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Abstract. Let {pn} denote the orthonormal polynomials associ-
ated with a measure µ with compact support on the real line. Let
µ be regular in the sense of Stahl, Totik, and Ullmann, and I be
a subinterval of the support in which µ is absolutely continuous,
while µ′ is positive and continuous there. We show that bounded-
ness of the {pn} in that subinterval is closely related to the spacing
of zeros of pn and pn−1 in that interval. One ingredient is proving
that "local limits" imply universality limits.
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1. Results

Let µ be a finite positive Borel measure with compact support, which
we denote by supp[µ]. Then we may define orthonormal polynomials

pn (x) = γnx
n + ..., γn > 0,

n = 0, 1, 2, ... satisfying the orthonormality conditions∫
pnpmdµ = δmn.

The zeros of pn are real and simple. We list them in decreasing order:

x1n > x2n > ... > xn−1,n > xnn.

They interlace the zeros yjn of p′n :

p′n (yjn) = 0 and yjn ∈ (xj+1,n, xjn) , 1 ≤ j ≤ n− 1.

It is a classic result that the zeros of pn and pn−1 also interlace. The
three term recurrence relation has the form

(x− bn) pn (x) = an+1pn+1 (x) + anpn−1 (x) ,

where for n ≥ 1,

an =
γn−1
γn

=

∫
xpn−1 (x) pn (x) dµ (x) ; bn =

∫
xp2n (x) dµ (x) .

1
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Uniform boundedness of orthonormal polynomials is a long studied
topic. For example, given an interval I, one asks whether

sup
n≥1
‖pn‖L∞(I) <∞.

There is an extensive literature on this fundamental question - see for
example [1], [2], [3], [4], [12]. In this paper, we establish a connection
to the distance between zeros of pn and pn−1.
The results require more terminology: we let dist (a,Z) denote the

distance from a real number a to the integers. We say that µ is regular
(in the sense of Stahl, Totik, and Ullmann) if for every sequence of
non-zero polynomials {Pn} with degree Pn at most n,

lim sup
n→∞

(
|Pn (x)|(∫
|Pn|2 dµ

)1/2
)1/n

≤ 1

for quasi-every x ∈supp[µ] (that is except in a set of logarithmic ca-
pacity 0). If the support consists of finitely many intervals, and µ′ > 0
a.e. in each subinterval, then µ is regular, though much less is required
[15]. An equivalent formulation involves the leading coeffi cients {γn}
of the orthonormal polynomials for µ :

lim
n→∞

γ1/nn =
1

cap (supp [µ])
,

where cap denotes logarithmic capacity.
Recall that the equilibrium measure for the compact set supp[µ] is

the probability measure that minimizes the energy integral∫ ∫
log

1

|x− y|dν (x) dν (y)

amongst all probability measures ν supported on supp[µ]. If I is an in-
terval contained in supp[µ], then the equilibrium measure is absolutely
continuous in I, and moreover its density, which we denote throughout
by ω, is positive and continuous in the interior Io of I [13, p.216, Thm.
IV.2.5]. Given sequences {xn} , {yn} of non-0 real numbers, we write

xn ∼ yn

if there exists C > 1 such that for n ≥ 1,

C−1 ≤ xn/yn < C.

Similar notation is used for functions and sequences of functions.
Our main result is
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Theorem 1.1
Let µ be a regular measure on R with compact support. Let I be a
closed subinterval of the support and assume that in some open inter-
val containing I, µ is absolutely continuous, while µ′ is positive and
continuous. Let ω be the density of the equilibrium measure for the
support of µ. Let A > 0. The following are equivalent:
(a) There exists C > 0 such that for n ≥ 1 and xjn ∈ I,
(1.1) dist (nω (xjn) (xjn − xj,n−1) ,Z) ≥ C.

(b) There exists C > 0 such that for n ≥ 1 and yjn ∈ I,
(1.2) dist (nω (yjn) (yjn − yj,n−1) ,Z) ≥ C.

