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Abstract

Let � > 0 and  (x) = x�. Let w be a nonnegative integrable func-
tion on an interval I. Let Pn be a polynomial of degree n determined
by the biorthogonality conditionsZ

I

Pn 
jw = 0; j = 0; 1; :::; n� 1:

We determine for which weights w, Pn admits an analogue of the clas-
sical Rodrigues formula for orthogonal polynomials, and present the
formula whenever it exists. We also provide generating functions and
fairly explicit representations for Pn.

1 1Introduction and Results

Let I be a real interval and  : I ! R be a strictly increasing continuous
function. Let w be a function non-negative and positive a.e. on I for which
all the modi�ed moments

!j;k =

Z
I
 (x)j xkw (x) dx; j; k = 0; 1; 2; ::: (1)

1Research of �rst author supported by NSF grant DMS 0400446; research of second
author supported by the Georgia Tech NSF VIGRE grant.
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exist. Then we may try determine a polynomial Pn of degree n by the
biorthogonality conditionsZ

I
Pn (x) (x)

j w (x) dx =

�
0; j = 0; 1; 2; :::; n� 1;
In 6= 0; j = n

: (2)

The fact that  is increasing forces Pn to have n simple zeros in I. In turn
that easily implies the uniqueness of Pn up to a multiplicative constant. One
representation for Pn is a determinantal one:

Pn (x) =

det

266666664

!0;0 !0;1 !0;2 : : : !0;n
!1;0 !1;1 !1;2 : : : !1;n
!2;0 !2;1 !2;2 : : : !2;n
...

...
...

. . .
...

!n�1;0 !n�1;1 !n�1;2 : : : !n�1;n
1 x x2 : : : xn

377777775

det

26664
!0;0 !0;1 !0;2 : : : !0;n�1
!1;0 !1;1 !1;2 : : : !1;n�1
...

...
...

. . .
...

!n�1;0 !n�1;1 !n�1;2 : : : !n�1;n�1

37775
;

provided the denominator determinant is non-0. Non-vanishing of that de-
terminant is necessary and su¢ cient for the existence of Pn [3, p. 2¤.]. In
our case, we can prove the non-vanishing by contradiction. For if the deter-
minant vanished, we can �nd real numbers fckgn�1k=0 not all 0 such that for
Q (x) =

Pn�1
k=0 ckx

k, Z
I
Q jw = 0; 0 � j � n� 1:

Choosing P to be a polynomial in x of degree � n� 1 such that P �  has
sign changes where Q does gives

0 <

Z
I
QPw = 0;

a contradiction. Biorthogonal polynomials of a more general form have been
studied in several contexts - see [3].

It was A. Sidi who �rst considered biorthogonal polynomials of this type,
for the weight w = 1, the interval I = (0; 1) ; and the special function

 (x) = log x;
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He constructed what are now called the Sidi polynomials, in problems of
quadrature and convergence acceleration [4], [5], [9], [10], [11]. Sidi�s poly-
nomials admit the Rodrigues type formula

Pn (e
u) = e�u

�
d

du

�n
[eu (1� eu)n] (3)

and are explicitly given as

Pn (x) :=

nX
j=0

�
n

j

�
(j + 1)n (�x)j ;

Their asymptotic behavior as n ! 1 was investigated in [5]. The zero
distribution of more general biorthogonal polynomials has been investigated
in [7].

In a recent paper, Herbert Stahl and the �rst author [6] derived a Ro-
drigues type formula, and an explicit expression for Pn (x) when I = (0; 1),
w = 1; and  (x) = x�, any � > 0. These have the form

Pn

�
u1=�

�
= u1�1=�

�
d

du

�n h
un�1+1=�

�
1� u1=�

�ni
(4)

and

Pn (x) =
nX
j=0

�
n

j

�"n�1Y
k=0

�
k +

j + 1

�

�#
(�x)j : (5)

It then seems interesting, in the spirit of classical orthogonal polynomials,
to determine for which weights w, there is some type of Rodrigues formula.
It is well known that the only weights whose orthogonal polynomials admit
Rodrigues formulae are the Jacobi, Laguerre, and Hermite weights. Tricomi
[14, pp. 129-133] gives a very readable account of this (in German). A
survey of characterizations of classical orthogonal polynomials was given by
Al-Salam [1], while the Rodrigues formulae are discussed in [2], [8], [13].

