ZERO DISTRIBUTION OF MÜNTZ EXTREMAL POLYNOMIALS IN $L_{p}[0,1]$

D. S. LUBINSKY AND E. B. SAFF

Abstract

Let $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ be a sequence of distinct positive numbers. Let $1 \leq$ $p \leq \infty$ and $T_{n, p}=T_{n, p}\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}(x)$ denote the L_{p} extremal Müntz polynomial in $[0,1]$ with exponents $\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. We investigate the zero distribution of $\left\{T_{n, p}\right\}_{n=1}^{\infty}$. In particular, we show that if $$
\lim _{n \rightarrow \infty} \frac{\lambda_{n}}{n}=\alpha>0
$$ then the normalized zero counting measure of $T_{n, p}$ converges weakly as $n \rightarrow \infty$ to $$
\frac{\alpha}{\pi} \frac{t^{\alpha-1}}{\sqrt{t^{\alpha}\left(1-t^{\alpha}\right)}} d t
$$ while if $\alpha=0$ or ∞, the limiting measure is a Dirac delta at 0 or 1 respectively.

1. Introduction and Results

Let $\lambda_{1}, \lambda_{2}, \ldots$ be a sequence of distinct positive numbers. An expression of the form

$$
\begin{equation*}
\sum_{j=0}^{n} c_{j} x^{\lambda_{j}} \tag{1.1}
\end{equation*}
$$

is called a Müntz polynomial. The name refers, of course, to the famous theorem of Müntz that if $\inf _{j} \lambda_{j}>0$, these polynomials are dense in L_{p} spaces iff

$$
\sum_{j=0}^{\infty} \frac{1}{\lambda_{j}}=\infty
$$

Müntz polynomials share many of the properties of ordinary algebraic polynomials. The most fundamental is that a polynomial of the form (1.1) has at most n distinct zeros in $(0, \infty)$, or is identically zero.

Müntz extremal polynomials are generalizations of classical orthogonal and Chebyshev polynomials. They have been investigated by amongst others, Borwein and Erdelyi [2], Milovanovic and his coworkers [3]. Let $1 \leq p \leq \infty$. We denote

[^0]by $T_{n, p}(x)=T_{n, p}\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}(x)$ the linear combination of $\left\{x^{\lambda_{j}}\right\}_{j=0}^{n}$ with coefficient of $x^{\lambda_{n}}$ equal to 1 , satisfying
\[

$$
\begin{equation*}
\left\|T_{n, p}\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}\right\|_{L_{p}[0,1]}=\min _{c_{0} \cdots c_{n-1}}\left\|x^{\lambda_{n}}-\sum_{j=0}^{n-1} c_{j} x^{\lambda_{j}}\right\|_{L_{p}[0,1]} \tag{1.2}
\end{equation*}
$$

\]

It is known that $T_{n, p}$ exists and is unique, has exactly n distinct (and simple) zeros in $(0,1)$, and the zeros of $T_{n, p}$ and $T_{n+1, p}$ interlace. Moreover, if we swap λ_{n} with some λ_{j}, the extremal polynomial changes only by a non-zero multiplicative constant. Thus when dealing with a fixed n, and studying zeros of extremal polynomials, we may assume that $\left\{\lambda_{j}\right\}_{j=0}^{n}$ are in increasing order. However, we shall not need to assume that $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ is increasing. Concerning the zeros as $n \rightarrow \infty$, an important result of Borwein [2, Thm. 4.1.1, p. 155] asserts that the corresponding Müntz polynomials are dense iff the maximum spacing between successive zeros of $T_{n, p}$ has limit 0 as $n \rightarrow \infty$. Saff and Varga [6] studied the related zero distribution of lacunary incomplete polynomials.

