (1 + L,)]. By Lemma 2. 2(d) for t € [0, agn]\[@r/a) Gral,

max {tQ' (8), 0@ (@)} = SLY

= jx -t Qon — T

Qx,t) >

Note that while (2.11) holds for ¢ in a neighbourhood omitting 0, the last
inequality is valid for n > ny for all x € [0, a,(1 + Ln,)] (that is, even for x,t
near 0). Then

= [ 0QE e
_,_..,9___
Tz (a’Qn - 3:) {Ova%]\[ar/waar]

n
SO
- cx(agn — )

(P, o W,)* (£) Q) (2) dt

by (46). So

(x)>C’— 1

. 4.9
T gy — T (4.9)
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Firstly if z € [a,n72, ay2], Lemma 2.3(d) gives as a3, — & ~ a,, — 2,

(a: on ()] (an (1 + 2Lmy) — 2)]/2 > C.

(4.10)

Thus we obtain a lower bound to match the upper bound for A,ﬁf , that we
have already proven. Next, if £ € [ay/2,a,(1 + L)), we obtain from (4.9)

that at least for large n,

' n nT (an)
At (z) > C ~

{aan — ﬂn/z)an az

so Lemma 2.3(e) gives (4.10) again. [

5 The Proof of Theorems 1.2 and 1.3(a),(b)

In the sequel, we shall need Christoffel functions,

s N e L (W)
An (W ,ZL’) o deg(lljl)lgn—l P? (33) ,

the Christoffel numbers
Min = In (W2, 2n)
and the reproducing kernel

Kn,p(z,t) Zp:f,p x)pap()

Lemma 5.1 Let W € £ (C?).
(a) '

'\— Tnt, pp;.,p(mjﬁ)pﬂ—l o(Tjn);
P

,-Yln'""l}p A# (

Do (@5n) = 7 o Tin)Pr—1,p(Ejn)-

n,p

(b)
M (W2.2) ~ o @ W2 @) (4 5)" in 0,00 1+ I

and
2p

M (Wﬁ,x) > Co, (x) W2 (z) (:c + -3%) inl.
(c)

x
1""&“??7; and  Tpn ~ —
tn
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and uniformly in j,n,

Tin = Zit1n < Con (Tin) - (5.6)
Proof.
(a) See [3, (8.5) and Lemma 8.3_].

(b) See Theorem 1.3 in [3].
(c) See Theorem 1.4 in [3].. O

Next, we prove the upper bound implicii in (1.8).

Lemma 5.2 Let W € L (02)

(a) Forn>1,
o) (@) (2+22) < Oy 67
ey e NEIAET 03 ) = MY, '
(b) Forn=>1, .
M ~ aﬂ_ . (5_8)
Tn.p
Proof. '
(a) Now for x € [a,n"2, a, (1 - n,)], and for large enough n, (1.10) gives
C
)W (z)|zf £ ———
lpﬂnﬂ( ) ( )| — [.’L‘ (an _ 5[2)]1/4

1/4
SC’ma,X{—-l-—-— ! }

a2n~?’ a2y,
— Ca;I/Z max{ 1/21 (nT (%))1/6} S Ca;l/znlﬂ,

by (2.6). Then the restricted range inequality Lemma 2.4(a) gives (5.7).
{b) The ideas are standard, but we provide the details. Firstly, from our re-
stricted range inequality and Cauchy-Schwarz,

Inle _ /a:pn,p (%) Pn—1,p () Wﬁ (z) dz < Cay,.-

Yr.p 1 _
We proceed to prove a corresponding lower bound. From the definition (1.12)
of @,

1 1 :
O () ~ o re [Za"’ §an] . (59)

Then for Zjn, Zj-1,n € [i—an, %an], Lemma 5.1{(c) ensures that

Oy
Li—1m — Tijn < C;

Here C' is independent of 7 and n. It then follows that for large enough n, the
number of zeros of p,, , lying in this interval is at least > Cin. (We only have
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to show that [ Ay, 20%] contains at least one zero. If not, we easily obtain a
contradiction using Lemma 5.1(c)). Recall from Lemma 5.1(a), the identities
— Yn— Ip

A.?'

- Pn-— Lp (xj'n) p'n, ¥ (‘TJ'II)
.0

2
= (’Yn_l’ppn-—l,p (mjn)) A’f,p (xjn) .

