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Abstract. We study the expected number of real zeros for random linear combinations of orthogonal
polynomials. It is well known that Kac polynomials, spanned by monomials with i.i.d. Gaussian coefficients,

have only (2/π + o(1)) logn expected real zeros in terms of the degree n. On the other hand, if the basis
is given by Legendre (or more generally by Jacobi) polynomials, then random linear combinations have

n/
√

3 + o(n) expected real zeros. We prove that the latter asymptotic relation holds universally for a large
class of random orthogonal polynomials on the real line, and also give more general local results on the

expected number of real zeros.

1. Background

Zeros of polynomials with random coefficients have been intensively studied since 1930s. The early work
concentrated on the expected number of real zeros E[Nn(R)] for polynomials of the form Pn(x) =

∑n
k=0 ckx

k,
where {ck}nk=0 are independent and identically distributed random variables. Apparently the first paper
that initiated the study is due to Bloch and Pólya [2]. They gave an upper bound E[Nn(R)] = O(

√
n)

for polynomials with coefficients selected from the set {−1, 0, 1} with equal probabilities. Further results
generalizing and improving that estimate were obtained by Littlewood and Offord [21]-[22], Erdős and Offord
[8] and others. Kac [17] established the important asymptotic result

E[Nn(R)] = (2/π + o(1)) log n as n→∞,

for polynomials with independent real Gaussian coefficients. More precise forms of this asymptotic were
obtained by many authors, including Kac [18], Wang [32], Edelman and Kostlan [7]. It appears that the
sharpest known version is given by the asymptotic series of Wilkins [33]. Many additional references and
further directions of work on the expected number of real zeros may be found in the books of Bharucha-Reid
and Sambandham [1], and of Farahmand [9]. In fact, Kac [17]-[18] found the exact formula for E[Nn(R)] in
the case of standard real Gaussian coefficients:

E[Nn(R)] =
4

π

∫ 1

0

√
A(x)C(x)−B2(x)

A(x)
dx,

where

A(x) =

n∑
j=0

x2j , B(x) =

n∑
j=1

jx2j−1 and C(x) =

n∑
j=1

j2x2j−2.

In the subsequent paper Kac [19], the asymptotic result for the number of real zeros was extended to the
case of uniformly distributed coefficients on [−1, 1]. Erdős and Offord [8] generalized the Kac asymptotic
to Bernoulli distribution (uniform on {−1, 1}), while Stevens [28] considered a wide class of distributions.
Finally, Ibragimov and Maslova [15, 16] extended the result to all mean-zero distributions in the domain of
attraction of the normal law.
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We state a result on the number of real zeros for the random linear combinations of rather general
functions. It originated in the papers of Kac [17]-[19], who used the monomial basis, and was extended to
trigonometric polynomials and other bases, see Farahmand [9] and Das [4]-[5]. We are particularly interested
in the bases of orthonormal polynomials, which is the case considered by Das [4]. For any set E ⊂ C, we use
the notation Nn(E) for the number of zeros of random functions (1.1) (or random orthogonal polynomials of
degree at most n) located in E. The expected number of zeros in E is denoted by E[Nn(E)], with E[Nn(a, b)]
being the expected number of zeros in (a, b) ⊂ R.

Proposition 1.1. Let [a, b] ⊂ R, and consider real valued functions gj(x) ∈ C1([a, b]), j = 0, . . . , n, with
g0(x) being a nonzero constant. Define the random function

(1.1) Gn(x) =

n∑
j=0

cjgj(x),

where the coefficients cj are i.i.d. random variables with Gaussian distribution N (0, σ2), σ > 0. If there is
M ∈ N such that G′n(x) has at most M zeros in (a, b) for all choices of coefficients, then the expected number
of real zeros of Gn(x) in the interval (a, b) is given by

(1.2) E[Nn(a, b)] =
1

π

∫ b

a

√
A(x)C(x)−B2(x)

A(x)
dx

where

A(x) =
n∑
j=0

g2j (x), B(x) =

n∑
j=1

gj(x)g′j(x) and C(x) =

n∑
j=1

[g′j(x)]2.(1.3)

Clearly, the original formula of Kac follows from this proposition for gj(x) = xj , j = 0, 1, . . . , n. We sketch
a proof of Proposition 1.1 in Section 3, as we could not find a suitable reference with a complete proof for
Proposition 1.1 in this general form. We note that multiple zeros are counted only once by the standard
convention in all of the above results on real zeros. However, the probability of having a multiple zero for a
polynomial with Gaussian coefficients is equal to 0, so that we have the same result on the expected number
of zeros regardless whether they are counted with or without multiplicities.