(c) Uniformly for n ≥ 1 and x ∈ I,
(1.3) ‖pn−1‖L∞[x−A

n
,x+A

n
] ‖pn‖L∞[x−A

n
,x+A

n
] ∼ 1.

(d) There exists C > 0 such that for n ≥ 1 and x ∈ I,
(1.4) ‖pn−1‖L∞[x−A

n
,x+A

n
] ‖pn‖L∞[x−A

n
,x+A

n
] ≤ C.

Moreover, under any of (a), (b), (c), (d), we have

(1.5) sup
n≥1

sup
x∈I

∣∣∣|x− bn|1/2 pn (x)
∣∣∣ <∞.

Remarks
(a) The main idea behind the proof is that universality limits and
"local" limits give

|pn−1 (yj,n−1) pn (yjn)| |sin [πnω (yjn) (yjn − yj,n−1)] + o (1)| ∼ 1,

uniformly in j, n, while pn has a local extremum at yjn.
(b) We could replace xj,n−1 − xjn in (1.1) by xj,n−1 − xj,n+k, for any
fixed integer k (see Lemma 4.1).
(b) Under additional assumptions, involving the spacing of zeros of pn
and pn−2, we can remove the factor |x− bn|1/2 in (1.5):

Theorem 1.2
Let µ be a regular measure on R with compact support. Let I be a
closed subinterval of the support and assume that in some open inter-
val containing I, µ is absolutely continuous, while µ′ is positive and
continuous. Let ω be the density of the equilibrium measure for the
support of µ. Let A > 0. Assume that (1.1) holds in I. The following
are equivalent:
(a) There exist C1 > 0 such that for n ≥ 1 and xjn ∈ I,
(1.6) |n (xjn − xj−1,n−2)| ≥ C1 |xjn − bn−1| .
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(b) Uniformly for x ∈ I and n ≥ 1,

(1.7) ‖pn‖L∞[x−A
n
,x+A

n ] ∼ 1.

(c)

(1.8) sup
n≥1
‖pn‖L∞(I) <∞.

Remark
We note that because of the interlacing, both xjn and xj−1,n−2 belong
to the interval (xj,n−1, xj−1,n−1).
Two important ingredients in our proofs are universality and local

limits. The so-called universality limit involves the reproducing kernel

Kn (x, y) =
n−1∑
k=0

pk (x) pk (y) =
γn−1
γn

pn (x) pn−1 (y)− pn−1 (x) pn (y)

x− y .

(1.9)

For x in the interior of supp[µ] (the "bulk" of the support), at least
when µ′ (x) is finite and positive, the universality limit typically takes
the form [6], [8], [14], [17]

(1.10) lim
n→∞

Kn

(
x+ a

µ′(x)Kn(x,x)
, x+ b

µ′(x)Kn(x,x)

)
Kn (x, x)

= S (a− b) ,

uniformly for a, b in compact subsets of C. Here S is the sinc kernel,

S (a) =
sin πa

πa
.

Universality limits holds far more generally than pointwise asymptot-
ics for orthonormal polynomials, that at one stage were used to prove
them. In a series of recent papers [7], [9], [10], [11], it was shown that
one can go in the other direction, namely from universality limits, to
"local ratio limits" for orthogonal polynomials.
Under fairly general conditions on µ, theChristoffel function Kn (x, x)

admits the asymptotic [16]

lim
n→∞

1

n
Kn (x, x)µ′ (x) = ω (x)

for x in the interior of the support of µ. This allows us to reformulate
the universality limit (1.10) as

(1.11) lim
n→∞

Kn

(
x+ a

nω(x)
, x+ b

nω(x)

)
µ′ (x)

nω (x)
= S (a− b) ,
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uniformly for a, b in compact subsets of C.
Using this universality limit, we proved in [10]:

Theorem A
Assume that µ is a regular measure with compact support. Let I be a
closed subinterval of the support in which µ is absolutely continuous,
and µ′ is positive and continuous. Let J be a compact subset of the
interior Io of I. Then

(1.12) lim
n→∞

pn

(
yjn + z

nω(yjn)

)
pn (yjn)

= cosπz

uniformly for yjn ∈ J and z in compact subsets of C.
A secondary goal of this paper is to prove a converse of Theorem

A, namely to show that local limits such as (1.12) imply a universality
limit like (1.11). For measures on the unit circle this was undertaken
in [11] - however the results necessarily take a quite different form.