In this paper, we study the asymptotic zero distribution of $\left\{T_{n, p}\right\}_{n=1}^{\infty}$. Let ν_{n} denote the normalized zero counting measure of $T_{n, p}$, so that

$$
\nu_{n}([a, b])=\frac{1}{n} \times \text { Number of zeros of } T_{n, p} \text { in }[a, b]
$$

In the case of polynomials, where $\lambda_{j}=j, j \geq 0$, it is a classical result [5, pp. 169170], [7, Thm. 3.4.1, p. 84 and Thm. 3.6.1, p. 98] that for $0 \leq a<b \leq 1$,

$$
\lim _{n \rightarrow \infty} \nu_{n}([a, b])=\int_{a}^{b} \frac{d x}{\pi \sqrt{x(1-x)}}
$$

Equivalently we write

$$
d \nu_{n} \xrightarrow{*} \frac{d x}{\pi \sqrt{x(1-x)}}, \quad n \rightarrow \infty
$$

and say that $d \nu_{n}$ converges weakly to the arcsine distribution on $[0,1]$. This type of result has been studied in detail for the case $p=2$ of orthogonal polynomials, and when there is a weight w in the norm in (1.2). The monograph of Stahl and Totik [7] gives a comprehensive account, while the monograph of Andrievskii and Blatt [1] considers discrepancy, or rate of convergence, to the limiting distribution.

In a loose sense, our conclusion is that when $\lim _{n \rightarrow \infty} \lambda_{n} / n$ exists, all the possible zero distributions are those provided by

$$
\lambda_{j}=\alpha j, \quad j \geq 0
$$

for some $\alpha \in[0, \infty]$. Extremal polynomials for these exponents are essentially L_{p} extremal polynomials with the substitution of variable $x=t^{\alpha}$. Accordingly, we define for $0<\alpha<\infty$, a probability measure on $(0,1)$,

$$
\begin{equation*}
d \mu_{\alpha}(t)=\frac{\alpha}{\pi} \frac{t^{\alpha-1}}{\sqrt{t^{\alpha}\left(1-t^{\alpha}\right)}} d t \tag{1.3}
\end{equation*}
$$

For $\alpha=0$, we set

$$
\begin{equation*}
d \mu_{0}=d \delta_{0} \tag{1.4}
\end{equation*}
$$

a unit mass at 0 , and for $\alpha=\infty$, we set

$$
\begin{equation*}
d \mu_{\infty}=d \delta_{1} \tag{1.5}
\end{equation*}
$$

a unit mass at 1 . We prove:
Theorem 1.1. Let $1 \leq p \leq \infty, 0 \leq \alpha \leq \infty$, and $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ denote a sequence of distinct positive numbers with

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{\lambda_{j}}{j}=\alpha \tag{1.6}
\end{equation*}
$$

Then if $0 \leq a \leq b \leq 1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \nu_{n}([a, b])=\mu_{\alpha}([a, b]), \tag{1.7}
\end{equation*}
$$

that is,

$$
d \nu_{n} \xrightarrow{*} d \mu_{\alpha}, \quad n \rightarrow \infty .
$$

Remarks . (a) An interesting feature of the theorem is that asymptotic zero distribution has no relation to the density of Müntz polynomials - in stark contrast to the Borwein-Erdelyi result on spacing. Thus if $\lambda_{n}=n \log n, n \geq 2$, then the corresponding Müntz polynomials are dense, while the asymptotic zero distribution is a Dirac delta at 1. If $\lambda_{n}=n^{2}, n \geq 0$, then the limiting zero distribution is still a Dirac delta at 1, but the corresponding Müntz polynomials are not dense.
(b) We can somewhat weaken the hypothesis (1.6): roughly speaking we can ignore $o(n)$ of the exponents in $\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$. To make this more precise, assume $\alpha<\infty$. We write

$$
\begin{equation*}
\lim _{j \rightarrow \infty \text { a.e. }} \frac{\lambda_{j}}{j}=\alpha \tag{1.8}
\end{equation*}
$$

if for each $\varepsilon \in(0,1)$, there exists for large enough n, a set

$$
\begin{equation*}
S_{n, \varepsilon} \subset\{0,1,2, \ldots, n\} \tag{1.9}
\end{equation*}
$$

with at most εn elements such that

$$
\begin{equation*}
j \in\{0,1,2, \ldots, n\} \backslash S_{n, \varepsilon} \Rightarrow\left|\frac{\lambda_{j}}{j}-\alpha\right|<\varepsilon \tag{1.10}
\end{equation*}
$$

In the case $\alpha=\infty$, we replace this by for each $K>0$, there exists for large enough n, a set $S_{n, \varepsilon} \subset\{0,1,2, \ldots, n\}$ with at most εn elements such that

$$
j \in\{0,1,2, \ldots, n\} \backslash S_{n, \varepsilon} \Rightarrow \frac{\lambda_{j}}{j}>K
$$