In Tricomi�s presentation, one starts with a weight w on an interval I,
with corresponding orthogonal polynomials fpng1n=0, and looks for a Ro-
drigues formula

pn (x) =
1

w (x)

�
d

dx

�n
[w (x)X (x)n] : (6)

Here X is a polynomial of degree at most 2. While one might look at
other forms, it is readily seen that to get a polynomial of degree n from
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this, X cannot have degree higher than 2. By examining the case n =
1, one determines which weights allow such formulae for their orthogonal
polynomials. Three cases arise:
(I) X is a polynomial of degree 2.
After extracting a constant, we can then factorize it as

X (x) = (x� a) (x� b) :

In this case, it turns out that apart from a multiplicative constant, w is a
Jacobi weight on (a; b):

w (x) = (x� a)� (b� x)�

with �; � > �1:
(II) X is a polynomial of degree 1.
After extracting a constant, we can then factorize it as

X (x) = x� a:

In this case, it turns out that apart from a multiplicative constant, w is a
Laguerre weight on (a;1):

w (x) = (x� a)� e�cx

with � > �1; c > 0.
(III) X is a constant polynomial.
In this case, it turns out that apart from a multiplicative constant, w is a
Hermite weight on (�1;1):

w (x) = e�cx
2+dx

for some c > 0, d 2 R.
The di¤erential equation satis�ed by these three classical weights is called
a Pearson di¤erential equation [1, p. 8]; it determines when there is a
Rodrigues formula.

The main purpose of this paper is to determine which weights w have
biorthogonal polynomials that admit Rodrigues type formulae when  (x) =
x�. Clearly there has to be a modi�cation of (6), and in the search for this,
we are guided by (3) and (4). Moreover, for non-integer �, our interval of
biorthogonality cannot include the negative real axis. We prove:
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Theorem 1
Let � > 0 and

 (x) = x�:

Let I be an open interval on which  is well de�ned, and let w : I ! [0;1)
be in�nitely di¤erentiable and positive a.e. on I with all moments in (1)
�nite. Let Pn be a polynomial of degree n determined by the biorthogonality
conditions Z

I
Pn (x) (x)

j w (x) dx

�
= 0; j < n
6= 0; j = n

: (7)

(I) If I = (0; 1), then for n � 0, Pn admits (up to a constant multiple) the
representation

Pn

�
u1=�

�
=

u1�1=�

w
�
u1=�

� � d

du

�n h
u1=��1w

�
u1=�

��
u
�
1� u1=�

��ni
(8)

i¤ w is a Jacobi weight

w (x) = xa (1� x)b (9)

for some a; b > �1:
(II) If I = (0;1), then for n � 0, Pn admits (up to a constant multiple)
the representation

Pn

�
u1=�

�
=

u1�1=�

w
�
u1=�

� � d

du

�n h
u1=��1w

�
u1=�

�
un
i

(10)

i¤ w is a Laguerre weight

w (x) = xae�cx (11)

for some a > �1 and c > 0:
(III) If I = (�1;1), then for n � 0, Pn admits (up to a constant multiple)
the representation