.0

Applying our bound of Theorem 4.1 on Aii , and also (5.9) gives for z;, €

1 1
[Zan: §an] )

-2
— (£

,.Y'”'sp (1]

Adding over the > Cin zeros z;j, € [ian, %an] gives

-2
e n
Cyn (’_Y___l_e) SC— Y AnPioy, (@)

Tn.p G sin€ban,San]

nof n
< CE ffpn—l,pwp - ng_

™

Here we have used the Gauss quadrature formula. Hence

In-lp > Ca,,. 0
Fn.p . '

Proof of Theorem 1.3(a),(b) We use (5.1} and (5.2) in the form

,\— Tz 1‘0p;L p(xjn)Pn—l,p(Can) = p;m,p(mjn-)z/Aﬁp(xjﬂ) (5.10)
TP

so that

Ip;L,pr| (mjn) = [A:‘)—nlwg(wjﬂ)Aﬁp(x.jﬂ)] 1/2‘
Substituting the upper bounds for Af,p(xjﬂ) from Theorem 4.1 and the lower
bounds for A;, from Lemma 5.1(b} in this last expression gives the upper
bounds for |p}, \W,|(x;,) that are implicit in (1.13). We also use (5.5). When

W € L£(C?+) we also have matching lower bounds for A% | so we obtain ~
relations for [p, ,W,|(z;n). The identity (5.10) above, in the form

D1, W, | (50) = A5 W2 (x;@/[’ﬁ‘ 2\, W,|(n)]

N0

and the previous lemma then gives the required estimates for |pp_1,,W,|(%;s).0
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Proof of Theorem 1.2 We already proved the upper bound implicit in
(1.8) in Lemma 5.2. For the corresponding lower bound, we use our Markov-
Bernstein inequality Theorem 3.2 in the form

|(p;1,p p)(xnn)(p (Tnn )| = |(pan)’(xnn)(P (Tnn) T,
<C  max I(pn,,o ) (@) 2*].

z€fann—2,an

Recall that z,,, ~ a,n"2, so Theorem 3.2 is applicable. Substituting the bound

(1.13) for |p, ,W,|(znn) proved above and using 7 (Tpn) ~ ©n (Tnn) gives

n
W > Cy|—.
me[ar,fl'rg}g,an] |pn,p pl(x) - Ay,

Thus we have (1.8). For (1.9), observe from (1.10) that
[ () W, (2)] < Ca¥* (an —2) 4, € [aan™% a0 (1= m)] .

Maximizing the right-hand side over this interval gives

+1

o (2) W (5) (:c + %g)p

2‘3%,;) ()W () (x+ Z ) ‘ < Cal? (nT (an))V®,

and then our restricted range inequality Lemma 2.4(a) shows that

s+l
SUP [P, (2) W (2) (:c + %1;-) l < Cal® (nT (a))"® . (5.11)
xel

Moreover, the bound (1.10) gives

Gn\* -
B (@) W (@) (54 25 )| < Ol (o — a15) ™

< Calf*T (a,)"*
= o (a)/ (nT (an))"'*), (5.12)

max
2€[0,agn]

by (2.6). Next, our Markov-Bernstein inequality Theorem 3.2 gives

|331ﬂ(p;z,pr)(’mln)‘:on(fcln)l = I(’Pn,p ) (xln)‘Pn(wln)xln |
<C max | (puW) (@) 2,

z€[ann=2,an}
Substituting in the bounds for |p], ,W,|(z1s) from (1.13), and using

Gy — L1y ~ QpTip
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gives
| max  [apa,Wol(z) 2 Cay/? (nT (an))'/°.
1473

zEjann—2,

Combining this, (5.11) and (5.12} gives (1.9). O

6 Lagrange Interpolation Polynomials

In this section, we prove Theorem 1.3(c), (d) and Theorem 1.4. The most
difficult part is the upper bound implicit in (1.15), namely,

Ajnl() = £ W|(3) (x + %)p Wi (50) < C (6.1)

with C independent of 7,n,z. Since
Lo 4 B\ P
Buntaz) = (252 ) 1
.’L‘jn
(1.15) follows from (6.1). We begin with two independent bounds for Aj,. We
shall use the notation

7in(2) = 2(an(1 4+ m) — ). (6.2

Lemma 6.1 Assume that W € L(C?) and p > —%. Uniformly in j,n and
x€el,

(a)

(Pn(mjn) 12 .
Ajn(z) £ C (———%(x) ) ; (6.3)
(6) |
Proof.