2. Random orthogonal polynomials

Let µ denote a positive Borel measure compactly supported on the real line, with infinitely many points
in its support, and with finite power moments of all orders. For n ≥ 0, let

pn (x) = γnx
n + ...

denote the nth orthonormal polynomial for µ, with γn > 0, so that∫
pnpmdµ = δmn.

Using the orthonormal polynomials {pj}∞j=0 as the basis, we consider the ensemble of random polynomials
of the form

(2.1) Pn(x) =

n∑
j=0

cjpj(x), n ∈ N,

where the coefficients c0, c1, . . . , cn are i.i.d. random variables. Such a family is often called random orthog-
onal polynomials. If the coefficients have Gaussian distribution, one can apply Proposition 1.1 to study the
expected number of real zeros of random orthogonal polynomials. In particular, Das [4] considered random

Legendre polynomials, and found that E[Nn(−1, 1)] is asymptotically equal to n/
√

3. Wilkins [34] improved

the error term in this asymptotic relation by showing that E[Nn(−1, 1)] = n/
√

3 + o(nε) for any ε > 0. For

random Jacobi polynomials, Das and Bhatt [6] concluded that E[Nn(−1, 1)] is asymptotically equal to n/
√

3
too. They also provided estimates for the expected number of real zeros of random Hermite and Laguerre
polynomials, but those arguments contain significant gaps. Farahmand [9, 10, 11] considered various gener-
alizations of these results for the level crossings of random sums of Legendre polynomials with coefficients
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that may have different distributions. Interesting computations and pictures of zeros of random orthogonal
polynomials may be found on the chebfun web page of Trefethen [31].

For the orthonormal polynomials {pj(x)}∞j=0 associated with the measure µ, define the reproducing kernel
by

Kn(x, y) =

n−1∑
j=0

pj(x)pj(y),

and the differentiated kernels by

K(k,l)
n (x, y) =

n−1∑
j=0

p
(k)
j (x)p

(l)
j (y), k, l ∈ N ∪ {0}.

The strategy is to apply Proposition 1.1 with gj = pj , so that

A(x) = Kn+1(x, x), B(x) = K
(0,1)
n+1 (x, x) and C(x) = K

(1,1)
n+1 (x, x).(2.2)

We use universality limits for the reproducing kernels of orthogonal polynomials (see Lubinsky [23]-[24] and
Totik [29]-[30]), and asymptotic results on zeros of random polynomials (cf. Pritsker [25]) to give asymptotics
for the expected number of real zeros for a wide class of random orthogonal polynomials.

Theorem 2.1. Let K ⊂ R be a finite union of closed and bounded intervals, and let µ be a positive Borel
measure supported on K such that dµ(x) = w(x)dx and w > 0 a.e. on K. If for every ε > 0 there is a closed
set S ⊂ K of Lebesgue measure |S| < ε, and a constant C > 1 such that C−1 < w < C a.e. on K \ S, then
the expected number of real zeros of random orthogonal polynomials (2.1) with Gaussian coefficients satisfy

lim
n→∞

1

n
E[Nn(R)] =

1√
3
.(2.3)

A simple example of the orthogonality measure µ satisfying the above conditions is given by the density w
that is continuous on K except for finitely many points, and has finitely many zeros on K. More specifically,

one may consider the generalized Jacobi weight of the form w(x) = v(x)
∏J
j=1 |x−xj |αj , where v(x) > 0, x ∈

K, and αj > −1, j = 1, . . . , J.
Theorem 2.1 is a consequence of more precise and general local results given below. In order to state them,

we need the notion of the equilibrium measure νK of a compact set K ⊂ C. This is the unique probability
measure supported on K that minimizes the energy

I[ν] = −
∫∫

log |z − t| dν(t)dν(z)

amongst all probability measures ν with support on K. The logarithmic capacity of K is

cap(K) = exp (−I[νK ]) .