Pn

�
u1=�

�
=

u1�1=�

w
�
u1=�

� � d

du

�n h
u1=��1w

�
u1=�

�i
(12)

i¤ � = 1 and w is a Hermite weight

w (x) = e�cx
2+bx (13)

for some c > 0 and b 2 R:
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Remarks
(a) In stating the result, we speci�ed the interval in each of the three cases to
simplify the formulation. Perhaps the most curious case is I = (�1;1), in
which only � = 1 is permissible, reducing to classical orthogonal polynomi-
als. That � needs to be an integer in this case follows from the requirement
that  (x) = x� is real valued. However, it is surprising that � = 3; 5; 7; :::
have biorthogonal polynomials that do not admit Rodrigues type formulae.
(b) We see that our analogues of the polynomial X (x) of degree � 2 in
(6) are X (x) = x

�
1� x1=�

�
for I = (0; 1); X (x) = x for I = (0;1) ; and

X (x) = 1 for I = R.
(c) In the case � = 1, all the Rodrigues formulae above reduce to those for
classical orthogonal polynomials.
(d) There is a dual orthogonal relation to (7), namelyZ

I
Pn

�
u1=�

�
ujw1 (u) du = 0; 0 � j < n;

where
w1 (u) = w

�
u1=�

�
u1=��1:

(The interval of integration is still I because  (x) = x� maps I onto I in
the cases when there is a Rodrigues formula).
(d) For the Jacobi and Laguerre case, we can give some explicit representa-
tions and also a generating function. We start with the former case. Recall
the Pochhammer symbol

(c)n = c (c+ 1) (c+ 2) ::: (c+ n� 1) :

Corollary 2
Let � > 0 and n � 1: Let w be a Jacobi weight (9) and Pn be given by (8).
(a) Let Sn;j ;�1 � j � n � 1; be determined by the relations Sn;�1 (x) =
1
x ;Sn;0 (x) = �

b+n
� and for j � 1;

Sn;j (x) = Sn;j�1 (x)

�
1

�
� j + x

�
�b+ n� j

�
+ j � 1

�

��
+
1

�
x (1� x)S0n;j�1 (x) :

(14)

Then

Pn (x) =

nX
j=0

�
n

j

��a+1
�

�
n�

a+1
�

�
j

(1� x)n�j xSn;j�1 (x) : (15)
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(b) The leading coe¢ cient of Pn is

nX
j=0

�
n

j

��a+1
�

�
n�

a+1
�

�
j

(�1)n�j
�
�b+ n

�

�
j

:

(c) Let u 2 Cn ((�1; 0] [ [1;1)) and � be a positively oriented circle center
u�, of small enough radius. Then for jzj su¢ ciently small, with all branches
taken as principal ones,

w (u)

u1��

1X
n=0

Pn (u) z
n

n!
=

1

2�i

Z
�

t1=��1w
�
t1=�

�
t
�
1� z

�
1� t1=�

��
� u�

dt: (16)

We note that for small enough jzj, there is exactly one simple pole of the
integrand in (16) inside �. It is located at

t = u� (1 + z (1� u)) +O
�
z2
�
:

However, it seems impossible to explicitly compute the location of the residue
(except in the classical case � = 1) and hence deduce an explicit generating
function from this contour integral. For the Laguerre case, we can obtain a
more explicit generating function:

Corollary 3
Let � > 0 and n � 1: Let w be a Laguerre weight (11) with c = 1 and Pn
be given by (12).
(a) Let Rn;j ; 1 � j � n; be polynomials determined by the relations

Rn;1 (x) =
a+ 1

�
� 1 + n� x

�

and for j � 1;

Rn;j+1(x) =

�
a+ 1

�
� 1 + n� j � x

�

�
Rn;j (x) +

x

�
R0n;j (x) : (17)

Then
Pn (x) = Rn;n (x) : (18)

(b) The leading coe¢ cient of Pn is (�1=�)n.
(c) For v 2 C and jzj < 1,

1X
n=0

Pn (v) z
n

n!
= (1� z)�

a+1
� exp

�
v
h
1� (1� z)�1=�

i�
: (19)
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Note that for � = 1, the generating function becomes a classical one for
Laguerre polynomials, taking account of the di¤erent normalization of the
Laguerre polynomial Ln [8, p. 202, eqn. (4)].