(a) We use the Cauchy-Schwarz inequality on the identity
Lin(x) = K, p(2, Tjn) [ K p(Tjns Tjm)
to deduce

€W (@)W, (2n)

<( Koo, 2)W2(z) )1’2_( X (W, 2)W(a) )”2

K p(%in, Zin) W2 (€ At (W, Zin) Wi (2 n)
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Applying the Christoffel function bounds (5.3) and (5.4) to A;, () gives the
result.
(b) By our bounds for p, from (1.10),

an\*? _
I W1(2) (2 + 22" < Clra(@) . (65)
Substituting this and the bounds for |ph, ,Wol(2sn) from (1.13) into

A |Pn, e Wi(x) an u
n1(0) (7 + 35 ) Wy o) = & — 12 W, 3m) (e+33) ©9

gives the result. O
We shall also find the following simple observation useful:

Lemma 6.2 There exists ng such that for n > ng and s,t € [0, ay],

(8)] = 2lma(t)] =5 — t] > %. | 6.7)

Proof. Now for z € [0, a,],
(@) = lan (14 n0) — 22| < 2ay,
for n large enough, so if s, are as above, then for some £ between s,
%I%(S)I < |ma(8) — 7B} = |mp (€)l]s — ¢l < 2ans —t]. 0
We break down the proof of (6.1) into 2 lemmas, considering various ranges
of z;,.
Lemma 6.3 For zj, € [0,a,0] and x € I,

Ajn(m) < C. (6.8)

Proof. We prove the upper bound for Aj,(x) separately for two ranges of
T € (a2, an (1 — n,)]. (Then the result follows for all z from the restricted
range inequality Lemma 2.4(c).) From Lemma 2.3(d), uniformly in j and n,

ﬁpn(mjn) ~ Wn(mjn)ip/n' (6-9)

(Recall that zyy, > Ca,n=2.) We shall substitute this and relevant estimates
for @u(z) in (6.3) and (6.4). | o
(I) = € [ann™, agnyd]
From Lemma 2.3(d)},

n () ~ Tﬁ'n.(g-ﬁ')lfz/f‘r"'
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Then our bound (6.3) becomes
1/4
(x) < C |22}
Ajp(z) < C’( py )

If 7n(zjn) < 2m,(x), we obtain the desired bound. In the contrary case, where
Tn{Zjn) > 2m,(z), the previous lemma gives

7o) | 610)

“so (6.4) becomes, with the aid of (6.9),

A

Ajal(@) < O lma(@)mn(2in)] 7 < C=2mal@)™2 < C,
I n J n

. as 7, attains its minimum over {@,n"?, a3, /4] at a,n ™2, and that minimum ~
ain~2.
(D) z e [a?m/tiaan (1~ nn)]
For this range of x, Lemma 2.3(e) gives

T}~ _1/2—a’2"“ .

Moreover,

Tn(T) ~ G (Al +7m) — ) < an(an(1 + 1) — Qgn/a)

S0 9

T(an)
(Re(?all (2.9) and that 7, = o(1/T{ay)).) Then if

2
Oy,

T(an)

ﬂ'ffa(m) <Gy

Tn (itjn) S 201

we obtain from (6.3) and (6.9) that

T(a,) 1/2
2@ < 0 (maz) (e 152 ) < o
2 .
In the contrary éase, where
2

a
Wﬁ(:r:jn) > QC’IT(; ) > 21y, (x),

the previous lemma gives (6.10) again, and hence as above, (6.4) gives

Agn(@) < Cm(@) (i)l
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Now for the current range of z, we have as usual,

ﬂ'n(m) > min {ﬂ—n (a3n/4) y T (afn (1 - nn))} ~ &ﬁﬂm

S50

—~1/4 5/12
R T a2 T (ay,)
. < (J—|. v e— == <
A (z) £C - lannn 7 n)] C[ < C,

(a n?
by (2.6). O

Lemma 6.4 For x;, € [an/0,d) and x € I,

Aju(z) < C. (6.11)