Theorem 1.3
Let µ be a measure with compact support. Assume that we are given a
bounded sequence of real numbers {ξn} such that

(1.13) sup
n≥1

n
∣∣ξn − ξn−1∣∣ <∞,

and a sequence {τn} of positive numbers with τn ∼ 1 such that

(1.14) lim
n→∞

τn
τn−1

= 1

and uniformly for z in compact subsets of C,

(1.15) lim
n→∞

pn
(
ξn + τn

n
z
)

pn (ξn)
= cosπz.

Let A > 0. Then uniformly for a, b in compact subsets of C, and xn
such that

(1.16) |xn − ξn| ≤
A

n

we have
(1.17)
Kn

(
xn + τn

n
a, xn + τn

n
b
)

Kn (xn, xn)
= S (a− b)+o

( γn−1
γn

n
∣∣pn−1 (ξn−1) pn (ξn)

∣∣
Kn (xn, xn)

)
.
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Moreover,

(1.18)
Kn

(
xn + τn

n
a, xn + τn

n
b
)

Kn (xn, xn)
= S (a− b) + o (1) ,

provided either

(1.19) lim inf
n→∞

dist
(
n

τn

(
ξn − ξn−1

)
,Z
)
> 0

or

(1.20) sup
n≥1

γn−1
γn

n
∣∣pn−1 (ξn−1) pn (ξn)

∣∣
Kn (xn, xn)

<∞.

We prove Theorem 1.3 in the next section and Theorem 1.1 in Section
3. Theorem 1.2 is proved in Section 4. In the sequel C,C1, C2, ... denote
constants independent of n, x, θ. The same symbol does not necessarily
denote the same constant in different occurences.

2. Proof of Theorem 1.3

Throughout this section, we assume the hypotheses of Theorem 1.3.
Write for n ≥ 1 and m = n− 1, n,

(2.1) xn = ξm + ∆n,m
τm
m

and

(2.2) χn =
(τn
n

)
/

(
τn−1
n− 1

)
.

Recall from (1.14) that χn → 1 as n → ∞. Note too that in view of
(1.13), (1.14), (1.16), {∆n,n} and {∆n,n−1} are bounded sequences. We
start with:

Lemma 2.1
(a) Uniformly for z in compact subsets of C,

(2.3) lim
n→∞

τn
n

p′n
(
ξn + τn

n
z
)

pn (ξn)
= −π sin πz.

(b) Uniformly for a, b in compact subsets of C,(
pn

(
xn +

τn
n
a
)
− pn

(
xn +

τn
n
b
))

/pn (ξn)

= −π
∫ a

b

sin π (∆n,n + t) dt+ o (|a− b|) .
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(c) Moreover,

(
pn−1

(
xn +

τn
n
a
)
− pn−1

(
xn +

τn
n
b
))

/pn−1
(
ξn−1

)
= −π

∫ a

b

sinπ (∆n,n−1 + t) dt+ o (|a− b|) .

Proof
(a) As the asymptotic (1.15) holds uniformly for z in compact subsets
of the plane, we can differentiate it to obtain (2.3).
(b) Now (

pn

(
xn +

τn
n
a
)
− pn

(
xn +

τn
n
b
))

/pn (ξn)

=

∫ a

b

p′n

(
xn +

τn
n
t
) τn
n
dt/pn (ξn) .

