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ON MARCINKIEWICZ-ZYGMUND INEQUALITIES AT
HERMITE ZEROS AND THEIR AIRY FUNCTION COUSINS

D. S. LUBINSKY

Abstract. We establish forward and converse Marcinkiewicz-Zygmund In-
equalities at the zeros {aj}j≥1 of the Airy function Ai (x), such as

A
π2

6

∞∑
k=1

|f (ak)|p

Ai′ (ak)
2
≤
∫ ∞
−∞
|f (t)|p dt ≤ Bπ

2

6

∞∑
k=1

|f (ak)|p

Ai′ (ak)
2

under appropriate conditions on the entire function f and p. The constants
A and B are those appearing in Marcinkiewicz-Zygmund inequalities at zeros
of Hermite polynomials. Scaling limits are used to pass from the latter to the
former.

1. Introduction

There is a close relationship between the Plancherel-Polya and Marcinkiewicz-
Zygmund inequalities. The former [9, p. 152] assert that for 1 < p <∞, and entire
functions f of exponential type at most π,

(1.1) Ap

∞∑
k=−∞

|f (k)|p ≤
∫ ∞
−∞
|f |p ≤ Bp

∞∑
j=−∞

|f (k)|p ,

provided either the series or integral is finite. For 0 < p ≤ 1, the left-hand inequality
is still true, but the right-hand inequality requires additional restrictions [2]. We
assume that Bp is taken as small as possible, and Ap as large as possible. The
Marcinkiewicz-Zygmund inequalities assert [35, Vol. II, p. 30] that for p > 1, n ≥ 1,
and polynomials P of degree ≤ n− 1,

(1.2)
A′p
n

n∑
k=1

∣∣∣P (e2πik/n)∣∣∣p ≤ ∫ 1

0

∣∣P (e2πit)∣∣p dt ≤ B′p
n

n∑
k=1

∣∣∣P (e2πik/n)∣∣∣p .
Here too, A′p and B

′
p are independent of n and P , and the left-hand inequality is

also true for 0 < p ≤ 1 [15]. The author [16] proved that the inequalities (1.1) and
(1.2) are equivalent, in the sense that each implies the other. Moreover, the sharp
constants are the same:

Theorem A
For 0 < p <∞, Ap = A′p and for 1 < p <∞, Bp = B′p.
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These inequalities are useful in studying convergence of Fourier series, Lagrange
interpolation, in number theory, and weighted approximation. They have been
extended to many settings, and there are a great many methods to prove them [5],
[8], [13], [15], [20], [19], [22], [23], [24], [25], [30], [33], [34]. The sharp constants in
(1.1) and (1.2) are unknown, except for the case p = 2, where of course we have
equality rather than inequality, so that A2 = B2 = A′2 = B′2 = 1 [9, p. 150]. It is
certainly of interest to say more about these constants.
In a recent paper, we explored the connections between Marcinkiewicz-Zygmund

inequalities at zeros of Jacobi polynomials, and Polya-Plancherel type inequalities
at zeros of Bessel functions. Let α, β > −1 and

wα,β (x) = (1− x)
α

(1 + x)
β
, x ∈ (−1, 1) .

For n ≥ 1, let Pα,βn denote the standard Jacobi polynomial of degree n, so that it
has degree n, satisfies the orthogonality conditions∫ 1

−1
Pα,βn (x)xkwα,β (x) dx = 0, 0 ≤ k < n,

and is normalized by Pα,βn (1) =
(
n+α
n

)
. Let

xnn < xn−1,n < ... < x1n

denote the zeros of Pα,βn . Let {λkn} denote the weights in the Gauss quadrature
for wα,β , so that for all polynomials P of degree ≤ 2n− 1,∫ 1

−1
Pwα,β =

n∑
k=1

λknP (xkn) .

There is a classical analogue of (1.2), established for special α, β by Richard
Askey, and for all α, β > −1 (and for more general "generalized Jacobi weights")
by P. Nevai, and his collaborators [15], [20], [27], [29], with later work by König and
Nielsen [8], and for doubling weights by Mastroianni and Totik [23]. The following
special case follows from Theorem 5 in [20, eqn. (1.19), p. 534]:

Theorem B
Let α, β, τ , σ satisfy α, β, α + σ, β + τ > −1. Let p > 0. For n ≥ 1, let {xkn}
denote the zeros of the Jacobi polynomial Pα,βn and {λkn} denote the corresponding
Gauss quadrature weights. There exists A > 0 such that for n ≥ 1, and polynomials
P of degree ≤ n− 1,

A

n∑
k=1

λkn |P (xkn)|p (1− xkn)
σ

(1 + xkn)
τ ≤

∫ 1

−1
|P (x)|p (1− x)

α+σ
(1 + x)

β+τ
dx.

(1.3)

The converse inequality is much more delicate, and in particular holds only for
p > 1, and even then only for special cases of the parameters. It too was investigated
by P. Nevai, with later work by Yuan Xu [33], [34], König and Nielsen [8]. König
and Nielsen gave the exact range of p for which

(1.4)
∫ 1

−1
|P (x)|p (1− x)

α
(1 + x)

β
dx ≤ B

n∑
k=1

λkn |P (xkn)|p ,
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holds with B independent of n and P . Let

µ (α, β) = max

{
1, 4

α+ 1

2α+ 5
, 4

β + 1

2β + 5

}
;

m (α, β) = max

{
1, 4

α+ 1

2α+ 3
, 4

β + 1

2β + 3

}
;

M (α, β) =
m (α, β)

m (α, β)− 1
.(1.5)

Then (1.4) holds for all n and P iff

(1.6) µ (α, β) < p < M (α, β) .

The most general suffi cient condition for a converse quadrature inequality is due
to Yuan Xu [33, pp. 881-882]. When we restrict to Jacobi weights, with the same
weight on both sides, the inequality takes the following form:

Theorem C
Let α, β, τ , σ satisfy α, β, α+ σ, β + τ > −1. Let p > 1, q = p

p−1 , and assume that

(1.7)
p

2

(
α+

1

2

)
− (α+ 1) < σ < (p− 1) (α+ 1)−max

{
0,
p

2

(
α+

1

2

)}
.

(1.8)
p

2

(
β +

1

2

)
− (β + 1) < τ < (p− 1) (β + 1)−max

{
0,
p

2

(
β +

1

2

)}
.