Theorem 1.2. Let $1 \leq p \leq \infty, 0 \leq \alpha \leq \infty$, and $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ denote a sequence of distinct positive numbers with

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \text { a.e. } \frac{\lambda_{j}}{j}=\alpha . \tag{1.11}
\end{equation*}
$$

Then the conclusion (1.7) of Theorem 1.1 persists.
We shall also show that one cannot ignore more than $o(n)$ exponents in $\left\{\lambda_{j}\right\}_{j=0}^{n}$ without affecting the zero distribution:
Theorem 1.3. Let $1 \leq p \leq \infty$ and $\varepsilon \in(0,1)$. Let $\left\{\lambda_{j}\right\}_{j=0}^{\infty},\left\{\gamma_{j}\right\}_{j=0}^{\infty},\left\{\rho_{j}\right\}_{j=0}^{\infty}$ denote sequences of distinct positive numbers with

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{\gamma_{j}}{j}=0 ; \quad \lim _{j \rightarrow \infty} \frac{\rho_{j}}{j}=\infty . \tag{1.12}
\end{equation*}
$$

Assume also that for large enough n, there is the disjoint union

$$
\begin{equation*}
\left\{\lambda_{j}\right\}_{j=0}^{n}:=\left\{\gamma_{j}\right\}_{j=0}^{k(n)} \cup\left\{\rho_{j}\right\}_{j=0}^{\ell(n)} \tag{1.13}
\end{equation*}
$$

where

$$
\lim _{n \rightarrow \infty} \frac{k(n)}{n}=\varepsilon
$$

Then

$$
\begin{equation*}
d \nu_{n} \xrightarrow{*} \varepsilon d \mu_{0}+(1-\varepsilon) d \mu_{\infty}, \quad n \rightarrow \infty \tag{1.14}
\end{equation*}
$$

We are not sure if this result generalizes to the case where 0 and ∞ are replaced in (1.12) by other limits. What is clear is that for a general choice of $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$, the asymptotic zero distribution can be quite complicated, and there need not be a weak limit. For example, by adjoining sufficiently large blocks of exponents $\{\alpha j\}_{j=n_{1}}^{n_{2}}$, one may construct $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$, such that every $\mu_{\alpha}, \alpha \in[0, \infty]$, is a weak limit of some subsequence of $\left\{\nu_{n}\right\}$. We prove the results in the next section.

2. Proofs

We begin with some notation. We abbreviate $T_{n, p}\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ as $T_{n, p}\left\{\lambda_{0} \cdots \lambda_{n}\right\}$. Let $Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, b]$ denote the total number of zeros of $T_{n, p}\left\{\lambda_{0} \cdots \lambda_{n}\right\}(x)$ in $[a, b]$. We say that $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right\}$ is a refinement of $\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ if

$$
\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\} \subset\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right\}
$$

The main tools of proof are interlacing properties of successive Chebyshev polynomials, monotonicity properties with respect to the exponents, and zero distribution for the specific choice $\{\alpha j\}_{j=0}^{\infty}$.
Lemma 2.1. Let $\left\{\gamma_{j}\right\}_{j=0}^{m}$ be distinct positive numbers and $\left\{\lambda_{j}\right\}_{j=0}^{n}$ be distinct positive numbers.
(a) Suppose that $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right\}$ is a refinement of $\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$. Then for $[a, b] \subset[0,1]$,

$$
\begin{equation*}
\left|Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, b]-Z_{p}\left(\gamma_{0} \cdots \gamma_{m}\right)[a, b]\right| \leq 2(m-n) . \tag{2.1}
\end{equation*}
$$

(b) Suppose that $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right\}$ and $\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ have ℓ exponents in common. Then for $[a, b] \subset[0,1]$,

$$
\begin{equation*}
\left|Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, b]-Z_{p}\left(\gamma_{0} \cdots \gamma_{k}\right)[a, b]\right| \leq 2(n+k+2-2 \ell) \tag{2.2}
\end{equation*}
$$