Note that this is meaningful even for complex a, b, with the integral
being taken over the directed line segment from b to a. Using (2.1) and
(2.3), we continue this as∫ a

b

p′n
(
ξn + τn

n
(∆n,n + t)

)
τn
n

pn (ξn)
dt

=

∫ a

b

(−π sin π (∆n,n + t) + o (1)) dt

= −π
∫ a

b

sin π (∆n,n + t) dt+ o (|a− b|) .

(c) Using (2.2),(
pn−1

(
xn +

τn
n
a
)
− pn−1

(
xn +

τn
n
b
))

/pn−1
(
ξn−1

)
=

∫ a

b

p′n−1

(
xn +

τn
n
t
) τn
n
dt/pn−1

(
ξn−1

)
=

∫ a

b

p′n−1
(
ξn−1 + τn−1

n−1 (∆n,n−1 + χnt)
)

pn−1
(
ξn−1

) τn−1
n− 1

χndt

=

∫ a

b

(−π sin (π (∆n,n−1 + χnt)) + o (1)) dt

= −π
∫ a

b

sin π (∆n,n−1 + t) dt+ o (|a− b|) .

�
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Proof of Theorem 1.3
We apply (1.15) and (b), (c) of Lemma 2.1. Now if a 6= b,

τn

npn−1
(
ξn−1

)
pn (ξn)

Kn

(
xn +

τn
n
a, xn +

τn
n
b
)

=
γn−1
γn

[
pn
(
xn + τn

n
a
)
− pn

(
xn + τn

n
b
)]
pn−1

(
xn + τn

n
b
)

(a− b) pn (ξn) pn−1
(
ξn−1

)
+
γn−1
γn

pn
(
xn + τn

n
b
) [
pn−1

(
xn + τn

n
b
)
− pn−1

(
xn + τn

n
a
)]

(a− b) pn (ξn) pn−1
(
ξn−1

)
=

γn−1
γn

[
−π
a− b

∫ a

b

sin π (∆n,n + t) dt+ o (1)

]
[cos π (∆n,n−1 + bχn) + o (1)]

+
γn−1
γn

[cosπ (∆n,n + b) + o (1)]

[
π

a− b

∫ a

b

sin π (∆n,n−1 + t) dt+ o (1)

]
by (1.15) and (b), (c) of Lemma 2.1. Note that because of the unifor-
mity of the limits, this holds in a confluent form even if a = b. We
continue this, using χn = 1 + o (1), as

=
γn−1
γn

π

a− b

∫ b

a

[sin π (∆n,n + t) cosπ (∆n,n−1 + b)− cos π (∆n,n + b) sinπ (∆n,n−1 + t)] dt

+o

(
γn−1
γn

)
.

(2.4)

Next, we expand the integrand using double angle formulae, in a straight-
forward but tedious fashion:

sin π (∆n,n + t) cosπ (∆n,n−1 + b)− cos π (∆n,n + b) sinπ (∆n,n−1 + t)

= [sin π∆n,n cos πt+ cos π∆n,n sin πt] [cosπ∆n,n−1 cos πb− sin π∆n,n−1 sin πb]

− [cosπ∆n,n cos πb− sin π∆n,n sin πb] [sinπ∆n,n−1 cos πt+ cos π∆n,n−1 sin πt]

= cos πt cosπb sin π (∆n,n −∆n,n−1) + sin πt sin πb sin π (∆n,n −∆n,n−1)

= cos (π (t− b)) sinπ (∆n,n −∆n,n−1) .

We can then continue (2.4) as

γn−1
γn

π

a− b

∫ b

a

[cos (π (t− b)) sinπ (∆n,n −∆n,n−1)] dt+ o

(
γn−1
γn

)
=

γn−1
γn

sin π (∆n,n −∆n,n−1)
1

a− b (− sin π (a− b)) + o

(
γn−1
γn

)
= −πγn−1

γn
sin π (∆n,n −∆n,n−1)S (a− b) + o

(
γn−1
γn

)
.
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In summary, uniformly for a, b in compact subsets of the plane,
τn

npn−1
(
ξn−1

)
pn (ξn)

Kn

(
xn +

τn
n
a, xn +

τn
n
b
)

= −πγn−1
γn

sin π (∆n,n −∆n,n−1)S (a− b) + o

(
γn−1
γn

)
.(2.5)

Next observe from (2.1), (1.13), and (1.14), that

xn = ξn + ∆n,n
τn
n

= ξn−1 + ∆n,n−1
τn
n

+ o

(
1

n

)

⇒ τn
n

[∆n,n −∆n,n−1] = ξn−1 − ξn + o

(
1

n

)
.