Then there exists B > 0 such that for n ≥ 1, and polynomials P of degree ≤ n− 1,
(1.9)∫ 1

−1
|P (x)|p (1− x)

α+σ
(1 + x)

β+τ
dx ≤ B

n∑
k=1

λkn |P (xkn)|p (1− xkn)
σ

(1 + xkn)
τ
.

Inequalities of the type (1.9) for doubling weights have been established by Mas-
troianni and Totik [23] under the additional condition that one needs to restrict the
degree of P in (1.9) further, such as deg (P ) ≤ ηn for some η ∈ (0, 1) depending on
the particular doubling weight.
Now let α > −1 and define the Bessel function of order α,

(1.10) Jα (z) =
(z

2

)α ∞∑
k=0

(−1)
k

(
z
2

)2k
k!Γ (k + α+ 1)

and

(1.11) J∗α (z) = Jα (z) /zα,

which has the advantage of being an entire function for all α > −1. J∗α has real
simple zeros, and we denote the positive zeros by

0 < j1 < j2 < ...

while for k ≥ 1,

j−k = −jk.
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The connection between Jacobi polynomials and Bessel functions is given by the
classical Mehler-Heine asymptotic, which holds uniformly for z in compact subsets
of C [32, p. 192]:

lim
n→∞

n−αPα,βn

(
1− 1

2

( z
n

)2)
= lim
n→∞

n−αPα,βn

(
cos

z

n

)
=
(z

2

)−α
Jα (z) = 2αJ∗α (z) .

(1.12)

There is an extensive literature dealing with quadrature sums and Lagrange
interpolation at the {jk}. In particular, there is the quadrature formula [6, p. 49]∫ ∞

−∞
|x|2α+1 f (x) dx =

2

τ2α+2

∞∑
k=−∞,k 6=0

1

|J∗′α (jk)|2
f

(
jk
τ

)
,

valid for all entire functions f of exponential type at most 2τ , for which the integral
on the left-hand side is finite. That same paper contains the following converse
Marcinkiewicz-Zygmund type inequality: let α ≥ − 12 and p > 1; or −1 < α < − 12
and 1 < p < 2

|1+2α| . Then for entire functions f of exponential type ≤ τ for which
|x|α+

1
2 f (x) ∈ Lp (R\ (−δ, δ)), for some δ > 0, [6, Lemma 14, p. 58; Lemma 13, p.

57]

(1.13)
∫ ∞
−∞

∣∣∣|x|α+ 1
2 f (x)

∣∣∣p dx ≤ B∗

τ

∞∑
k=−∞,k 6=0

∣∣∣∣ 1

τα+
1
2 J∗′α (jk)

f

(
jk
τ

)∣∣∣∣p .
Here B∗ depends on α and p. In the converse direction, since jk+1− jk is bounded
below by a positive constant for all k, classical inequalities from the theory of entire
functions [9, p. 150] show that

∞∑
k=−∞,k 6=0

|f (jk)|p ≤ C
∫ ∞
−∞
|f (x)|p dx

for entire functions of finite exponential type for which the right-hand side is finite.
While Grozev and Rahman note the analogous nature of Lagrange interpolation

at zeros of Jacobi polynomials and Bessel functions, and also the Mehler-Heine
formula, their proofs proceed purely from properties of Bessel functions. In [17,
Thms. 1.1, 1.3, pp. 227-228], the author used inequalities like (1.3) to pass to
analogues for Bessel functions using scaling limits of the form (1.12), keeping the
same constants, much as was done in [16]: Let Lp1

(
(0,∞) , t2α+2σ+1

)
denote the

space of all even entire functions f of exponential type ≤ 1 with∫ ∞
0

|f (t)|p t2α+2σ+1dt <∞.

Theorem D
Assume that p > 0, α, β,α+ σ, β + τ > −1, and

−p
(
α

2
+

5

4

)
+ α+ σ + 1 < 0.

Let A be as in Theorem B. Then

2A

∞∑
k=1

j2σk J∗′α (jk)
−2 |f (jk)|p ≤

∫ ∞
0

|f (t)|p t2α+2σ+1dt,
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for all f ∈ Lp1
(
(0,∞) , t2α+2σ+1

)
.

Theorem E
Assume that p > 1, α, β,α + σ, β + τ > −1, and that (1.7) and (1.8) hold. Let B
be as in Theorem C. Then for f ∈ Lp1

(
(0,∞) , t2α+2σ+1

)
, we have

(1.14)
∫ ∞
0

|f (t)|p t2α+2σ+1dt ≤ 2B

∞∑
k=1

j2σk J∗′α (jk)
−2 |f (jk)|p .

In particular this holds for σ = τ = 0 if p satisfies (1.6) with β = α. Moreover,
for any α, β, p, it is possible to choose σ and τ satisfying (1.7), (1.8) so that this
last inequality also holds.

A very recent paper of Littmann [13] provides far reaching extensions of the
inequalities of Grozev and Rahman to Hermite-Biehler weights, so that t2α+2σ+1

is replaced by 1/ |E|p, where E is a Hermite-Biehler function, that is, an entire
function E satisfying |E (z)| > |E (z̄)| for Re z > 0. Moreover, the zeros of Bessel

functions are replaced by the zeros of B (z) = i
2

(
E (z)− E (z̄)

)
. Littmann then

uses these to establish weighted mean convergence of certain interpolation operators
for classes of entire functions.
In this paper, we shall use Marcinkiewicz-Zygmund inequalities at zeros of Her-

mite polynomials, to derive Plancherel-Polya type inequalities at zeros of Airy func-
tions. We begin with our notation. Throughout,

(1.15) W (x) = exp

(
−1

2
x2
)
, x ∈ R,

is the Hermite weight, and {pn} are the orthonormal Hermite polynomials, so that

(1.16)
∫ ∞
−∞

pnpmW
2 = δmn.

The classical Hermite polynomial is of course denoted by Hn. The relationship
between pn and Hn is given by [32, p. 105, (5.5.1)]

(1.17) pn = π−1/42−n/2 (n!)
−1/2

Hn.

The leading coeffi cient of pn is [32, p. 106, (5.5.6)]

(1.18) γn = π−1/42n/2 (n!)
−1/2

.