We prove the results for Jacobi weights, namely Theorem 1(I) and Corol-
lary 2 in Section 2; the results for Laguerre weights, namely Theorem 1(II)
and Corollary 3 in Section 3; and the Hermite case is considered in Section
4.

2 The Jacobi Case

In this section, we prove Theorem 1 (I) and Corollary 2. We begin with the
necessity that w is a Jacobi weight for a Rodrigues formula to hold:

Proof of Necessity that w is a Jacobi weight
Assume that (8) holds. Then for n = 1 this gives

P1

�
u1=�

�
=

u1�1=�

w
�
u1=�

� � d

du

�h
u1=��1w

�
u1=�

��
u
�
1� u1=�

��i
=

w0

w

�
u1=�

� 1
�
u1=�

�
1� u1=�

�
+
1

�
� 2

�
u1=�:

Set x = u1=� and use that P1 is a linear polynomial. We obtain for some
constants A and B;

A+Bx =
w0

w
(x)x (1� x) :

Dividing by x (1� x) and using partial fractions gives for some constants a
and b;

a

x
+

b

1� x =
w0

w
(x) :

Integrating shows that w is a Jacobi weight (9), apart from a multiplicative
constant. The fact that a; b > �1 follows from integrability of w. �

We turn to the su¢ ciency part of Theorem 1 (I). We must prove that when
w is a Jacobi weight, then Pn given by (8) �rstly satis�es the orthogonality
conditions, and secondly is a polynomial of degree n.

Proof of the Orthogonality Condition (7)
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Let w be a Jacobi weight (9), and Pn be given by (8). Let

Ij =

Z 1

0
Pn (x) (x

�)j w (x) dx

=
1

�

Z 1

0
Pn

�
u1=�

�
ujw

�
u1=�

�
u1=��1du

=
1

�

Z 1

0
uj
�
d

du

�n h
u1=��1w

�
u1=�

� h
u
�
1� u1=�

�ini
du:

Observe that u1=��1w
�
u1=�

� �
u
�
1� u1=�

��n
has a zero at 0 of multiplicity

1
��1+

a
�+n > n�1. Moreover the multiplicity of the zero at 1 is b+n > n�1.

We integrate by parts j times to obtain

Ij =
1

�
(�1)j j!

Z 1

0

�
d

du

�n�j h
u1=��1w

�
u1=�

� h
u
�
1� u1=�

�ini
du = 0;

if j < n. When j = n, we obtain instead

In =
1

�
(�1)n n!

Z 1

0
u1=��1w

�
u1=�

� h
u
�
1� u1=�

�in
du 6= 0;

as the integrand is positive in (0; 1). �

Remark
After a substitution, we see that

In = (�1)n n!
Z 1

0
xa+n� (1� x)b+n dx

= (�1)n n!� (a+ n�+ 1)� (b+ n+ 1)
� (a+ b+ 2 + n+ n�)

: (20)

The most complicated part of the proof is showing that Pn is indeed a poly-
nomial of degree n. This requires:

Lemma 2.1
For j � 1,�

d

du

�j �
1� u1=�

�b+n
=
�
1� u1=�

�b+n�j
u1=��jSn;j�1

�
u1=�

�
; (21)

where Sn;j�1 is a polynomial of degree j � 1, determined by the recursion

Sn;0 (x) = �
b+ n

�
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and for j � 1;

Sn;j (x) = Sn;j�1 (x)

�
1

�
� j +

�
�b+ n� j

�
+ j � 1

�

�
x

�
+
1

�
x (1� x)S0n;j�1 (x) :

(22)
The leading coe¢ cient of Sn;j is�

�b+ n
�

�
j+1

: (23)

Proof
We use induction on j: �rst for j = 1;

d

du

�
1� u1=�

�b+n
= (b+ n)

�
1� u1=�

�b+n�1
u1=��1

�
� 1
�

�
;

so we can take

Sn;0

�
u1=�

�
= �b+ n

�
: (24)