As τn is bounded below, this allows us to reformulate (2.5) as
τn
n
Kn

(
xn +

τn
n
a, xn +

τn
n
b
)

= −πγn−1
γn

pn−1
(
ξn−1

)
pn (ξn)

{
sin

[
π
n

τn

(
ξn−1 − ξn

)]
S (a− b) + o (1)

}
.

(2.6)

In particular, setting a = b = 0,

τn
n
Kn (xn, xn)

= −πγn−1
γn

pn−1
(
ξn−1

)
pn (ξn)

{
sin

[
π
n

τn

(
ξn−1 − ξn

)]
+ o (1)

}
,

(2.7)

so that (2.6) can be recast as
τn
n
Kn

(
xn +

τn
n
a, xn +

τn
n
b
)

=
τn
n
Kn (xn, xn)S (a− b) + o

(
γn−1
γn

∣∣pn−1 (ξn−1) pn (ξn)
∣∣) ,

giving (1.17). If (1.19) holds, then sin
[
π n
τn

(
ξn−1 − ξn

)]
is bounded

away from 0, so we can reformulate (2.6) as
τn
n
Kn

(
xn +

τn
n
a, xn +

τn
n
b
)

= −πγn−1
γn

pn−1
(
ξn−1

)
pn (ξn) sin

[
π
n

τn

(
ξn−1 − ξn

)]
{S (a− b) + o (1)}
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and (2.7) as
τn
n
Kn (xn, xn)

= −πγn−1
γn

pn−1
(
ξn−1

)
pn (ξn) sin

[
π
n

τn

(
ξn−1 − ξn

)]
{1 + o (1)} .

Together these give (1.18). Finally if (1.20) holds, then we see from

(2.6) that necessarily sin
[
π n
τn

(
ξn−1 − ξn

)]
is bounded away from 0

and again (1.18) follows. �

3. Proof of Theorem 1.1

Recall that yjn is the zero of p′n in (xj+1,n, xjn). We begin with:

Lemma 3.1
Let µ be a regular measure on R with compact support. Let I be a
closed subinterval of the support and assume that in some open inter-
val containing I, µ is absolutely continuous, while µ′ is positive and
continuous.
(a) Uniformly for yjn ∈ I,

(3.1) lim
n→∞

n (xjn − yjn)ω (xjn) =
1

2
= lim

n→∞
n (yjn − xj+1,n)ω (xjn) ;

(3.2) lim
n→∞

n (xjn − xj+1,n)ω (xjn) = 1;

(3.3) lim
n→∞

n (yjn − yj+1,n)ω (xjn) = 1.

(b) Uniformly for yjn ∈ I,
(3.4)
γn−1
γn
|pn−1 (yj,n−1) pn (yjn)| |sin [πnω (yjn) (yj,n−1 − yjn)] + o (1)| ∼ 1.

(c) Fix A > 0. Uniformly for n ≥ 1 and x ∈ I,
(3.5) ‖pn‖L∞[x−A

n
,x+A

n ] ∼ |pn (yjn)| ,

where yjn ∈
[
x− A

n
, x+ A

n

]
or is the closest zero of p′n to this interval.