In the sequel, {xjn} denote the zeros of the Hermite polynomials in decreasing
order:

−∞ < xnn < xn−1,n < ... < x2n < x1n <∞,
while {λjn} denote the weights in the Gauss quadrature formula: for polynomials
P of degree ≤ 2n− 1, ∫ ∞

−∞
PW 2 =

n∑
j=1

λjnP (xjn) .

There is an extensive literature on Marcinkiewicz-Zygmund inequalities at zeros
of Hermite polynomials, as well as for orthonormal polynomials for more general
exponential weights [3], [4], [7], [14], [21], [28], [29]. We shall use the following
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forward and converse inequalities [14, p. 529], [21, p. 287]:

Theorem F
Let 1 ≤ p <∞. Let r,R ∈ R and S > 0.
(a) Then there exists A > 0 such that for n ≥ 1, and polynomials P of degree at
most n+ Sn1/3,
(1.19)

n∑
j=1

λjn |P (xjn)|pW p−2 (xjn) (1 + |xjn|)Rp ≤ A
∫ ∞
−∞

∣∣∣(PW ) (x) (1 + |x|)R
∣∣∣p dx.

(b) Assume that

(1.20) r < 1− 1

p
; r ≤ R; R > −1

p
.

In addition if p = 4, we assume that r < R, while if p > 4, we assume that

(1.21) r −min

{
R, 1− 1

p

}
+

1

3

(
1− 4

p

){ ≤ 0, if R 6= 1− 1
p

< 0, if R = 1− 1
p

.

Then there exists B > 0 such that for n ≥ 1, and polynomials P of degree ≤ n− 1,
(1.22)∫ ∞
−∞
|(PW ) (x) (1 + |x|)r|p dx ≤ B

n∑
j=1

λjn |P (xjn)|pW p−2 (xjn) (1 + |xjn|)Rp .

Recall that the Airy function Ai is given on the real line by [1, 10.4.32, p. 447]

Ai (x) =
1

π

∫ ∞
0

cos

(
1

3
t3 + xt

)
dt.

The Airy function Ai is an entire function of order 32 , with only real negative zeros
{aj}, where

0 > a1 > a2 > a3 > ... .

These are often denoted by {ij} rather than {aj}. Ai satisfies the differential
equation

Ai′′ (z)− zAi (z) = 0.

The Airy kernel Ai (·, ·), much used in random matrix theory, is defined [12] by

Ai (a, b) =

{
Ai(a)Ai′(b)−Ai′(a)Ai(b)

a−b , a 6= b,

Ai′ (a)
2 − aAi (a)

2
, a = b.

.

Observe that

Lj (z) =
Ai (z, aj)

Ai (aj , aj)
=

Ai (z)

Ai′ (aj) (z − aj)
,

is the Airy analogue of a fundamental of Lagrange interpolation, satisfying

Lj (ak) = δjk.

There is an analogue of sampling series and Lagrange interpolation series involving
{Lj} :

Definition 1.1
Let G be the class of all functions g : C→ C with the following properties:
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(a) g is an entire function of order at most 3
2 ;

(b) There exists L > 0 such that for δ ∈ (0, π) , some Cδ > 0, and all z ∈ C with
|arg z| ≤ π − δ,

|g (z)| ≤ Cδ (1 + |z|)L
∣∣∣∣exp

(
−2

3
z
3
2

)∣∣∣∣ ;
(c)

(1.23)
∞∑
j=1

|g (aj)|2

|aj |1/2
<∞.

In [12, Corollary 1.3, p. 429], it was shown that each g ∈ G admits the locally
uniformly convergent expansion

g (z) =

∞∑
j=1

g (aj)
Ai (z, aj)

Ai (aj , aj)
=

∞∑
j=1

g (aj)Lj (z) .

We let

(1.24) SM [g] =

M∑
j=1

g (aj)Lj , M ≥ 1,

denote the Mth partial sum of this expansion. Moreover, for f, g ∈ G, there is the
quadrature formula [12, Corollary 1.4, p. 429]∫ ∞

−∞
f (x) g (x) dx =

∞∑
j=1

(fg) (aj)

Ai (aj , aj)
.

In particular, ∫ ∞
−∞

g2 (x) dx =

∞∑
j=1

|g (aj)|2

Ai (aj , aj)
,

and the series on the right converges because of (1.23), and the fact that Ai (aj , aj) =

Ai′ (aj)
2 grows like j1/3 - see Lemma 2.2.

Lagrange interpolation at zeros of Airy functions was considered in [18]. We
shall need a class of functions that are limits in Lp of the partial sums of the Airy
series expansion:

Definition 1.2
Let 0 < p <∞ and f ∈ Lp (R). We write f ∈ Gp if

lim
M→∞

‖f − SM [f ]‖Lp(R) = 0.

The relationship between Hermite polynomials and Airy functions lies in the
asymptotic [32, p. 201],

(1.25) e−x
2/2Hn (x) = 31/3π−3/42n/2+1/4 (n!)

1/2
n−1/12 {Ai (−t) + o (1)}

as n→∞, uniformly for
(1.26) x =

√
2n(1− 6−1/3 (2n)

−2/3
t),

and t in compact subsets of C. This follows from the formulation in [32] because
of the uniformity. Using this and part (a) of Theorem F with R = r = 0, we shall
prove:



8 D. S. LUBINSKY

Theorem 1.3
Let p ≥ 1. Let A be the constant in (1.19) with R = r = 0 there.
(a) Then for f ∈ Gp, we have

(1.27)
∞∑
k=1

|f (ak)|p

Ai′ (ak)
2 ≤ A

6

π2

∫ ∞
−∞
|f (t)|p dt.

(b) In particular, if p ≥ 2, f ∈ G and for some C > 0, β > 1
4 , we have

(1.28) |f (x)| ≤ C (1 + |x|)−β , x ∈ R,

then (1.27) is true.

Remark
We expect that (1.27) also holds for 0 < p < 1, but this would require (1.19) for
such p, and that does not seem to appear in the literature.
Using part (b) of Theorem F, we shall prove:

Theorem 1.4
Let 1 < p < 4. Let B be the constant in (1.22) with R = r = 0 there.
(a) For f ∈ Gp, we have

(1.29)
6

π2

∫ ∞
−∞
|f (t)|p dt ≤ B

∞∑
k=1

|f (ak)|p

Ai′ (ak)
2 .