When we say that a compact set K is regular, this means regularity in the sense of Dirichlet problem (or
potential theory). See Ransford [26] for further orientation.

We also need the notion of a measure µ regular in the sense of Stahl, Totik, and Ullman [27]. If K = suppµ
and

lim
n→∞

γ1/nn =
1

cap(K)
,

where γn is the leading coefficient of pn, then we say that µ is STU-regular. A sufficient condition for this
is that K consists of finitely many intervals and µ′ = w > 0 a.e. in those intervals.

Theorem 2.2. Let µ be an STU regular measure with compact support K ⊂ R, which is regular in the sense
of potential theory. Let O be an open set in which µ is absolutely continuous, and such that for some C > 1

(2.4) C−1 ≤ µ′ ≤ C a.e. in O.

Then given any compact subinterval [a, b] of O, we have

(2.5) lim
n→∞

1

n
E [Nn ([a, b])] =

1√
3
νK([a, b]),

where νK is the equilibrium measure of K.
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This is a special case of the following result, where µ does not need to be STU regular. The asymptotic
lower bound requires very little of µ.

Theorem 2.3. Let µ be a measure on the real line with compact support K.
(a) Assume that µ′ > 0 a.e. in the interval [a, b]. Then

(2.6) lim inf
n→∞

1

n
E [Nn ([a, b])] ≥ 1√

3
νK([a, b]).

(b) Suppose in addition that (2.4) holds, and that [a, b] ⊂ O. Then

(2.7) lim sup
n→∞

1

n
E [Nn ([a, b])] ≤ 1√

3
inf
L
νL([a, b]),

where the inf is taken over all regular compact sets L ⊂ K such that L ⊃ [a, b], and the restriction µ|L of µ
to L is STU regular.

It is plausible that the right hand sides of (2.6) and (2.7) are equal under mild assumptions such as the
one of part (a). An interesting open problem is to find rates of convergence in the limit relations (2.3) and
(2.5).

3. Proofs

Proof of Proposition 1.1. This proof is based on the discussions of Kac [17, p. 5-10] and Das [5]. The joint
probability density of c = (c0, c1, · · · , cn) is

dP (c) = (2π)−(n+1)/2σ−(n+1)e−
‖c‖2

2σ2 dc0dc1 · · · dcn,

where ‖c‖2 = c20 + c21 + · · ·+ c2n. Since Gn(x) has at most M + 1 zeros in (a, b) for all c by Rolle’s theorem,
Nn(a, b) is integrable over Rn+1 with respect to dP (c). Define

N∗n(a, b) = Nn(a, b)− (κ(a) + κ(b))/2,

where

κ(x) =

{
1 if Gn(x) = 0,

0 otherwise.

Since Gn(a) and Gn(b) are continuous random variables, we have

E[Nn(a, b)] =

∫
Rn+1

N∗n(a, b) dP (c).

We state the following result from Kac [18, Theorem 1].

Lemma 3.1. If f(x) is continuous for α ≤ x ≤ β and continuously differentiable for α < x < β, and f ′(x)
vanishes only at a finite number of points in α < x < β, then the number of zeros of f(x) in α < x < β
(multiple zeros are counted once and if either α or β is a zero, it is counted as 1/2) is equal to

P.V.
1

2π

∫ ∞
−∞

∫ β

α

cos(yf(x)) |f ′(x)| dx dy.

In our notation, this gives

N∗n(a, b) = P.V.
1

2π

∫ ∞
−∞

∫ b

a

cos(yGn(x)) |G′n(x)| dx dy.

Thus

E[Nn(a, b)] = (2π)−
n+1
2 σ−(n+1)

∫ ∞
−∞
· · ·
∫ ∞
−∞

N∗n(a, b)e−
‖c‖2

2σ2 dc0dc1 · · · dcn

=
σ−(n+1)

2π

∫ b

a

∫ ∞
−∞

Rn(x, y) dy dx,(3.1)
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where

(3.2) Rn(x, y) = (2π)−
n+1
2

∫ ∞
−∞
· · ·
∫ ∞
−∞

e−
‖c‖2

2σ2 cos(yGn(x)) |G′n(x)| dc0dc1 · · · dcn.