Now assume that (21) is true for j. We shall prove it for j+1. Di¤erentiating
(21) gives�

d

du

�j+1 �
1� u1=�

�b+n
=

d

du

��
1� u1=�

�b+n�j
u1=��jSn;j�1

�
u1=�

��

=
�
1� u1=�

�b+n�(j+1)
u1=��(j+1)

8<:
� b+n�j

� u1=�Sn;j�1
�
u1=�

�
+(1� u1=�)

�
1
� � j

�
Sn;j�1

�
u1=�

�
+ 1
�

�
1� u1=�

�
u1=�S0n;j�1

�
u1=�

�
9=;

=
�
1� u1=�

�b+n�(j+1)
u1=��(j+1)Sn;j

�
u1=�

�
; (25)

where Sn;j (x) is a polynomial of degree at most j in x determined by the
recursion (22). By induction, (21) is true for all j � 1. Finally, if dj is the
leading coe¢ cient of Sn;j , we see that d0 = � b+n

� and for j � 1;

dj = dj�1

�
�b+ n

�
+ j

�
:

Iterating this gives (23). �
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The result of the lemma remains true for j = 0 if we adopt the conven-
tion

Sn;�1 (x) �
1

x
: (26)

We can now complete the su¢ ciency part of Theorem 1(I):

Proof that Pn given by (8) is a polynomial of degree n
We use Leibniz�s formula on (8):

Pn

�
u1=�

�
=

u1�1=�

w
�
u1=�

� nX
j=0

�
n

j

��
d

du

�j �
1� u1=�

�b+n
�
�
d

du

�n�j �
un�1+

a+1
�

�
=

nX
j=0

�
n

j

��
1� u1=�

�n�j
Sn;j�1

�
u1=�

�
u1=�

�
�
n� 1 + a+ 1

�

��
n� 2 + a+ 1

�

�
:::

�
j +

a+ 1

�

�
;

by Lemma 2.1, and with the convention (26). Setting x = u1=� gives

Pn (x) =
nX
j=0

�
n

j

�
(a+1� )n

(a+1� )j
(1� x)n�j xSn;j�1 (x) ; (27)

a polynomial of degree at most n. To show that Pn must have degree n we
use the biorthogonality relations (7). Firstly, those relations imply that Pn
has at least n simple zeros in (0; 1). For else, we can construct a polynomial
Q of degree at most n� 1 such that Q � has sign changes in (0; 1) exactly
where Pn does, so that (after multiplying Q by �1) PnQ �  > 0 a.e. in
(0; 1). Then

0 <

Z 1

0
Pn (x)Q �  (x)w (x) dx = 0;

by (7). This contradiction shows that Pn either has degree n or is identically
0. That the former must be true follows from the second relation in (7). �

Proof of Corollary 2
(a), (b) These follow readily from (27) and Lemma 2.1.
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(c) Let u 2 (0; 1) and � be a positively oriented circle center u of small radius.
By Cauchy�s integral formula for derivatives, with all branches principal,

w
�
u1=�

�
u1�1=�

Pn

�
u1=�

�
=

�
d

du

�n h
u1=��1w

�
u1=�

��
u
�
1� u1=�

��ni
=

n!

2�i

Z
�

t1=��1w
�
t1=�

� �
t
�
1� t1=�

��n
(t� u)n+1

dt:

Then

w
�
u1=�

�
u1�1=�

1X
n=0

Pn
�
u1=�

�
zn

n!
=

1

2�i

Z
�

t1=��1w
�
t1=�

�
t� u

1X
n=0

 
t
�
1� t1=�

�
z

t� u

!n
dt

=
1

2�i

Z
�

t1=��1w
�
t1=�

�
t� u� t

�
1� t1=�

�
z
dt:

The interchange of series and integral and summation of the geometric se-
ries is justi�ed by uniform convergence (for jzj su¢ ciently small). Replacing
u by u� 2 (0; 1) then yields (16) for such u. The left-hand side of (16) is
an analytic function of u 2 Cn ((�1; 0] [ [1;1)), with principal choice of
branches, provided jzj is su¢ ciently small. We can see this by using the
�rst contour integral above to bound

��� w(u)u��1
Pn(u)
n!