(b) In particular, if f ∈ G and

(1.30)
∞∑
k=1

|f (ak)|p

k1/3
<∞,

then (1.29) is true.
In the sequel, C,C1, C2, ... denote constants independent of n, z, x, t, and poly-

nomials of degree ≤ n. The same symbol does not necessarily denote the same
constant in different occurrences. [x] denotes the greatest integer ≤ x. Given two
sequences {xn} , {yn} of non-zeros real numbers, we write

xn ∼ yn
if there exist constants C1 and C2 such that

C1 ≤ xn/yn ≤ C2
for n ≥ 1. Similar notation is used for functions and sequences of functions. We
establish some basic estimates and then prove Theorems 1.3 and 1.4 in Section 2.

2. Proof of Theorems 1.3 and 1.4

We start with properties of Hermite polynomials. Throughout {pn} denote the
orthonormal Hermite polynomials satisfying (1.16), with leading coeffi cient γn, and
with zeros {xjn} . In the sequel, we let

ψn (x) =

∣∣∣∣1− |x|√
2n

∣∣∣∣+ n−2/3.
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We also let

Kn (x, y) =

n−1∑
j=0

pj (x) pj (y)

denote the nth reproducing kernel, and

λn (x) = 1/Kn (x, x)

denote the nth Christoffel function. In particular, λjn = λn (xjn). The jth funda-
mental polynomial at the zeros of pn (x) is

`jn (x) =
pn (x)

p′n (xjn) (x− xjn)
.

It is also admits the identity

(2.1) `jn (x) = λjnKn (x, xjn) .

Lemma 2.1
(a)

(2.2)
γn−1
γn

=

√
n

2
.

(b) For each fixed j, as n→∞,

(2.3) xjn =
√

2n(1− 6−1/3 (2n)
2/3 {|aj |+ o (1)}).

(c) Uniformly for t in compact subsets of C, and for

(2.4) x =
√

2n
(

1− 6−1/3 (2n)
−2/3

t
)
,

we have

(2.5) (pnW ) (x) = 31/3π−121/4n−1/12 {Ai (−t) + o (1)} .
(d) For each fixed j, as n→∞,

(2.6) (p′nW ) (xjn) = 32/3π−123/4n1/12 {Ai′ (aj) + o (1)} .
(e) For each fixed j, and uniformly for t in compact subsets of C, and x of the
form (2.4)

(2.7) lim
n→∞

(`jnW ) (x)W−1 (xjn) = Lj (−t) .

(f) For all 1 ≤ j ≤ n and all x ∈ R,

(2.8) |`jnW | (x)W−1 (xjn) ≤ C
(

ψn (x)

ψn (xjn)

)1/4
1

1 + n1/2ψn (x)
1/2 |x− xjn|

.

(g) In particular for fixed j, and n ≥ n0 (j) and all x ∈ R,

(2.9) |`jnW | (x)W−1 (xjn) ≤ C n1/6ψn (x)
1/4

1 + n1/2ψn (x)
1/2 ∣∣x−√2n

∣∣ .
(h) For each fixed j,

(2.10) λ−1jnW
2 (xjn) = 34/3π−223/2n1/6Ai′ (aj)

2
(1 + o (1)) .
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Proof
(a) This follows from (1.18).
(b) See [32, p. 132, (6.32.5)]. We note that Szego uses Ai (−x) as the Airy function,
so there zeros are positive there. Moreover there the symbol ij is used for |aj |.
(c) This follows from (1.25) and (1.17).
(d) Because of the uniform convergence, we can differentiate the relation (2.5) :
uniformly for t in compact sets,

W (x) {−xpn (x) + p′n (x)} dx
dt

= 31/3π−121/4n−1/12 {−Ai′ (−t) + o (1)}

so setting x = xjn and using (2.4), we obtain (2.6).
(e) From (2.3-2.6),

(`jnW ) (x)W−1 (xjn) =
(pnW ) (x)

(p′nW ) (xjn) (x− xjn)

=
31/3π−121/4n−1/12 {Ai (−t) + o (1)}

32/3π−123/4n1/12 {Ai′ (aj) + o (1)}
(
−6−1/3 (2n+ 1)

−1/6
(t− |aj |+ o (1))

)
=

Ai (−t)
Ai′ (aj) (−t− aj)

(1 + o (1)) = Lj (−t) + o (1) .

(f) We note the following estimates [10, p. 465-467]: uniformly for n ≥ 1 and x ∈ R,

(2.11) n1/4 |pn (x)|W (x) ≤ Cψn (x)
−1/4

.

Note that for the Hermite weight, the Mhaskar-Rakhmanov number is an =
√

2n.
We have uniformly for n ≥ 1 and x ∈

[
−
√

2n,
√

2n
]
,

(2.12) λn (x) ∼ W 2 (x)√
n

ψn (x)
−1/2

,

while for all x ∈ (−∞,∞),

(2.13) λn (x) ≥ CW
2 (x)√
n

ψn (x)
1/2

.

Also uniformly for 1 ≤ k ≤ n,

(2.14) |pn−1W | (xkn) ∼ n−1/4ψn (xkn)
−1/4

and

(2.15) |p′nW | (xkn) ∼ n1/4ψn (xkn)
1/4

.

Hence

|`jnW | (x)W−1 (xjn) =
|pnW | (x)

|p′nW | (xjn) |x− xjn|
≤ C n−1/4ψn (x)

−1/4

n1/4ψn (xjn)
1/4 |x− xjn|

.

Next by Cauchy-Schwarz, and then (2.12), (2.13),

|`jnW | (x)W−1 (xjn) = λjnW
−1 (xjn)W (x) |Kn (x, xjn)|

≤ λjnW
−1 (xjn)W (x) (Kn (x, x)Kn (xjn, xjn))

1/2

=
(
λjnW

−2 (xjn)
)1/2 (

λn (x)W−2 (x)
)−1/2

≤ Cψn (xjn)
−1/4

ψn (x)
1/4

.
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Thus combining the two estimates,

|`jnW | (x)W−1 (xjn) ≤ C
(

ψn (x)

ψn (xjn)

)1/4
min

{
1,

1

n1/2ψn (x)
1/2 |x− xjn|

}
,

which can be recast as (2.8).