Proof. (a) We may rewrite $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right\}$ as $\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right\}$. Since any subset of $\left\{x^{\lambda_{0}}, x^{\lambda_{1}}, \ldots, x^{\lambda_{m}}\right\}$ is a Chebyshev system on $[\varepsilon, 1]$ for any $0<\varepsilon<1$, the zeros of $T_{n, p}\left\{\lambda_{0} \cdots \lambda_{j}\right\}(x)$ and $T_{n, p}\left\{\lambda_{0} \cdots \lambda_{j+1}\right\}(x)$ interlace [4, Corollary 1.1, p. 2]. It then follows that for every interval $[a, b]$,

$$
\left|Z_{p}\left(\lambda_{0} \cdots \lambda_{j}\right)[a, b]-Z_{p}\left(\lambda_{0} \cdots \lambda_{j+1}\right)[a, b]\right| \leq 2
$$

Applying this for $j=n, n+1, \ldots, m$ gives (2.1).
(b) We may find a refinement of both $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right\}$ and $\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ consisting of $n+k+2-\ell$ elements. Applying (a) to the refinement and each of the sets $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right\}$ and $\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$, and then combining the two inequalities gives the result.

Apart from interlacing, we shall also use the lexicographic property:

Lemma 2.2. Let $\left\{\lambda_{j}\right\}_{j=0}^{n}$ be a sequence of distinct positive numbers and $\left\{\gamma_{j}\right\}_{j=0}^{n}$ be a sequence of distinct positive numbers with

$$
\begin{equation*}
\lambda_{j} \leq \gamma_{j}, \quad 0 \leq j \leq n \tag{2.3}
\end{equation*}
$$

Then for $0 \leq a \leq 1$,

$$
\begin{equation*}
Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, 1] \leq Z_{p}\left(\gamma_{0} \cdots \gamma_{n}\right)[a, 1] \tag{2.4}
\end{equation*}
$$

Proof. We may assume that the two sets have n exponents in common. For then, one can apply the result for this special case n times, using monotonicity each time. Let $0<\varepsilon<1$. Then in $[\varepsilon, 1]$, the combined set of powers $\left\{x^{\lambda_{j}}\right\}_{j=0}^{n} \cup\left\{x^{\gamma_{j}}\right\}_{j=0}^{n}$ (with duplicates deleted, and exponents placed in increasing order) is a Descartes system. If $T_{n, p}^{\varepsilon}\left\{\lambda_{0} \cdots \lambda_{n}\right\}(x)$ and $T_{n, p}^{\varepsilon}\left\{\gamma_{0} \cdots \gamma_{n}\right\}(x)$ denote the corresponding Müntz extremal polynomials on $[\varepsilon, 1]$, it is known that the zeros of $T_{n, p}^{\varepsilon}\left\{\lambda_{0} \cdots \lambda_{n}\right\}(x)$ lie to the left of those of $T_{n, p}^{\varepsilon}\left\{\gamma_{0} \cdots \gamma_{n}\right\}(x)$, in the sense that the j th smallest zero of the former Müntz polynomial is \leq the j th smallest zero of the latter Müntz polynomial. For $p=\infty$, a proof of this is given in the book of Borwein and Erdelyi [2, Thm. 3.3.4, pp. 116-117]. For $1<p \leq \infty$, a proof is given in Pinkus and Ziegler [4, Thm. 5.1, p. 13], while when $p=1$, we can apply the remarks there (or a continuity argument involving $p \rightarrow 1+$). As $\varepsilon \rightarrow 0+, T_{n, p}^{\varepsilon}\left\{\gamma_{0} \cdots \gamma_{n}\right\}(x)$ must converge uniformly to $T_{n, p}\left\{\gamma_{0} \cdots \gamma_{n}\right\}(x)$ because of uniqueness of $T_{n, p}\left\{\gamma_{0} \cdots \gamma_{n}\right\}(x)$, and the fact that the extremal error increases as $[\varepsilon, 1]$ grows to $[0,1]$. Hence the zeros of $T_{n, p}\left\{\lambda_{0} \cdots \lambda_{n}\right\}(x)$ lie to the left of those of $T_{n, p}\left\{\gamma_{0} \cdots \gamma_{n}\right\}(x)$ and (2.4) follows.