The interchange of the integration order is justified by the fact that the integrand is dominated by

e−
‖c‖2

2σ2

n∑
j=0

|cj |
∣∣g′j(x)

∣∣ ,
which is exponentially small outside bounded sets in Rn+1. We use the known relation

1

π

∫ ∞
−∞

1− cos(uv)

u2
du = |v|(3.3)

to write (3.2) as

Rn(x, y) = P.V.
1

π

∫ ∞
−∞

du

u2
×

(2π)−
n+1
2

∫ ∞
−∞
· · ·
∫ ∞
−∞

e−
‖c‖2

2σ2 (cos(yGn(x))− cos(yGn(x)) cos(uG′n(x))) dc0dc1 · · · dcn,(3.4)

where the interchange of orders of the integration can be justified as above, and (3.4) is interpreted as

(3.5) lim
N→∞

lim
ε→0

1

π

(∫ −ε
−N

+

∫ N

ε

)
(· · · )du

u2
.

Noting that

cos(yGn(x)) cos(uG′n(x)) =
1

2
R
(
eiyGn(x)+iuG

′
n(x) + eiyGn(x)−iuG

′
n(x)

)
,

we obtain with help of [13, 3.323(2) on p. 337] that

(2π)−
n+1
2

∫ ∞
−∞
· · ·
∫ ∞
−∞

e−
‖c‖2

2σ2 cos(yGn(x)) cos(uG′n(x)) dc0 · · · dcn

=
(2π)−

n+1
2

2
R

∫ ∞
−∞
· · ·
∫ ∞
−∞

e−
‖c‖2

2σ2

(
e
i
n∑
j=0

[ycjgj(x)+ucjg
′
j(x)]

+ e
i
n∑
j=0

[ycjgj(x)−ucjg′j(x)]
)
dc0 · · · dcn

=
(2π)−

n+1
2

2
R

 n∏
j=0

∫ ∞
−∞

e−
c2j

2σ2
+i[ygj(x)+ug

′
j(x)]cj dcj +

n∏
j=0

∫ ∞
−∞

e−
c2j

2σ2
+i[ygj(x)−ug′j(x)]cj dcj


=

(2π)−
n+1
2

2
R

 n∏
j=0

(2π)
1
2σe−

1
2 [ygj(x)+ug

′
j(x)]

2σ2

+

n∏
j=0

(2π)
1
2σe−

1
2 [ygj(x)−ug

′
j(x)]

2σ2


=
σn+1

2
e
−σ22

n∑
j=0

[ygj(x)+ug
′
j(x)]

2

+
σn+1

2
e
−σ22

n∑
j=0

[ygj(x)−ug′j(x)]
2

.

For u = 0, we have

(2π)−
n+1
2

∫ ∞
−∞
· · ·
∫ ∞
−∞

e−
‖c‖2

2σ2 cos(yGn(x)) dc0 · · · dcn = σn+1e
−σ22

n∑
j=0

[ygj(x)]
2

.
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Using abbreviations A = A(x), B = B(x) and C = C(x), we rewrite

Rn(x, y) =
σn+1

π

∫ ∞
−∞

e−
σ2

2 Ay
2

u2
du

− σn+1

2π

(∫ ∞
−∞

e−
σ2

2 (Ay2+Cu2+2yuB)

u2
du+

∫ ∞
−∞

e−
σ2

2 (Ay2+Cu2−2yuB)

u2
du

)

=
σn+1

π
e−

σ2

2 Ay
2

∫ ∞
−∞

1− e−σ
2

2 Cu
2+yuBσ2

u2
du,

where the integral exists as a principal value, in the sense indicated in (3.5). If C(x) = 0 for some x then
B(x) = 0 and R(x, y) = 0 for the same x and all y. Thus we set Byσ2 = t and σ2C = h > 0, so that

Rn(x, y) =
σn+1

π
e−

σ2

2 Ay
2

∫ ∞
−∞

1− e− 1
2hu

2+tu

u2
du.

The Taylor expansion

etu = 1 + tu+

∞∑
m=2

tmum

m!
,

together with known identities∫ ∞
−∞

1− e− 1
2hu

2

u2
du =

√
2πh and P.V.