Proof. Recall that for some M > (0 and large enough n, Z1n <a,(l— My,).
Then for z;, > ap/e, Lemma 2.3(e) shows that

2
n(@jn) ~ T (@) "2 | 6.12
Pn(Tjn) n(Zjn) T (am) ( )
We shall substitute this and relevant estimates for @, (z) in (6.3) and (6.4),
for two different ranges of . . |
(I) S [ann :an/4]
From Lemma 2.3(d), |
on(T) ~ Wn(m)l/z/n-

Moreover,
Cay,
—x|> _ > "
|z — Zjn| = anja — Gnpa = T(a,)
From (6.4), ‘
Ajn(z) < C2 [ﬂn( Y (zn)) A,
Here

T (Zin) = C2tn;

a2
wal{z) > C‘—T—L%.

1/6
Ajn (@) < C{T(?)} <C.

n =

Then we obtain

by (2.6).
(I1) z € [ansa, an (1 — 10)]
For this range of z, Lemma 2.3(d) gives

2
-1/2 Qy,
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Here (6.3) becomes
Aju(z) < C| == .
’ ( ) (ﬂ-n(xjn))

If 7 (x) < 27rn(mjn): the result follows. In the contrary case, Lemma 6.2 gives

s0 (6.4) becomes

C a C___a

A (x) < < o S
() S T ()54 (X YA 0T () — (a20,)%2 0T (a,) — ©

by definition of 7,. O3

With the proof of (6.1}, and hence Theorem 1.3(c) complete, we turn to an
auxiliary result for Theorem 1.3(d):

Lemma 6.5 Let W € L (C?). Uniformly in j,n and for x € [Tj41,0, Tjn],

LinWo) (@)W, (@) + B W)W, Hi10) ~ 1. (6.13)

Proof. From Lemma 7.5 in [3], for € [Zjs1,n, Tjn)
(W) @)W (@jn) + ErraW ) @W ™ @1010) > L.
Note that uniformly in 7 and n,
Tit1m ~ Lin- (6.14)

- Indeed from (5.6) a,n(i then (2.20), (1.18) and (2.17),

Tin — Ljt1n Pn (%‘n) n (Tj11,n) @ff (Zj41,n)
0< <(C ~ ~ <C.
mj+1,ﬂ . xj+1,n $J+1,TL :B_',I-FI,'H

So we have (6.14).and hence
LW (@)W, (@) + Eir1a W) (@)W, (@j41,0) = C.

The corresponding upper bound follows from Theorem 1.3(c). O

Proof of Theorem 1.4 We already know from Lemma 5.1 that uniformly
injn
xjn - $j+1,'n ..<... Can(«’¢j+1,n)
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and must prove the corresponding lower bound. First note from our Markov-
Bernstein inequality Theorem 3.2 and since ¢, ~ @ in [y, d) that

1(€saWW Y (2) on () 2° | 1o fommay Wy ()
< Cl W) (z) wp”Loo[amn—z,afn]Wp—l_(mjn) <Gy

with C; independent of j,n. Then for some £ between z;, and 414,

1= (W) (@)W H2in) — LWz 41,0)W ™ (z)n)
= (EjnW)’(g)W_l(mjn)(mjn - xj+1,n) 7
< Coon(€) 675, (@in — Zig1n)-

Since Lemma 2.3(f) shows that
(pn(mjn) ~ @n(g) ~ (Pn(xj-l-l,n) and Tjp ™~ 5

{cf. (6.14)) we obtain the required lower bound. O

Proof of Theorem 1.3(d) From Lemma 6.5, for z € [:cj_l_ln,acjﬂ] (and
recall, if necessary, the expression (6.6) for £;,,)

|
D, pWol|(x :
Wl ){ R A TA T
! 1 (6.15)
|z — 2510025, Wl (@541,0) ' '

Now we know from Lemma 2.3 that
@n (Tin) ~ On (Tjt1n) -
- We also claim that uniformly in j and n,
An — Tjn ~ Oy ~ mj;,_l,n. 1 (6.1_6)
Once we have this claim, Theorem 1.3(a) and (6.14) give
|p;,,,pr| () ~ |me,pr [(%5+1,n)