The next result asserts essentially that if for "most" indices j, we have $\lambda_{j} \leq$ γ_{j}, then the asymptotic proportion of zeros in $[a, 1]$ of extremal polynomials with exponents $\left\{\lambda_{j}\right\}$ does not exceed that for $\left\{\gamma_{j}\right\}$.
Lemma 2.3. Let $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ and $\left\{\gamma_{j}\right\}_{j=0}^{\infty}$ be sequences of distinct positive numbers with the following property: for each $\varepsilon>0$, there exists for large enough n, a set

$$
\begin{equation*}
S_{n, \varepsilon} \subset\{0,1,2, \ldots, n\} \tag{2.5}
\end{equation*}
$$

with at most En elements such that

$$
\begin{equation*}
j \in\{0,1,2, \ldots, n\} \backslash S_{n, \varepsilon} \Rightarrow \lambda_{j} \leq \gamma_{j} \tag{2.6}
\end{equation*}
$$

Then for $0 \leq a \leq 1$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, 1] \leq \limsup _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\gamma_{0} \cdots \gamma_{n}\right)[a, 1] \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, 1] \leq \liminf _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\gamma_{0} \cdots \gamma_{n}\right)[a, 1] \tag{2.8}
\end{equation*}
$$

Proof. Let us fix $\varepsilon>0, n$ large, and $S_{n, \varepsilon}$ be as in the statement. We define for the given n, a modified set of exponents $\left\{\lambda_{j}^{*}\right\}_{j=0}^{n}$ by

$$
\lambda_{j}^{*}= \begin{cases}\lambda_{j}, & j \in\{0,1,2, \ldots, n\} \backslash S_{n, \varepsilon} \\ \gamma_{j}, & j \in S_{n, \varepsilon}\end{cases}
$$

Then

$$
\lambda_{j}^{*} \leq \gamma_{j}, \quad 0 \leq j \leq n
$$

By the previous lemma, for $0 \leq a \leq 1$,

$$
Z_{p}\left(\lambda_{0}^{*} \cdots \lambda_{n}^{*}\right)[a, 1] \leq Z_{p}\left(\gamma_{0} \cdots \gamma_{n}\right)[a, 1] .
$$

Also $\left\{\lambda_{j}^{*}\right\}_{j=0}^{n}$ and $\left\{\lambda_{j}\right\}_{j=0}^{n}$ have at least $1+n(1-\varepsilon)$ elements in common, so by Lemma 2.1(b),

$$
\left|Z_{p}\left(\lambda_{0}^{*} \cdots \lambda_{n}^{*}\right)[a, 1]-Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, 1]\right| \leq 4 \varepsilon n+4
$$

Combining these inequalities gives

$$
Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, 1] \leq Z_{p}\left(\gamma_{0} \cdots \gamma_{n}\right)[a, 1]+4 \varepsilon n+4
$$

Dividing by n and letting $n \rightarrow \infty$ gives

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, 1] \leq \limsup _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\gamma_{0} \cdots \gamma_{n}\right)[a, 1]+4 \varepsilon .
$$

As $\varepsilon>0$ is arbitrary, (2.7) follows. Similarly, (2.8) follows.
Next, we study the zero distribution for the comparison sequence $\{\alpha j\}_{j=0}^{\infty}$:
Lemma 2.4. Let $\alpha \in(0, \infty)$ and

$$
\begin{equation*}
\gamma_{j}=\alpha j, \quad j \geq 0 \tag{2.9}
\end{equation*}
$$

Then for $0 \leq a<b \leq 1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\gamma_{0} \cdots \gamma_{n}\right)[a, b]=\mu_{\alpha}([a, b]) \tag{2.10}
\end{equation*}
$$

Proof. Suppose first $p<\infty$. Let $T_{n, p}^{*}$ denote the monic (ordinary) polynomial of degree n satisfying

$$
\int_{0}^{1}\left|T_{n, p}^{*}(x)\right|^{p} \frac{1}{\alpha} x^{1 / \alpha-1} d x=\min _{\operatorname{deg}(P) \leq n-1} \int_{0}^{1}\left|x^{n}-P(x)\right|^{p} \frac{1}{\alpha} x^{1 / \alpha-1} d x .
$$

The substitution $x=t^{\alpha}$ gives

$$
\int_{0}^{1}\left|T_{n, p}^{*}\left(t^{\alpha}\right)\right|^{p} d t=\min _{\operatorname{deg}(P) \leq n-1} \int_{0}^{1}\left|t^{\alpha n}-P\left(t^{\alpha}\right)\right|^{p} d t .
$$