∫ ∞
−∞

tu

u2
e−

1
2hu

2

du = 0,

gives that

Rn(x, y) =
σn+1

π
e−

σ2

2 Ay
2

(
√

2πh−
∫ ∞
−∞

( ∞∑
m=2

tmum

m!

)
e−

1
2hu

2

u2
du

)
.

Assuming that h > 0, we further obtain that

∫ ∞
−∞

( ∞∑
m=2

tmum

m!

)
e−

1
2hu

2

u2
du

=

∞∑
m=1

t2m

(2m)!

∫ ∞
−∞

u2(m−1)e−
1
2hu

2

du

=

∞∑
m=1

t2m

(2m)!

(2(m− 1))!

2m−1(m− 1)!

√
2πh−(m−1)−

1
2 (by [13, 3.461(2) on p. 364])

=
∞∑
m=1

√
2πh

m!(2m− 1)

(
t2

2h

)m
.

Hence

Rn(x, y) =
σn+1

π
e−

σ2

2 Ay
2

(
√

2πh−
∞∑
m=1

√
2πh

m!(2m− 1)

(
t2

2h

)m)

=

√
2C

π
σn+2e−

σ2

2 Ay
2

(
1−

∞∑
m=1

1

m!(2m− 1)

(
B2σ2

2C

)m
y2m

)
.
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Applying [13, 3.461(2) on p. 364] again, we obtain that∫ ∞
−∞

Rn(x, y) dy =

√
2C

π
σn+2

∫ ∞
−∞

e−
σ2

2 Ay
2

(
1−

∞∑
m=1

1

m!(2m− 1)

(
B2σ2

2C

)m
y2m

)
dy

=

√
2C

π
σn+2

(√
2π

Aσ2
−
∞∑
m=1

(B
2σ2

2C )m

m!(2m− 1)

(2m)!

m!2m

√
2π

Aσ2

1

(Aσ2)m

)

= 2

√
C

A
σn+1

(
−
∞∑
m=0

(
B2

AC

)m
(2m)!

(m!)2(2m− 1)4m

)

= 2

√
C

A

√
1− B2

AC
σn+1.

Then (3.1) gives us the desired formula

E[Nn(a, b)] =
1

π

∫ b

a

√
AC −B2

A
dx,

where AC −B2 ≥ 0 by (1.3) and the Cauchy-Schwarz inequality. �

In addition to the reproducing kernels in (2.2), we also use their weighted versions in the proofs below:

K̃(k,`)
n (x, y) = µ′ (x)

1/2
µ′ (y)

1/2
n−1∑
j=0

p
(k)
j (x) p

(`)
j (y) .

Lemma 3.2. Let µ be a measure with compact support and with infinitely many points in its support. Let
O be an open set in which µ is absolutely continuous, and such that for some C > 1 (2.4) holds. Then given
any compact subinterval [a, b] of O, we have

(3.6)
1

n
E [Nn ([a, b])] =

1 + o(1)√
3

∫ b

a

1

n
Kn+1(x, x) dµ(x).

Proof. First note that the hypothesis that µ′ ≥ C−1 in O gives [12, Theorem 3.3, p. 104]

C1 = sup
n≥1

sup
x∈[a,b]

1

n
Kn+1 (x, x) <∞.

Next, we use Corollary 1.4 in [24, p. 224]. It gives for all j, k ≥ 0,

(3.7) lim
n→∞

∫ b

a

∣∣∣∣∣ K̃
(j,k)
n+1 (x, x)

K̃n+1(x, x)j+k+1
− πj+kτj,k

∣∣∣∣∣ dx = 0.

Here

τj,k =

{
0, j + k odd
(−1)(j−k)/2 1

j+k+1 , j + k even.

Applying (1.2) in a modified form, we obtain that

(3.8)
1

n
E [Nn ([a, b])] =

1

π

∫ b

a

√√√√ K̃
(1,1)
n+1 (x, x)

K̃n+1 (x, x)
3 −

(
K̃

(0,1)
n+1 (x, x)

K̃n+1 (x, x)
2

)2
1

n
K̃n+1 (x, x) dx.