Proof
(a) First note that uniformly for yjn ∈ I and z in compact subsets of
C,

(3.6) lim
n→∞

pn

(
yjn + z

nω(yjn)

)
pn (yjn)

= cosπz.
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This was proved in [10] and is Theorem A above. Next, Theorem 2.1
in [17] shows that (3.2) holds uniformly for xjn ∈ I. In particular
xjn − xj+1,n = O

(
1
n

)
uniformly for xjn ∈ I. Write

xjn = yjn +
zn

nω (yjn)
,

so that zn > 0 and zn = O (1). From (3.6), we have

0 =
pn (xjn)

pn (yjn)
= cosπzn + o (1)

so necessarily for some non-negative integer jn,

zjn = jn +
1

2
+ o (1) .

If jn ≥ 1 for infinitely many n, then Hurwitz’Theorem shows that there
would be other zeros of pn between xjn and yjn, which contradicts that
yjn ∈ (xj+1,n, xjn). So jn = 0 for n large enough, which gives the first
limit in (3.1). Note too that ω (xjn) /ω (yjn) = 1 + o (1) by continuity
of ω. The second is similar. Both (3.2) and (3.3) follow from (3.1),
though as noted, (3.2) appears in [17].
(b) Because of (3.6), we can apply Theorem 1.3 and results from its
proof. In that theorem, we set xn = yjn, τn = 1

ω(yjn)
; ξn = yjn; so that

ξn−1 = yj,n−1. Note that (1.13), (1.14), (1.16) are satisfied because of
the spacing estimates in Lemma 3.1, and the continuity of ω. From
(2.7),

1

nω (yjn)
Kn (yjn, yjn)

= −πγn−1
γn

pn−1 (yj,n−1) pn (yjn) {sin [πnω (yjn) (yj,n−1 − yjn)] + o (1)} .

(3.7)

Next, Theorem 2.2 in [17] establishes that uniformly for t ∈ I,

lim
n→∞

1

n
Kn (t, t)µ′ (t) = ω (t) .

Since ω is positive and continuous in I as is µ′, we then obtain (3.4)
from (3.7).
(c) This follows directly from the limit in (3.6) and the fact that
|pn (yjn)| is the maximum of |pn| in [xj+1,n, xjn]. �

Proof that Theorem 1.1(a)⇔(b)
This follows directly from Lemma 3.1(a). �
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Proof that Theorem 1.1(b)⇒(c).
First note that as supp[µ] is compact [5, p. 41],

(3.8)
γn−1
γn
≤ C.

Our hypothesis (1.2), as well as (3.4) give that uniformly for yjn ∈ I,

(3.9)
γn−1
γn
|pn−1 (yj,n−1) pn (yjn)| ∼ 1.

Then (3.5) gives uniformly for x ∈ I,

(3.10)
γn−1
γn
‖pn−1‖L∞[x−A

n
,x+A

n ] ‖pn‖L∞[x−A
n
,x+A

n ] ∼ 1.

Let Ijn = [yj+1,n, yjn] for all j, n. We similarly obtain from (3.6) and
(3.9) and our spacing that

γn−1
γn

(∫
Ij,n−1

p2n−1dµ

)1/2(∫
Ijn

p2ndµ

)1/2
≥ C

n
.

Here we are also using that µ′ is positive and continuous in I. Adding
over yjn ∈ I, and using that there are necessarily ≥ Cn such yjn,
because of the spacing, we obtain

γn−1
γn

∑
yjn∈I

(∫
Ij,n−1

p2n−1dµ

)1/2(∫
Ijn

p2ndµ

)1/2
≥ C.

Cauchy-Schwarz’inequality gives

γn−1
γn

(∫
p2n−1dµ

∫
p2ndµ

)1/2
≥ C

so that
γn−1
γn
≥ C.

Together with (3.8), this gives

(3.11) an =
γn−1
γn
∼ 1.

So from (3.10), uniformly in x ∈ I,
(3.12) ‖pn−1‖L∞[x−A

n
,x+A

n ] ‖pn‖L∞[x−A
n
,x+A

n ] ∼ 1.

�

Proof that Theorem 1.1(c)⇒(d).
This is immediate. �
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Proof that Theorem 1.1(d)⇒(b).
From (3.4), (3.11), and our assumed bound (1.4),

|sin [πnω (yjn) (yj,n−1 − yjn)] + o (1)| ≥ C.