��� by Cn uniformly in n and
for u in a given compact subset of Cn ((�1; 0] [ [1;1)). The right-hand
side is also analytic in that region. In fact we can use analytic continua-
tion and �nitely many shifts of the center of �, while keeping the radius
constant to move the contour from a point in (0; 1) to any �xed point in
Cn ((�1; 0] [ [1;1)). Then (16) follows throughout this region. �

3 The Laguerre Case

In this section, we prove Theorem 1(II) and Corollary 3. We begin with the
necessity that w is a Laguerre weight when there is a Rodrigues formula:

Proof of Necessity that w is a Laguerre weight
Assume that (10) holds. Then for n = 1 this gives

P1

�
u1=�

�
=

u1�1=�

w
�
u1=�

� � d

du

�h
u1=��1w

�
u1=�

�
u
i

=
w0

w

�
u1=�

� 1
�
u1=� +

1

�
:
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Set x = u1=� and use that P1 is a linear polynomial. We obtain for some
constants A and B;

A+Bx =
w0

w
(x)x

and hence
A

x
+B =

w0

w
(x) :

Integrating shows that w is a Laguerre weight

w (x) = xAeBx;

apart from a constant factor. The fact that A > �1; B < 0 follows from
integrability of w. �

We turn to the su¢ ciency part of Theorem 1 (II). We must prove that
when w is a Laguerre weight, then Pn given by (10) �rstly satis�es the or-
thogonality conditions, and secondly is a polynomial of degree n.

Proof of the Orthogonality Condition (7)
Let w be a Laguerre weight (11), and Pn be given by (10). Let

Ij =

Z 1

0
Pn (x) (x

�)j w (x) dx

=
1

�

Z 1

0
Pn

�
u1=�

�
ujw

�
u1=�

�
u1=��1du

=
1

�

Z 1

0
uj
�
d

du

�n h
u1=��1w

�
u1=�

�
un
i
du:

Observe that u1=��1w
�
u1=�

�
un has a zero at 0 of multiplicity 1

��1+
a
�+n >

n � 1. Moreover u1=��1w
�
u1=�

�
un decays at 1 faster than any negative

power of u. We integrate by parts j times to obtain

Ij =
1

�
(�1)j j!

Z 1

0

�
d

du

�n�j h
u1=��1w

�
u1=�

�
un
i
du = 0;

if j � n� 1. When j = n, we obtain instead

In =
1

�
(�1)n n!

Z 1

0
u1=��1w

�
u1=�

�
undu 6= 0;

as the integrand is positive. �
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If we assume that c = 1 in (11), then after a substitution, we see that

In = (�1)n n!
Z 1

0
xa+n�e�xdx

= (�1)n n!� (a+ n�+ 1) : (28)

To show that Pn is indeed a polynomial of degree n, we need:

Lemma 3.1
Let � 2 R. For j � 1,�

d

du

�j h
u�+ne�cu

1=�
i
= u�+n�je�cu

1=�
Rn;j

�
u1=�

�
; (29)

where
Rn;1 (x) = � + n�

c

�
x (30)

and for j � 1, Rn;j+1 is a polynomial of degree j + 1 determined by the
recursion

Rn;j+1 (x) = Rn;j (x)
n
�+ n� j � c

�
x
o
+
x

�
R0n;j (x) : (31)