It follows from uniqueness that

$$
\begin{equation*}
T_{n, p}^{*}\left(t^{a}\right)=T_{n, p}\left\{\gamma_{0} \cdots \gamma_{n}\right\}(t) \tag{2.11}
\end{equation*}
$$

We see then that the total multiplicity of zeros of $T_{n, p}\left\{\gamma_{0} \cdots \gamma_{n}\right\}$ in $[a, b]$ is the total multiplicity of zeros of $T_{n, p}^{*}$ in $\left[a^{\alpha}, b^{\alpha}\right]$. Since the weight $\frac{1}{\alpha} x^{1 / \alpha-1}$ is positive a.e. in $[0,1]$, classical results assert that the limiting zero distribution of $\left\{T_{n, p}^{*}\right\}_{n=0}^{\infty}$ is the arcsine distribution [1, Cor. 5.7, p. 261]. Hence as $n \rightarrow \infty$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \times \text { Number of zeros of } T_{n, p} \text { in }[a, b] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \times \text { Number of zeros of } T_{n, p}^{*} \text { in }\left[a^{\alpha}, b^{\alpha}\right] \\
& =\int_{a^{\alpha}}^{b^{\alpha}} \frac{d x}{\pi \sqrt{x(1-x)}}=\frac{\alpha}{\pi} \int_{a}^{b} \frac{t^{\alpha-1}}{\sqrt{t^{\alpha}\left(1-t^{\alpha}\right)}} d t=\int_{a}^{b} d \mu_{\alpha}(t) .
\end{aligned}
$$

Proof of Theorem 1.2. Our hypothesis is

$$
\lim _{j \rightarrow \infty} \frac{\lambda_{j}}{j}=\alpha
$$

Assume first that $0<\alpha<\infty$. Let $\varepsilon \in(0, \alpha)$. We then obtain for large enough n, from (1.10),

$$
j \in\{0,1,2, \ldots, n\} \backslash S_{n, \varepsilon} \Rightarrow(\alpha-\varepsilon) j \leq \lambda_{j} \leq(\alpha+\varepsilon) j
$$

Applying Lemma 2.3, with $\gamma_{j}=(\alpha+\varepsilon) j, j \geq 0$, we deduce that

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, 1] \\
& \quad \leq \limsup _{n \rightarrow \infty} \frac{1}{n} Z_{p}(0,(\alpha+\varepsilon), 2(\alpha+\varepsilon), \ldots, n(\alpha+\varepsilon))[a, 1]
\end{aligned}
$$

and similarly applying Lemma 2.3 to $(\alpha-\varepsilon) j, j \geq 0$, and $\lambda_{j}, j \geq 0$ (with roles swapped),

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{1}{n} Z_{p}(0,(\alpha-\varepsilon), 2(\alpha-\varepsilon), \ldots, n(\alpha-\varepsilon))[a, 1] \\
& \quad \leq \liminf _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, 1]
\end{aligned}
$$

Applying Lemma 2.4 with $\gamma_{j}=(\alpha \pm \varepsilon) j, j \geq 0$, gives

$$
\begin{aligned}
\int_{a}^{1} d \mu_{\alpha-\varepsilon}(t) & \leq \liminf _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, 1] \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, 1] \leq \int_{a}^{1} d \mu_{\alpha+\varepsilon}(t)
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0+$, and using dominated convergence gives

$$
\lim _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, 1]=\int_{a}^{1} d \mu_{\alpha}(t) .
$$

This gives the result when $[a, b]=[a, 1]$. For general $[a, b]$, we use

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, b] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, 1]-\lim _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)(b, 1] \\
& =\int_{a}^{1} d \mu_{\alpha}(t)-\int_{b}^{1} d \mu_{\alpha}(t) .
\end{aligned}
$$

Note that because μ_{α} is absolutely continuous, the number of zeros in a neighborhood of the point b is negligible in the sense of asymptotic distribution. Finally, if $\alpha=0$, the arguments above give for $0<a \leq 1$,