This yields
dist (nω (yjn) (yjn − yj,n−1) ,Z) ≥ C.

�

Proof of the bound (1.5)
From the recurrence relation and (3.11),

‖(x− bn) pn‖L∞[x−A
n
,x+A

n ] ‖pn‖L∞[x−A
n
,x+A

n ]

≤ C
(
‖pn+1‖L∞[x−A

n
,x+A

n ] ‖pn‖L∞[x−A
n
,x+A

n ] + ‖pn−1‖L∞[x−A
n
,x+A

n ] ‖pn‖L∞[x−A
n
,x+A

n ]

)
≤ C,

by (1.4). Then also uniformly in x ∈ I,∥∥(x− bn) p2n
∥∥
L∞[x−A

n
,x+A

n ] ≤ C

and we obtain (1.5). �

4. Proof of Theorem 1.2

We begin with:

Lemma 4.1
Let µ be a regular measure on R with compact support. Let I be a
closed subinterval of the support and assume that in some open inter-
val containing I, µ is absolutely continuous, while µ′ is positive and
continuous. Assume (1.1). Let A > 0.
(a) Let L ≥ 1. There exists n0 such that uniformly for n ≥ n0, for
xjn ∈ I and |k − j| ≤ L,

(4.1) dist (nω (xjn) (xk,n−1 − xjn) ,Z) ≥ C.

(b) Let

(4.2) δjn := nω (xjn) (xjn − xj−1,n−2) .
There exist n0, η0 > 0 such that uniformly for n ≥ n0, and for xjn ∈ I,
(4.3) |δjn| ≤ 1− η0.
(c) There exist n0, C1 > 0 such that uniformly for n ≥ n0 and for
xjn ∈ I, we have
(4.4) |xjn − bn−1| ∼ ‖pn−2‖2L∞[xjn−A

n
,xjn+

A
n ] |δjn| .
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Here if xjn − bn−1 = 0, both sides are 0.
Proof
(a) Using the spacing (3.2),

dist (nω (xjn) (xk,n−1 − xjn) ,Z)

= dist (nω (xjn) (xj,n−1 − xjn) ,Z) + o (1)

so (1.1) gives the result.
(b) The interlacing of the zeros of successive orthogonal polynomials
shows that both xjn and xj−1,n−2 lie in the interval (xj,n−1, xj−1,n−1).
Even more, the bounds given in (a) show that for n large enough, both

xjn and xj−1,n−2 lie in the interval
(
xj,n−1 + C1

nω(xjn)
, xj−1,n−1 − C1

nω(xjn)

)
for some C1 > 0. Then

|δjn| = |nω (xjn) (xjn − xj−1,n−2)|
≤ nω (xjn) (xj,n−1 − xj+1,n−1)− 2C1 = 1− 2C1 + o (1) ,

by (3.2).
(c) From the recurrence relation,

(4.5) (xjn − bn−1) pn−1 (xjn) = an−1pn−2 (xjn) .

We now examine the behavior of the left and right-hand side as n →
∞. By (3.1) to (3.3), the local asymptotic (3.6), and the fact that
xjn − yj,n−1 = O

(
1
n

)
,

pn−1 (xjn)

pn−1 (yj,n−1)
= cos π (nω (yj,n−1) (xjn − yj,n−1)) + o (1)

= cos π (nω (yj,n−1) (xjn − xj,n−1 + xj,n−1 − yj,n−1)) + o (1)

= cos π

(
nω (yj,n−1) (xjn − xj,n−1) +

1

2

)
+ o (1)

= − sin π (nω (yj,n−1) (xjn − xj,n−1)) + o (1)

so using our original condition (1.1), we obtain for some threshold n0
that is independent of j, and for n ≥ n0,

(4.6) |pn−1 (xjn)| ∼ |pn−1 (yj,n−1)| .