The leading coe¢ cient of Rn;j is
�
� c
�

�n.
Proof
We use induction on j: �rst for j = 1;

d

du

h
u�+ne�cu

1=�
i

= u�+n�1e�cu
1=�
h
�+ n� c

�
u1=�

i
= u�+n�1e�cu

1=�
Rn;1

�
u1=�

�
;

where Rn;1 is a polynomial of degree 1 given by (30). Now assume that (29)
is true for j. We shall prove it for j + 1. Di¤erentiating (29) gives�

d

du

�j+1 h
u�+ne�cu

1=�
i

=
d

du

h
u�+n�je�cu

1=�
Rn;j

�
u1=�

�i
= u�+n�(j+1)e�cu

1=�

8<:
(� + n� j)Rn;j

�
u1=�

�
� c
�u

1=�Rn;j
�
u1=�

�
+ 1
�u

1=�R0n;j
�
u1=�

�
9=;

= u�+n�(j+1)e�cu
1=�
Rn;j+1

�
u1=�

�
;

14



where Rn;j+1 (x) is a polynomial of degree j + 1 in x determined by the
recursion (31). By induction, (29) is true for all j � 1. �

The result of the lemma remains true for j = 0 if we set

Rn;0 (x) � 1: (32)

We can now complete the su¢ ciency part of Theorem 1(II):

Proof that Pn given by (10) is a polynomial of degree n
We use Lemma 3.1 on Pn given by (10), with w a Laguerre weight as in (11)
and � = a+1

� � 1:

Pn

�
u1=�

�
=

u1�1=�

w
�
u1=�

� � d

du

�n h
u1=��1w

�
u1=�

�
un
i

=
u1�1=�

w
�
u1=�

� � d

du

�n h
u(a+1)=��1+ne�cu

1=�
i

=
u1�1=�

w
�
u1=�

�u(a+1)=��1e�cu1=�Rn;n �u1=�� = Rn;n

�
u1=�

�
:

(33)

That Pn must have degree n follows from In 6= 0, as in the proof of the
Jacobi case. More simply the lemma shows that the leading coe¢ cient of
Pn = Rn;n is (�c=�)n. �

Proof of Corollary 3
(a), (b) follow from (33), Lemma 3.1, with � = a+1

� � 1 and the fact that
we chose c = 1.
(c) Let u 2 (0;1). By Cauchy�s integral formula for derivatives,

w
�
u1=�

�
u1�1=�

Pn

�
u1=�

�
=

�
d

du

�n h
u1=��1w

�
u1=�

�
un
i

=
n!

2�i

Z
�

t1=��1w
�
t1=�

�
tn

(t� u)n+1
dt:

15



Here, as usual, � is a circle center u of su¢ ciently small radius. Then for
jzj su¢ ciently small,

w
�
u1=�

�
u1�1=�

1X
n=0

Pn
�
u1=�

�
zn

n!
=

1

2�i

Z
�

t1=��1w
�
t1=�

�
t� u

1X
n=0

�
tz

t� u

�n
dt

=
1

2�i

Z
�

t1=��1w
�
t1=�

�
t� u� tz dt:

The integrand has a simple pole at t = u= (1� z). By the residue theorem,
we continue this as

= (1� z)�1
�

u

1� z

�1=��1
w

 �
u

1� z

�1=�!
:

Rearranging this gives

1X
n=0

Pn
�
u1=�

�
zn

n!
= (1� z)�

a+1
� exp

�
u1=�

h
1� (1� z)�1=�

i�
:

All the algebraic manipulations of the multivalued functions are valid for
u 2 (0;1) and jzj small enough. Replacing u1=� by v and noting that the
left-hand side is the Maclaurin series in z (for �xed v) of the right-hand side,
we obtain for all v 2 (0;1) and jzj < 1;

1X
n=0

Pn (v) z
n

n!
= (1� z)�

a+1
� exp

�
v
h
1� (1� z)�1=�

i�
:

To extend this to v o¤ the positive real axis, we observe that

Pn (v) =

�
d

dz

�n n
(1� z)�

a+1
� exp

�
v
h
1� (1� z)�1=�

i�o
jz=0

:

By analyticity with respect to v of both sides of this relation, it persists for
all complex v. Then (19) also follows for all complex v. �

4 The Hermite Case

In this section we prove Theorem 1(III). The main thing to be proved is that
w must be a Hermite weight and � must equal 1, for a Rodrigues formula
to hold. One immediate observation is that � must be an integer. For if �
is non-integral, then  (x) = x� is not real valued on the negative real axis.