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, 1] \\
& \quad \leq \limsup _{n \rightarrow \infty} \frac{1}{n} Z_{p}(0, \varepsilon, 2 \varepsilon, \ldots, n \varepsilon)[a, 1]=\int_{a}^{1} d \mu_{\varepsilon}(t)
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0+$ (and using some straightforward estimates) gives

$$
\lim _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[a, 1]=0=\int_{a}^{1} d \mu_{0}(t) .
$$

Since $\frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[0,1]=1$, we obtain

$$
\lim _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[0,1]=1=\int_{0}^{1} d \mu_{0}(t)
$$

The case $\alpha=\infty$ is similar.
Proof of Theorem 1.1. This is a special case of Theorem 1.2.
Proof of Theorem 1.3. Let $0<a<b<1$. Because of (1.13) and interlacing properties, to the left of each zero of $T_{n, p}\left\{\gamma_{0} \cdots \gamma_{k(n)}\right\}(x)$ in $[0, a]$, there is a zero of $T_{n, p}\left\{\lambda_{0} \cdots \lambda_{n}\right\}(x)$. Moreover,

$$
Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[0, a] \geq Z_{p}\left(\gamma_{0} \cdots \gamma_{k(n)}\right)[0, a]
$$

so applying Theorem 1.1 to $\left\{\gamma_{j}\right\}_{j=0}^{\infty}$,

$$
\begin{align*}
\liminf _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[0, a] & \geq \liminf _{n \rightarrow \infty} \frac{k(n)}{n} \frac{1}{k(n)} Z_{p}\left(\gamma_{0} \cdots \gamma_{k(n)}\right)[0, a] \\
& =\varepsilon \int_{0}^{a} d \mu_{0}=\varepsilon \tag{2.12}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\liminf _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[b, 1] & \geq \liminf _{n \rightarrow \infty} \frac{\ell(n)}{n} \frac{1}{\ell(n)} Z_{p}\left(\rho_{0} \cdots \ell(n)\right)[b, 1] \\
& =(1-\varepsilon) \int_{b}^{1} d \mu_{\infty}=1-\varepsilon \tag{2.13}
\end{align*}
$$

Then it follows that

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)(a, b) \\
& \quad \leq 1-\liminf _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[0, a]-\liminf _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[b, 1] \leq 0
\end{aligned}
$$

So for $0<a<b<1$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)(a, b)=0
$$

Next, by (2.12) and (2.13),

$$
\begin{aligned}
\varepsilon & \leq \liminf _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[0, a] \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[0, a] \\
& \leq 1-\liminf _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)(a, 1] \leq \varepsilon
\end{aligned}
$$

so

$$
\lim _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[0, a]=\varepsilon
$$

Similarly,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} Z_{p}\left(\lambda_{0} \cdots \lambda_{n}\right)[b, 1]=1-\varepsilon
$$

It follows that as $n \rightarrow \infty$,

$$
d \nu_{n} \xrightarrow{*} \varepsilon d \delta_{0}+(1-\varepsilon) d \delta_{1} .
$$

References

[1] V.V. Andrievskii and H.P. Blatt, Discrepancy of Signed Measures and Polynomial Approximation, Springer, NY, 2002.
[2] P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.
[3] G. V. Milovanovic, D. S. Mitrinovic, and Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
[4] A. Pinkus and Z. Ziegler, Interlacing Properties of the Zeros of Error Functions in Best L_{p} Approximations, J. Approx. Theory, 27(1979), 1-18.
[5] E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer, New York, 1997.
[6] E. B. Saff and R. S. Varga, On Lacunary Incomplete Polynomials, Math. Zeitschrift, 177(1981), 297-314.
[7] H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge University Press, Cambridge, 1992.

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160
E-mail address: lubinsky@math.gatech.edu
Center for Constructive Approximation, Department of Mathematics, Vanderbilt University, Nashville, TN 37240.

E-mail address: esaff@math.vanderbilt.edu

[^0]: Received by the editors February 16, 2006.
 1991 Mathematics Subject Classification. Primary 41A10, 41A17, 42C99; Secondary 33C45.
 Key words and phrases. Zero Distribution, Müntz Extremal Polynomials, Müntz Orthogonal Polynomials.

 Research of first author supported by NSF grant DMS0400446; research of second author supported by NSF grant DMS0532154.

 This paper is in final form and no version of it will be submitted for publication elsewhere.