Next, in analyzing the term on the right in (4.5), we use the differenti-
ated form of (3.6): uniformly for yjn ∈ I and z in compact subsets of
C,

(4.7) lim
n→∞

p′n

(
yjn + z

nω(yjn)

)
nω (yjn) pn (yjn)

= −π sinπz.
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Then noting that we can replace n by n ± 2 in the term involving z,
we see that

pn−2 (xjn)

pn−2 (yj−1,n−2)
=

∫ (xjn−yj−1,n−2)nω(yj−1,n−2)

(xj−1,n−2−yj−1,n−2)nω(yj−1,n−2)

p′n−2

(
yj−1,n−2 + t

nω(yj−1,n−2)

)
nω (yj−1,n−2) pn−2 (yj−1,n−2)

dt

=

∫ (xjn−yj−1,n−2)nω(yj−1,n−2)

(xj−1,n−2−yj−1,n−2)nω(yj−1,n−2)
(−π sin πt+ o (1)) dt.

Here the lower limit of integration is

(xj−1,n−2 − yj−1,n−2)nω (yj−1,n−2) =
1

2
+ o (1) ,

(by (3.1)), so we can continue the above as

pn−2 (xjn)

pn−2 (yj−1,n−2)
=

∫ (xjn−xj−1,n−2)nω(yj−1,n−2)

0

(
−π sin

(
π

(
t+

1

2

))
+ o (1)

)
dt+ o (δjn)

=

∫ (xjn−xj−1,n−2)nω(yj−1,n−2)

0

(−π cos πt+ o (1)) dt+ o (δjn)

= − sin πδjn + o (δjn) .

Here we are also using that ω (yj−1,n−2) /ω (xjn) → 1 as n → ∞ by
continuity of ω in the interior of I. Next, from (b), |δjn| ≤ 1 − ε, so
|sin πδjn| ∼ |δjn| and we can continue this as

pn−2 (xjn)

pn−2 (yj−1,n−2)
= − (sinπδjn) (1 + o (1)) .

It is possible here that δjn = 0, but in such a case both sides are 0.
Combining this with (4.5), (4.6) and (3.11) gives uniformly in j and n,
for n ≥ n0,

|xjn − bn−1| |pn−1 (yj,n−1)| ∼ |pn−2 (yj−1,n−2)| |sin πδjn| ∼ |pn−2 (yj−1,n−2)| |δjn| .
Here by our local limits and (1.3),

|pn−1 (yj,n−1)| = ‖pn−1‖L∞[xj+1,n−1,xj,n−1] ∼ ‖pn−2‖
−1
L∞[xjn−A

n
,xjn+

A
n ] .

A related assertion holds for pn−2 (yj−1,n−2). We deduce that

|xjn − bn−1| ∼ ‖pn−2‖2L∞[xjn−A
n
,xjn+

A
n ] |δjn| .

Again if xjn = bn−1, δjn = 0. �

Proof that Theorem 1.2(a)⇔(c)
If first (1.6) holds, then |δjn| ≥ C |xjn − bn−1| and (4.4) gives

C |δjn| ≥ ‖pn−2‖2L∞[xjn−A
n
,xjn+

A
n ] |δjn| ,
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which forces
‖pn−2‖2L∞[xjn−A

n
,xjn+

A
n ] ≤ C1,

uniformly in xjn ∈ I, provided no δjn = 0. Since δjn = 0 can occur for
at most one j, namely when xjn = bn−1 (as follows from the recurrence
relation), that exceptional interval can be covered by others with A
large enough. So we have (1.8).

Conversely, suppose we have (1.8). Then from (4.4),

|xjn − bn−1| ≤ C |δjn| ,
so that we have (1.6). �

Proof that Theorem 1.2(b)⇔(c)
It is immediate that (b)⇒(c). For the converse we note that if (c)
holds, then from Theorem 1.1(c),

‖pn−1‖L∞[x−A
n
,x+A

n ] ≥ C

uniformly for x ∈ I. This together with (1.8), gives (1.7). �
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