16



Of course if � is an even integer, then  is not increasing, but we shall show
that even allowing for this, there is still no Rodrigues formula. So in the
sequel, we assume that � is a positive integer.

Proof of Necessity that w is the Hermite weight
Assume that (12) holds. Then for n = 1 this gives

P1

�
u1=�

�
=

u1�1=�

w
�
u1=�

� � d

du

�h
u1=��1w

�
u1=�

�i
=

w0

w

�
u1=�

� 1
�
u1=��1 +

�
1

�
� 1
�
1

u
: (34)

Setting x = u1=� gives

P1 (x) =
w0

w
(x)

1

�
x1�� +

�
1

�
� 1
�
x��:

Next since P1 is a linear polynomial, we obtain for some constants A and B;

Ax��1 +Bx� +
�� 1
x

=
w0

w
(x) : (35)

Integrating gives

w (x) = jxj��1 exp
�
A

�
x� +

B

�+ 1
x�+1

�
:

To show that � = 1, we use the Rodrigues formula for n = 2. First note
that di¤erentiating (35) gives

w00

w
(x)�

�
w0

w
(x)

�2
= A (�� 1)x��2 +B�x��1 � �� 1

x2
: (36)

Next, (12) gives

P2

�
u1=�

�
=

u1�1=�

w
�
u1=�

� � d

du

�2 h
u1=��1w

�
u1=�

�i
=

�
1

�
� 1
��

1

�
� 2
�
u�2 +

3

�

�
1

�
� 1
�
u1=��2

w0

w

�
u1=�

�
+
1

�2

�
u1=��1

�2 w00
w

�
u1=�

�
:
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Setting x = u1=� gives

P2 (x) =

�
1

�
� 1
��

1

�
� 2
�
x�2�

+
3

�

�
1

�
� 1
�
x1�2�

w0

w
(x) +

1

�2
�
x1��

�2 w00
w
(x) :

Substituting in (35) and (36) and gathering terms gives

P2 (x) = x�2�

(�
1

�
� 1
��

1

�
� 2
�
+
3

�

�
1

�
� 1
�
(�� 1)� �� 1

�2
+
(�� 1)2

�2

)

+x��
�
3

�

�
1

�
� 1
�
A+

�� 1
�2

A+
2

�2
(�� 1)A

�
+x1��

�
3

�

�
1

�
� 1
�
B +

B

�
+
2

�2
B (�� 1)

�
+

�
A

�

�2
+
2AB

�2
x+

�
B

�

�2
x2:

We continue this as

P2 (x) = 0x
�2� + 0x�� +

B

�2
x1�� +

�
A

�

�2
+
2AB

�2
x+

�
B

�

�2
x2:

Here if � 6= 1, then � � 2, and the condition that P2 be a polynomial of
degree � 2 forces B = 0, and then

P2 (x) =

�
A

�

�2
;

a constant. Since the orthogonality condition (7) forces P2 to have at least
two zeros, we deduce that A = 0. Then

w (x) = jxj��1 ;

which is not integrable over the real line. So we need � = 1: �

Proof of su¢ ciency for w the Hermite weight and � = 1
We have to show that for

w (x) = exp
�
Ax+Bx2

�
;

with B < 0,

Pn (x) =
1

w (x)

�
d

dx

�n
w (x)

18



is an orthogonal polynomial of degree n. This is of course classical and
can be found in Tricomi [14, pp. 129-133] for general A. For the case
A = 0; B = �1 (which the general case becomes after a linear transforma-
tion), the proof is in numerous texts, for example [2], [8], [13]. �
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