(g) First note that as
∣∣∣1− xjn√

2n

∣∣∣ ≤ Cn−2/3, we have ψn (xjn) ∼ n−2/3. We have to
show that uniformly in n and for x ∈ R,

(2.16) 1 + n1/2ψn (x)
1/2 |x− xjn| ∼ 1 + n1/2ψn (x)

1/2
∣∣∣x−√2n

∣∣∣ .
Let L be some large positive number. If firstly

∣∣x−√2n
∣∣ ≥ L√2nn−2/3, then from

(2.3), ∣∣∣∣ x− xjnx−
√

2n
− 1

∣∣∣∣ =

∣∣xjn −√2n
∣∣∣∣x−√2n
∣∣ ≤ C

√
2nn−2/3

L
√

2nn−2/3

so that ∣∣∣∣ x− xjnx−
√

2n

∣∣∣∣ ≤ 1 + C/L,

so that

1 + n1/2ψn (x)
1/2 |x− xjn| ≤ C

(
1 + n1/2ψn (x)

1/2
∣∣∣x−√2n

∣∣∣) .
Also, for some C1 independent of L,

1 + n1/2ψn (x)
1/2
∣∣∣x−√2n

∣∣∣
≤ 1 + n1/2ψn (x)

1/2
(
|x− xjn|+ C1

√
2nn−2/3

)
≤

(
1 + n1/2ψn (x)

1/2 |x− xjn|
)

+ n1/2ψn (x)
1/2 C1

L

∣∣∣x−√2n
∣∣∣

≤
(

1 + n1/2ψn (x)
1/2 |x− xjn|

)
+
C1
L

(
1 + n1/2ψn (x)

1/2
∣∣∣x−√2n

∣∣∣)
so that(

1 + n1/2ψn (x)
1/2
∣∣∣x−√2n

∣∣∣)(1− C1
L

)
≤
(

1 + n1/2ψn (x)
1/2 |x− xjn|

)
.

Then we have (2.16) if L is large enough. Next, if
∣∣x−√2n

∣∣ < L
√

2nn−2/3,
ψn (x) ∼ n−2/3 and then

1 ≤ 1 + n1/2ψn (x)
1/2
∣∣∣x−√2n

∣∣∣
≤ 1 + Cn1/2n−1/3

√
2nn−2/3

≤ C2 ≤ C2
(

1 + n1/2ψn (x)
1/2 |x− xjn|

)
.

Again we have (2.16).
(h) We use the confluent form of the Christoffel-Darboux formula:

λ−1jn =
γn−1
γn

p′n (xjn) pn−1 (xjn)

Here since [32, p. 106, (5.5.10)], H ′n (x) = 2nHn−1 (x) so from (1.17),

p′n (x) =
√

2npn−1 (x) .
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Together with (2.2) this gives

λ−1jn = p′n (xjn)
2
.

Then (2.10) follows from (2.6). �
Next, we record some estimates involving the Airy function:

Lemma 2.2
(a) For x ∈ [0,∞),

(2.17) |Ai (x)| ≤ C (1 + x)
−1/4

exp

(
−2

3
x
3
2

)
;

(2.18) |Ai (−x)| ≤ C (1 + x)
−1/4

.

(b) As x→∞,

(2.19) Ai′ (−x) = −π−1/2x1/4
[
cos

(
2

3
x
3
2 +

π

4

)
+O

(
x−3/2

)]
.

(2.20)

Ai′ (aj) = (−1)
j−1

π−1/2
(

3π

8
(4j − 1)

)1/6 (
1 +O

(
j−2
))

= (−1)
j−1

π−1/2 |aj |1/4 (1 + o (1)) .

(c)

(2.21) aj = − [3π (4j − 1) /8]
2/3

(
1 +O

(
1

j2

))
= −

(
3πj

2

)2/3
(1 + o (1)) .

(d)

(2.22) |aj | − |aj−1| = π |aj |−1/2 (1 + o (1)) .

(d) For j ≥ 1 and t ∈ [0,∞),

(2.23) |Lj (t)| ≤ Cj−5/6 (1 + t)
−1/4

exp

(
−2

3
t
3
2

)
and

(2.24) |Lj (−t)| ≤ C

1 + (1 + t)
1/4 |aj |1/4 |t− |aj ||

.

Proof
(a) The following asymptotics and estimates for Airy functions are listed on pages
448-449 of [1]: see (10.4.59-61) there.

Ai (x) =
1

2π1/2
x−1/4 exp

(
−2

3
x
3
2

)
(1 + o (1) , x→∞;

Ai (−x) = π−1/2x−1/4
[
sin

(
2

3
x
3
2 +

π

4

)
+O

(
x−

3
2

)]
, x→∞.

Then (2.17) and (2.18) follow as Ai is entire.
(b), (c), (d) The zeros {aj} of Ai satisfy [1, p. 450, (10.4.94,96)]

aj = − [3π (4j − 1) /8]
2/3

(
1 +O

(
1

j2

))
= −

(
3πj

2

)2/3
(1 + o (1)) .
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Ai′ (aj) = (−1)
j−1

π−1/2
(

3π

8
(4j − 1)

)1/6 (
1 +O

(
j−2
))

= (−1)
j−1

π−1/2 |aj |1/4 (1 + o (1)) .

Then (2.22) also follows, as was shown in [12, p. 431, eqn. (2.7)].
(d) We first prove (2.24). For t ∈ [0,∞),

|Lj (−t)| =

∣∣∣∣ Ai (−t)
Ai′ (aj) (−t− aj)

∣∣∣∣
≤ C (1 + t)

−1/4

j1/6 |t− |aj ||

by (2.18), (2.20). If (1 + t)
1/4

j1/6 |t− |aj || ≥ 1
2 |a1|, we then obtain (2.24). In the

contrary case,

(1 + t)
1/4

j1/6 |t− |aj || <
1

2
|a1|

⇒ |t− |aj || <
1

2
|a1| ≤

1

2
|aj | .

We then for some ξ between −t and aj , from (2.19),

|Lj (t)| =
∣∣∣∣ Ai′ (ξ)Ai′ (aj)

∣∣∣∣ ≤ C ( |ξ||aj |
)1/4

≤ C.