Since 1
nK̃n+1 (x, x) is bounded uniformly in n and in x ∈ [a, b], we can use (3.7) above to obtain

1

n
E [Nn([a, b])] =

1

π

∫ b

a

(√
π2τ1,1 − (πτ0,1)

2
+ o (1)

)
1

n
K̃n+1(x, x) dx

=
1 + o(1)√

3

∫ b

a

1

n
K̃n+1(x, x) dx.

�
7



Proof of Theorem 2.2. Note that since µ′ > 0 a.e. in [a, b], this interval is contained in supp νK . In [29, p.
287, Theorem 1], under weaker conditions, Totik proved that for a.e. x ∈ [a, b],

lim
n→∞

1

n
Kn+1(x, x) =

dνK
dµ

(x).

Since

lim
n→∞

1

n
K̃n+1(x, x) =

dνK
dµ

(x)µ′(x) = ν′K(x),

the uniform boundedness of
{

1
nK̃n+1(x, x)

}∞
n=1

and Lemma 3.2 then give the result. �

Proof of Theorem 2.3. We start with part (a). Given r > 0, and j, k ≥ 0, with τj,k as above, it follows from
[24, p. 250, Proof of Corollary 1.4] that∣∣∣∣∣ K̃

(j,k)
n+1 (x, x)

K̃n+1 (x, x)
j+k+1

− πj+kτj,k

∣∣∣∣∣
≤ j!k!

rj+k
sup

|u|,|v|≤r

∣∣∣∣∣∣
Kn+1

(
x+ u

K̃n+1(x,x)
, x+ v

K̃n+1(x,x)

)
Kn+1 (x, x)

− sin (π (u− v))

π (u− v)

∣∣∣∣∣∣ .
Next, using that µ′ > 0 a.e. in [a, b], we have from [24, p. 223, Theorem 1.1] that

meas

x ∈ [a, b] : sup
|u|,|v|≤r

∣∣∣∣∣∣
Kn+1

(
x+ u

K̃n+1(x,x)
, x+ v

K̃n+1(x,x)

)
Kn+1 (x, x)

− sin(π(u− v))

π(u− v)

∣∣∣∣∣∣ ≥ ε
→ 0

as n→∞, for any given ε, r > 0. Thus also

meas

{
x ∈ [a, b] :

∣∣∣∣∣ K̃
(j,k)
n+1 (x, x)

K̃n+1 (x, x)
j+k+1

− πj+kτj,k

∣∣∣∣∣ ≥ ε
}
→ 0

as n→∞. Now let ε > 0, and for n ≥ 1, let

En =

x ∈ [a, b] :

√√√√ K̃
(1,1)
n+1 (x, x)

K̃n+1 (x, x)
3 −

(
K̃

(0,1)
n+1 (x, x)

K̃n+1 (x, x)
2

)2

≤
√
π2/3− ε

 .

Then it follows that
meas (En)→ 0 as n→∞.

Using [30, p. 118, Thm. 2.1], we have for a.e. x ∈ [a, b] that

lim inf
n→∞

1

n
K̃n+1 (x, x) ≥ ν′K (x) .

It then follows, that given ε > 0,

Fn =

{
x ∈ [a, b] :

1

n
K̃n+1 (x, x) ≤ ν′K(x)− ε

}
has

(3.9) meas (Fn)→ 0 as n→∞.
Indeed, if we set

fn(x) = min

{
1

n
K̃n+1(x, x)− ν′K(x), 0

}
,

then by Totik’s result,
lim
n→∞

fn(x) = 0 a.e. in [a, b],

while fn is bounded below by −ν′K , so Lebesgue’s Dominated Convergence Theorem gives

0 = lim
n→∞

∫ b

a

fn ≤ lim inf
n→∞

(−ε)meas (Fn) .
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Thus (3.9) holds. Then by (1.2), (3.8) and the definitions of En and Fn, we have

1

n
E [Nn ([a, b])] =

1

π

∫ b

a

√√√√ K̃
(1,1)
n+1 (x, x)

K̃n+1 (x, x)
3 −

(
K̃

(0,1)
n+1 (x, x)

K̃n+1 (x, x)
2

)2
1

n
K̃n+1 (x, x) dx

≥ 1

π

∫
[a,b]\(En∪Fn)

(√
π2/3− ε

)
(ν′K (x)− ε) dx

→ 1

π

∫ b

a

(√
π2/3− ε

)
(ν′K (x)− ε) dx as n→∞.