50 we obtain

: 1 1 -1
P Wol(3) ~ B W, (3n) { ; }

Ix - mjn| lx - I"_;i+1,m|
~ Ip;m,prKxjn) ming |z — Tjul, |% — Tjrinl}-
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Substituting in (1.13}), gives (1.16). We turn to the proof of (6.16): from (5.6),

an, — Z; Tin — Tj Z;
0<1—n in_ . Tin itin C‘Pﬂ( J+1,n)‘

anp — Tit1n Un — Tjti,n Qn — Tjtin

If Zj11,n < any2, We continue this using (2.18) as

S C V xj'}"l)n
[

(an — 33.7'+1,n)

~1/2 C\/xj+1,ﬂ T (an) <C
= " <

an

If ;110 > Gn/2, we continue this using (2.19) as

< C - a¥? < c  a? _c -
G $j+1,n)3/2 nT (an) ~ (anﬂn)S/z nT (an) )

7 Sharpness of the Markov Inequality

We prove the sharpness of the Markov inequality (1.21) in Ly and with 8 = 0:

Theorem 7.1 Let {p,} denote the orthonormal polynomials for the weight
W2, where W € L(C?+). Then forn > 1,

. n2 . .
N2 W | 2oy ~ G_IIP%W”Lz(I)- (7.1)
n

Proof. By the Gauss quadrature formula, and then (1.13) and (5.3), followed
by (1.12),

n
I W 12,00 = D Ajnih (@sm)?
j=1

~ ilﬁo«;l (:an) [CCjn (an — mjn)}—l/z

il 1

~ 11
; 9sjfn. (aEn - xjn)

_ s (,},_ N _____.1_,___)
‘0211. =1 \Tin a2n__ Ljn

= 21 + 22. (72)
Here )
5 = Pal0)
Q2pn Pn (0)
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By our Markov inequality (1.21) and our bound (1.8) on p,,

/2

2
T .
by, (0)] < C— [2nW |20y < C=57
T

3/27
a3/

while as |p,| is convex in (—00, Tyy),

T
lon (0)| 2 I‘p;, (mnn)l Lon ™ 41[ E":

by (1.13) and (5.5). Then

3
AR C%_

1

In the other direction, we can use just a single term in 3J; :

Thus

Next, we estimate . Let
Ton = Tin T Gnlp-

By our spacing of zeros, namely (1.17),

7 n -1 T
Z:2 ~ Z (xj—l,n - mjn) M

ay, =1 Aoy xjn
€
< on tn dx ’
oA JO g (x) (a'2n - l‘)

recall (2.20). We continue thus using (1.12) as

3 n? (o Ao — T + GnTy, dz
2™~

an Jo (@on — ) VT +an2

3 1
—3/2 r20n dz —1/2 r%n/2
2 la —— 1
<C L Jo v/ s+ann=2 " 3
T Gy : —1/2 rzon V/ 22n"0%n/2
+a tny dz

azn —m)

[

n
On |
2 3
1 /2 L

n (3

<C—|a;t +a;'/? (an—an/g -
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(7.3)

dx

san {an—%) 8/2

)"1/2 + a_l/g 2/ 2n T Qn/2

op — On }

L TSR o bt U e g ey m e e s e e e T e e s e £y e b e G L ] T T M R e e et LN TR S et T e S T e A LT S e T s ISR 2
MERAR e T L L T e B e T T T W R e S e A




Here we have used (2.9) and (2.6). This last relation, (7.2} and (7.3) give

LW ~ (7.4
Pn Lz(I)Nag‘ .

n

Now we obtain a lower bound for the norm of pj,W. As p, has opposite sign
at Tny and 14, and W is bounded near 0,
V/‘mnﬁl,n p:i
Tnn

En—1,n 1/2
<C (xn—l,n - xnn)lfz (L (‘pﬁWﬁ)
Wl o)

or, (Zan)| < [P}, @nn) — P (Tn1n)| =

< C (m'n,—l,n - wn'n,)
S0

2 - —
"ng“%z(I) >C |p':1 (Zan)|” (Ta—1m — Tnn) !

> Copn (@pn) " (@onan) ™" ~ nlar?,
by (1.13), (1.17) and (1.12). This and (7.4) give
onW |2,/ ||p;W||i2(1) > Cn*a,?,
that is,

2
n
P W Loy > Ca_”p;mW”%z(I)'
(1

The converse direction is an immediate consequence of the Markov inequality
(1.21). O
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