We again obtain (2.24). Next, for t ∈ (0,∞), we have from (2.18), (2.20),

|Lj (t)| =

∣∣∣∣ Ai (t)

Ai′ (aj) (t− aj)

∣∣∣∣
≤ C (1 + t)

−1/4

j1/6 |aj |
exp

(
−2

3
t
3
2

)
≤ Cj−5/6 (1 + t)

−1/4
exp

(
−2

3
t
3
2

)
.

�
Next, we record a restricted range inequality:

Lemma 2.3
Let η ∈ (0, 1), 0 < p <∞. There exists B,n0 such that for n ≥ n0 and polynomials
P of degree ≤ n+ n1/3,

(2.25) ‖PW‖Lp(R) ≤ (1 + η) ‖PW‖Lp[−Dn,Dn] ,
where

Dn =
√

2n
(

1 +Bn−2/3
)
.

Proof
It suffi ces to prove that

(2.26) ‖PW‖Lp(R\[−Dn,Dn]) ≤ η ‖PW‖Lp[−Dn,Dn] .

For p ≥ 1, the triangle inequality then yields (2.25). For p < 1, we can use the
triangle inequality on the integral inside the norm and then just reduce the size of
η appropriately. Let m = m (n) = n+ n1/3. It follows from Theorem 4.2(b) in [11,
p. 96] that for B ≥ 0, P of degree ≤ m,
(2.27)

‖PW‖Lp(R\[−√2m(1+ 1
2Bm

−2/3),
√
2m(1+ 1

2Bm
−2/3)) ≤ C1 exp

(
−C2B3/2

)
‖PW‖Lp[−√2m,√2m] .
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Here C1 and C2 are independent of m,P,B. Choose B ≥ 2 so large that

(2.28) C1 exp
(
−C2B3/2

)
≤ η.

Now
√

2m

(
1 +

1

2
Bm−2/3

)
/Dn

=

√
m

n

1 + 1
2Bm

−2/3

1 +Bn−2/3

≤
√

1 + n−2/3
1 + 1

2Bn
−2/3

1 +Bn−2/3
≤ 1

for n ≥ n0 (B) as B ≥ 2. Then also
√

2m/Dn ≤ 1, and

R\[−
√

2m

(
1 +

1

2
Bm−2/3

)
,
√

2m

(
1 +

1

2
Bm−2/3

)
] ⊇ R\ [−Dn, Dn]

and (2.26) follows from (2.27) and (2.28). �
Following is the main part of the proof of Theorem 1.3:

Lemma 2.4
Fix M ≥ 1 and let

(2.29) P (x) =

M∑
k=1

ckLk (x) .

Then

(2.30)
M∑
k=1

|P (ak)|p

Ai′ (ak)
2 ≤ A

6

π2

∫ ∞
−∞
|P (t)|p dt.

Here A is the constant in (1.19) with R = r = 0.
Proof
Choose η ∈ (0, 1) and Dn, B as in the above lemma. Let

(2.31) Rn (x) = Un (x)

M∑
k=1

ck`kn (x)W−1 (xkn) .

Here we set

(2.32) Un (x) =

Tm
(

x
Dn

)
− Tm (1)

m2
(

x
Dn
− 1
)

L

,

where Tm is the usual Chebyshev polynomial, L is some large enough even positive
integer, and m =

[
ε
Ln

1/3
]
, while ε ∈ (0, 1). Since Rn has degree ≤ n + n1/3, we

have by Lemma 2.3, at least for large enough n, that

(2.33) ‖RnW‖Lp(R) ≤ (1 + η) ‖RnW‖Lp[−Dn,Dn] .

We first estimate the norm on the right by splitting the integral inside the norm
into ranges near 1 and away from 1. First let us deal with the range

I1 =
[√

2n
(

1− 6−1/3 (2n)
−2/3

R
)
, Dn

]
,



MARCINKIEWICZ-ZYGMUND INEQUALITIES 15

where R is some fixed (large) number. For x ∈ I1, write for t ∈ [−R, 61/322/3B],

(2.34) x =
√

2n
(

1 + 6−1/3 (2n)
−2/3

t
)
.

To find the asymptotics for Un, also write
x

Dn
= cos

s

m

⇒ 1− x

Dn
= 2 sin2

s

2m
=

1

2

( s
m

)2
(1 + o (1))

⇒ s =

√
2m2

(
1− x

Dn

)
+ o (1)

⇒ s =
ε

L

√
2
(
B − 6−1/32−2/3t

)
+ o (1) .

Then if S (u) = sinu
u is the sinc kernel,

Tm

(
x
Dn

)
− Tm (1)

m2
(

x
Dn
− 1
)

=
cos s− 1

m2
(

x
Dn
− 1
) =

−2 sin2 s2
− 12s2

+ o (1)

=
(
S
(s

2

))2
+ o (1) = S

(
ε

L

√
B − 6−1/32−2/3t

2

)
+ o (1) ,

and uniformly in such x,

Un (x) = S

(
ε

L

√
B − 6−1/32−2/3t

2

)L
+ o (1) .

In particular, for each fixed k, as n→∞, recalling (2.3), and that ak < 0,

(2.35) Un (xkn) = S

(
ε

L

√
B + 6−1/32−2/3 |ak|

2

)L
+ o (1) .

Then uniformly for x in this range, from Lemma 2.1(e) and recalling (2.29),

|RnW | (x) =

∣∣∣∣∣Un (x)

M∑
k=1

ck (`knW ) (x)W−1 (xkn)

∣∣∣∣∣
=

∣∣∣∣∣∣S
(
ε

L

√
B − 6−1/32−2/3t

2

)L
P (−t)

∣∣∣∣∣∣+ o (1) .(2.36)

Then as |S (u)| ≤ 1,∫
I1
|RnW |p (x) dx

≤ 6−1/3 (2n)
−1/6

(∫ 61/322/3B

−R
|P (−t)|p dt+ o (1)

)
.

(2.37)
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Next, for x ∈ [−Dn, Dn] ,

|Un (x)| ≤

min

1,
2∣∣∣m2

(
x
Dn
− 1
)∣∣∣

L

≤ C(
1 +m2

∣∣∣ xDn − 1
∣∣∣)L

≤ Cn−2L/3
1(

n−2/3 +
∣∣∣ xan − 1

∣∣∣)L
by straightforward estimation. Here C depends on ε. Then from Lemma 2.1(g),

(2.38) |Rn (x)W (x)| ≤ Cn−2L/3 1(
n−2/3 +

∣∣∣ xan − 1
∣∣∣)L

n1/6ψn (x)
1/4

1 + n1/2ψn (x)
1/2 |x− an|

.