Now we can let ε→ 0.
We pass to the proof of part (b). Let L ⊂ K be a regular compact set such that the restriction µ|L of µ to

L is STU regular, and L contains [a, b] in its interior. By monotonicity of the reproducing kernel (Christoffel
function), if Kn (µ|L, ·, ·) denotes the reproducing kernel of the measure µ|L, then for a.e. x ∈ [a, b] ⊂ L,
Totik’s result [29, p. 287, Theorem 1] gives

lim sup
n→∞

1

n
Kn+1(x, x)µ′(x)

≤ lim sup
n→∞

1

n
Kn+1 (µ|L, x, x)µ′(x) = ν′L(x).

Moreover,
{

1
nKn+1 (µ|L, x, x)µ′(x)

}∞
n=1

is uniformly bounded in [a, b]. Then Lemma 3.2 implies that

lim sup
n→∞

1

n
E [Nn ([a, b])] ≤ 1√

3

∫ b

a

ν′L(x) dx.

Finally, taking the inf over all L gives the result. �

Lemma 3.3. Let µ be an STU regular measure on the real line with compact support K, and let νK be the
equilibrium measure of K. Suppose that the coefficients of random orthogonal polynomials (2.1) are complex
i.i.d. random variables such that E[| log |c0||] <∞. If E ⊂ C is any compact set satisfying νK(∂E) = 0, then

(3.10) lim
n→∞

1

n
E [Nn(E)] = νK(E).

Proof. Consider the normalized counting measure τn = 1
n

∑n
k=1 δzk for a polynomial (2.1), where {zk}nk=1

are the zeros of that polynomial, and δz denotes the unit point mass at z. Theorem 2.2 of [25] implies that
measures τn converge weakly to νK with probability one. Since νK(∂E) = 0, we obtain that τn|E converges
weakly to νK |E with probability one by Theorem 0.5′ of [20] and Theorem 2.1 of [3]. In particular, we have
that the random variables τn(E)→ νK(E) a.s. Hence this convergence holds in Lp sense by the Dominated
Convergence Theorem, as τn(E) are uniformly bounded by 1, see Chapter 5 of [14]. It follows that

lim
n→∞

E[|τn(E)− νK(E)|] = 0

for any compact set E such that νK(∂E) = 0, and

|E[τn(E)− νK(E)]| ≤ E[|τn(E)− νK(E)|]→ 0 as n→∞.
But E[τn(E)] = E[Nn(E)]/n and E[νK(E)] = νK(E), which immediately gives (3.10). �

Proof of Theorem 2.1. Given any ε > 0, we find a closed set S satisfying the assumptions, and obtain from
Theorem 2.2 that

lim
n→∞

1

n
E [Nn ([a, b])] =

1√
3
νK([a, b])

for any interval [a, b] ⊂ K◦ \ S, where K◦ is the interior of K. Note that both E [Nn (H)] and νK(H) are
additive functions of the set H. Moreover, they both vanish when H is a single point by (3.10), because
νK is absolutely continuous with respect to Lebesgue measure on K, see [27, Lemma 4.4.1, p. 117]. Hence
(3.10) gives that

lim
n→∞

1

n
E [Nn (R \ S)] =

1√
3
νK(R \ S).
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We can find finitely many open intervals Ik ⊂ R, k = 1, . . . ,m, covering S, with total length
∑m
k=1 |Ik| < 2ε.

Let Rk = {x+ iy : x ∈ Ik, |y| < 1}, k = 1, . . . ,m, so that for R = ∪mk=1Rk we have S ⊂ R and νK(∂R) = 0.
Applying Lemma 3.3 again, we obtain that

lim sup
n→∞

1

n
E [Nn (S)] ≤ lim sup

n→∞

1

n
E
[
Nn
(
R
)]

= νK(R ∩ R) = νK
(
∪mk=1Ik

)
,

Absolute continuity of νK with respect to dx implies that the last term in the above estimate tends to 0 as
ε→ 0. Thus (2.3) follows. �
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