Of course here C depends on the particular P and ε, but not on n nor R nor x.
Then ∫

[−Dn,Dn]\I1
|RnW | (x)

p
dx

≤ Cn−2Lp/3+p/6
∫ √2n(1−6−1/3(2n)−2/3R)

−Dn

 1(
n−2/3 +

∣∣∣ x√
2n
− 1
∣∣∣)L

n1/6ψn (x)
1/4

1 + n1/2ψn (x)
1/2 ∣∣x−√2n

∣∣

p

dx

≤ Cn−2Lp/3+p/6+1/2
∫ 1−6−1/3(2n)−2/3R

−(1+Bn−2/3)

[
1(

n−2/3 + |y − 1|
)L

(
|1− |y||+ n−2/3

)1/4
1 + n

(
|1− |y||+ n−2/3

)1/2 |y − 1|

]p
dy

≤ Cn−2Lp/3+p/6+1/2


∫ 0
−(1+Bn−2/3)

[
(|1−|y||+n−2/3)

1/4

1+n(|1−|y||+n−2/3)
1/2

]p
dy

+
∫ 1−6−1/3(2n)−2/3R
0

[
1

n|y−1|L+5/4

]p
dy


≤ Cn−2Lp/3+p/6+1/2

{
n−2/3

∫ n2/3

−B

[
n−1/6 (|s|+ 1)

1/4

1 + n2/3 (|s|+ 1)
1/2

]p
ds+ n−p

(
Rn−2/3

)1−(L+5/4)p}

≤ Cn−2Lp/3+p/6+1/2

{
n−2/3−5p/6

∫ n2/3

−B

1

(|s|+ 1)
p/4

ds+ n−p
(
Rn−2/3

)1−(L+5/4)p}

≤ Cn−2Lp/3+p/6+1/2
{
n−5p/6 + n−p

(
Rn−2/3

)1−(L+5/4)p}
≤ Cn−2Lp/3−2p/3+1/2 + Cn−1/6R1−(L+5/4)p.

Assuming that L is large enough so that

−2Lp/3− 2p/3 + 1/2 < −1/6

and
1− (L+ 5/4) p < −1,

we have ∫
[−Dn,Dn]\I1

|RnW | (x)
p
dx ≤ o

(
n−1/6

)
+ Cn−1/6R−1.
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Then combined with (2.37) and (2.33) this gives

(1 + η)
−p
∫ ∞
−∞
|RnW |p

≤ 6−1/3 (2n)
−1/6

∫ 61/322/3B

−R
|P (t)|p dt+ o

(
n−1/6

)
+ Cn−1/6R−1.

(2.39)

Next from (2.10), and (2.35-36), for each fixed k, as P (ak) = ck,

λknW
−2 (xkn) |RnW (xkn)|p

=
[
34/3π−223/2n1/6Ai′ (ak)

2
]−1

∣∣∣∣∣S
(
ε

L

√
B + 6−1/32−2/3 |ak|

2

)∣∣∣∣∣
Lp

|P (ak)|p + o (1)


so

M∑
k=1

λknW
−2 (xkn) |RnW (xkn)|p

=
[
34/3π−223/2n1/6

]−1
M∑
k=1

|P (ak)|p

Ai′ (ak)
2

∣∣∣∣∣S
(
ε

L

√
B + 6−1/32−2/3 |ak|

2

)∣∣∣∣∣
Lp

+ o (1)

 .

(2.40)

Together with (1.19) and (2.39), this gives as n→∞,

(1 + η)
−p
[
34/3π−223/2

]−1 M∑
k=1

|P (ak)|p

Ai′ (ak)
2

∣∣∣∣∣S
(
ε

L

√
B + 6−1/32−2/3 |ak|

2

)∣∣∣∣∣
Lp

≤ 6−1/32−1/6A

∫ 61/322/3B

−R
|P (t)|p dt+ CR−1.

Here B, ε are independent of R. We let R→∞ and obtain

(1 + η)
−p

M∑
k=1

|P (ak)|p

Ai′ (ak)
2

∣∣∣∣∣S
(
ε

L

√
B + 6−1/32−2/3 |ak|

2

)∣∣∣∣∣
Lp

≤ 6π−2A

∫ 61/321/6B

−∞
|P (t)|p dt.

Now let ε→ 0+ :

(1 + η)
−p

M∑
k=1

|P (ak)|p

Ai′ (ak)
2 ≤ 6π−2A

∫ ∞
−∞
|P (t)|p dt.

Finally we can let η → 0 :

M∑
k=1

|P (ak)|p

Ai′ (ak)
2 ≤ 6π−2A

∫ ∞
−∞
|P (t)|p dt.
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�
Proof of Theorem 1.3 (a)
Recall that SM [f ] is the partial sum defined in (1.24). As f ∈ Gp,

lim
M→∞

∫ ∞
−∞
|f (t)− SM [f ] (t)|p dt = 0.

Then for a fixed positive integer L, and by Lemma 2.4, and as SM [f ] (ak) = f (ak)
for k ≤M,(

L∑
k=1

|f (ak)|p

Ai′ (ak)
2

)1/p
= lim

M→∞

(
L∑
k=1

|SM [f ] (ak)|p

Ai′ (ak)
2

)1/p

≤ lim sup
M→∞

(
M∑
k=1

|SM [f ] (ak)|p

Ai′ (ak)
2

)1/p

≤
(

6

π2
A

)1/p
lim sup
M→∞

(∫ ∞
−∞
|SM [f ] (t)|p dt

)1/p
≤

(
6

π2
A

)1/p
lim sup
M→∞

{(∫ ∞
−∞
|SM [f ] (t)− f (t)|p dt

)1/p
+

(∫ ∞
−∞
|f (t)|p dt

)1/p}

=

(
6

π2
A

)1/p(∫ ∞
−∞
|f (t)|p dt

)1/p
.

Now let L→∞. �
For Theorem 1.3(b), we need :

Lemma 2.5
Assume that for some β > 1

4 , we have

(2.41) |f (x)| ≤ C (1 + |x|)−β , x ∈ (−∞, 0) .

Then for M ≥ 1, and all t ∈ (−∞, 0],

(2.42) |SM [f ]| (t) ≤ C (1 + |t|)−β log (2 + |t|) .

For t ∈ (0,∞) ,

(2.43) |SM [f ]| (t) ≤ C (1 + t)
−1/4

exp

(
−2

3
t
3
2

)
.

Proof
From (2.41) and (2.24), followed by (2.22), for t ≥ 0,

|SM [f ]| (−t) ≤ C

M∑
j=1

|aj |−β

1 + (1 + t)
1/4 |aj |1/4 |t− |aj ||

≤ C

M∑
j=1

(|aj | − |aj−1|)
|aj |−β+1/2

1 + (1 + t)
1/4 |aj |1/4 |t− |aj ||

≤ C

∫ ∞
0

s−β+1/2

1 + (1 + t)
1/4

s1/4 |t− s|
ds.
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If 0 ≤ t ≤ 1, we can bound this by

C

∫ 2

0

s−β+1/2ds+ C

∫ ∞
2

s−β−3/4ds ≤ C,

recall β > 1
4 . If t ≥ 1, we can bound this by

C

∫ ∞
0

s−β+1/2

1 + t1/4s1/4 |t− s|ds

= Ct−β+3/2
∫ ∞
0

u−β+1/2

1 + t3/2u1/4 |u− 1|du

≤ Ct−β+3/2

[
t−3/2

∫ 1−1/t3/2
0

u−β+1/4du
|u−1| +

∫ 1+1/t3/2
1−1/t3/2 1du

+t−3/2
∫ 2
1+1/t3/2

du
|u−1| + t−3/2

∫∞
2
u−β−3/4du

]
≤ Ct−β [log (1 + |t|) + 1 + log (1 + |t|) + 1] .

Thus we have the bound (2.42). Next, if t ≥ 0, we obtain from (2.23) and (2.21),

|SM [f ]| (−t) ≤ C (1 + t)
−1/4

exp

(
−2

3
t
3
2

) M∑
j=1

|aj |−β j−5/6

≤ C (1 + t)
−1/4

exp

(
−2

3
t
3
2

) M∑
j=1

j−5/6−2β/3

≤ C (1 + t)
−1/4

exp

(
−2

3
t
3
2

)
,

as 5/6 + 2β/3 > 5/6 + 1/6 > 1. �

Proof of Theorem 1.3(b)
Recall that we are assuming p ≥ 2. If N > M , we have in view of the lemma and
our bound on f ∫ ∞

−∞
|SN [f ]− SM [f ]|p (t) dt

≤ C

∫ ∞
−∞
|SN [f ]− SM [f ]|2 (t) dt

→ 0 as M,N →∞,

as f ∈ G implies that SM [f ]→ f in L2 (R) as M →∞. It follows that {SM [f ]} is
Cauchy in Lp (R), so has a limit there. This limit must be f , as f ∈ G. Then also
f ∈ Gp and the result follows. �

Lemma 2.6
Assume that (1.22) holds with R = r = 0. Let P =

∑M
k=1 P (ak)Lk and 1 < p < 4.

Then

(2.44)
∫ ∞
−∞
|P (t)|p dt ≤ Bπ

2

6

M∑
j=1

|P (ak)|p

Ai′ (ak)
2 .

Proof
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We use (1.22) with R = r = 0. If Rn is a polynomial of degree ≤ n− 1,

(2.45)
∫ ∞
−∞
|(RnW ) (x)|p dx ≤ B

n∑
j=1

λjn |Rn (xjn)|pW p−2 (xjn) .

Let

Rn (x) =

M∑
k=1

P (ak) `kn (x)W−1 (xkn) .

Let R > 0 and

I1 =
[√

2n
(

1− 6−1/3 (2n)
−2/3

R
)
,
√

2n(1 + 6−1/3 (2n)
−2/3

R)
]
.

From (2.7) with x of the form (2.4), we have

|RnW | (x) = |P (−t)|+ o (1) ,

so ∫
I1
|RnW | (x)

p
dx = 6−1/3 (2n)

−1/6
(∫ R

−R
|P (t)|p dt+ o (1)

)
.

Also, as at (2.40),
n∑
j=1

λjn |Rn (xjn)|pW p−2 (xjn)

=

M∑
j=1

λjn |Rn (xjn)|pW p−2 (xjn)

= (1 + o (1))
[
34/3π−223/2n1/6

]−1 M∑
k=1

|P (ak)|p

Ai′ (ak)
2 .

Then (2.45) gives

6−1/3 (2n)
−1/6

(∫ R

−R
|P (t)|p dt+ o (1)

)
≤ B (1 + o (1))

[
34/3π−223/2n1/6

]−1 M∑
k=1

|P (ak)|p

Ai′ (ak)
2 .

or (∫ R

−R
|P (t)|p dt+ o (1)

)
≤ B (1 + o (1))

π2

6

M∑
k=1

|P (ak)|p

Ai′ (ak)
2 .

Letting R→∞ gives (2.44). �

Proof of Theorem 1.4
(a) Lemma 2.6 gives

‖f‖Lp(R) ≤ ‖f − SM [f ]‖Lp(R) + ‖SM [f ]‖Lp(R)

≤ ‖f − SM [f ]‖Lp(R) +

(
B
π2

6

M∑
k=1

|f (ak)|p

Ai′ (ak)
2

)1/p

→ 0 +

(
B
π2

6

∞∑
k=1

|f (ak)|p

Ai′ (ak)
2

)1/p
,
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as M →∞.
(b) Our assumption that f ∈ G ensures that f = limM→∞ SM [f ] uniformly in
compact sets. Next, given N > M , we have from Lemma 2.6,∫ ∞

−∞
|SN [f ]− SM [f ]|p (t) dt ≤ B

π2

6

N∑
k=M+1

|f (ak)|p

Ai′ (ak)
2

≤ C

∞∑
k=M+1

|f (ak)|p

k1/3
→ 0,

as k → ∞ - recall (2.20) and our hypothesis (1.30). So {SM [f ]} is Cauchy in
complete Lp (R) and as above, its limit in Lp (R)must be f , so that (a) is applicable.
�
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