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ON MARCINKIEWICZ-ZYGMUND INEQUALITIES AT JACOBI
ZEROS AND THEIR BESSEL FUNCTION COUSINS

D. S. LUBINSKY

Abstract. Marcinkiewicz-Zygmund Inequalities involving the zeros {xkn} of
Jacobi polynomials for the weight wα,β can take the form

A

n∑
k=1

λkn |P (xkn)|p wσ,τ (xkn) ≤
∫ 1

−1
|P (x)|p wα+σ,β+τ (x) dx

≤ B
n∑
k=1

λn |P (xkn)|p wσ,τ (xkn) .

Here p > 1, P is any polynomial of degree < n, the λkn are Gauss quadrature
weights for wα,β , the parameters σ, τ are appropriately chosen, and A,B are
independent of n. We show how these generate analogous inequalities at zeros
{jk} of the Bessel function Jα, with the same constants A and B :

A
∞∑
k=1

j2σk J∗′α (jk)
−2 |f (jk)|p ≤

∫ ∞
0
|f (t)|p t2σ+2α+1dt

≤ B

∞∑
k=1

j2σk J∗′α (jk)
−2 |f (jk)|p .

Here f is an even entire function of exponential type ≤ 1 for which the integral
in the middle converges.

1. Introduction

In a recent paper, the author studied the relationship between the classical
Plancherel-Polya inequalities and the classical Marcinkiewicz-Zygmund inequali-
ties. The former [6, p. 152] assert that for 1 < p < ∞, and entire functions f of
exponential type at most π,

(1.1) Ap

∞∑
k=−∞

|f (k)|p ≤
∫ ∞
−∞
|f |p ≤ Bp

∞∑
j=−∞

|f (k)|p ,

provided the integral is finite. For 0 < p ≤ 1, the left-hand inequality is still
true, but the right-hand inequality is not. We assume that Bp is taken as small as
possible, and Ap as large as possible.
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The Marcinkiewicz-Zygmund inequalities assert [19, Vol. II, p. 30] that for
p > 1, n ≥ 1, and polynomials P of degree ≤ n− 1,

(1.2)
A′p
n

n∑
k=1

∣∣∣P (e2πik/n
)∣∣∣p ≤ ∫ 1

0

∣∣P (e2πit
)∣∣p dt ≤ B′p

n

n∑
k=1

∣∣∣P (e2πik/n
)∣∣∣p .

Here too, A′p and B
′
p are independent of n and P , and the left-hand inequality is

also true for 0 < p ≤ 1 [7]. The author [8] proved that the inequalities (1.1) and
(1.2) are equivalent, in the sense that each implies the other. Moreover, the sharp
constants are the same:

Theorem A
For 0 < p <∞, Ap = A′p and for 1 < p <∞, Bp = B′p.
These inequalities are useful in studying convergence of Fourier series, Lagrange

interpolation, in number theory, and weighted approximation. They have been ex-
tended to many settings, and there are a great many methods to prove them [2],
[5], [7], [9], [10], [11], [15], [17], [18]. The sharp constants in (1.1) and (1.2) are
unknown, except for the case p = 2, where of course we have equality rather than
inequality, so that A2 = B2 = A′2 = B′2 = 1 [6, p. 150].

In this paper, we explore an analogous theme, where instead of roots of unity,
we consider polynomial inequalities at zeros of Jacobi polynomials, and instead of
the integers, we consider zeros of Bessel functions. We first need some notation.
Let α, β > −1 and

wα,β (x) = (1− x)
α

(1 + x)
β
, x ∈ (−1, 1) .

For n ≥ 1, let Pα,βn denote the standard Jacobi polynomial of degree n, so that it
has degree n, satisfies the orthogonality conditions∫ 1

−1

Pα,βn (x)xkwα,β (x) dx = 0, 0 ≤ k < n,

and is normalized by

Pα,βn (1) =

(
n+ α

n

)
.

Let
xnn < xn−1,n < ... < x1n

denote the zeros of Pα,βn . Let {λkn} denote the weights in the Gauss quadrature
for wα,β , so that for all polynomials P of degree ≤ 2n− 1,∫ 1

−1

Pwα,β =

n∑
k=1

λknP (xkn) .

There is a classical analogue of (1.2), established for special α, β by Richard
Askey, and for all α, β > −1 (and for more general "generalized Jacobi weights")
by P. Nevai, and his collaborators [7], [9], [12], [13], with later work by König and
Nielsen [5], and for doubling weights by Mastroianni and Totik [11]. The following
special case follows from Theorem 5 in [9, eqn. (1.19), p. 534]:

Theorem B
Let α, β, τ , σ satisfy α, β, α + σ, β + τ > −1. Let p > 0. For n ≥ 1, let {xkn}
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denote the zeros of the Jacobi polynomial Pα,βn and {λkn} denote the corresponding
Gauss quadrature weights. There exists A > 0 such that for n ≥ 1, and polynomials
P of degree ≤ n− 1,

A

n∑
k=1

λkn |P (xkn)|p (1− xkn)
σ

(1 + xkn)
τ ≤

∫ 1

−1

|P (x)|p (1− x)
α+σ

(1 + x)
β+τ

dx.

(1.3)

We emphasize that this is not the most general form of this result, but one suitable
for our purposes.
The converse inequality is much more delicate, and in particular holds only for

p > 1, and even then only for special cases of the parameters. It too was investigated
by P. Nevai, with later work by Yuan Xu [17], [18], König and Nielsen [5]. König
and Nielsen gave the exact range of p for which

(1.4)
∫ 1

−1

|P (x)|p (1− x)
α

(1 + x)
β
dx ≤ B

n∑
k=1

λkn |P (xkn)|p ,

holds with B independent of n and P . Let

µ (α, β) = max

{
1, 4

α+ 1

2α+ 5
, 4

β + 1

2β + 5

}
;

m (α, β) = max

{
1, 4

α+ 1

2α+ 3
, 4

β + 1

2β + 3

}
;

M (α, β) =
m (α, β)

m (α, β)− 1
.(1.5)

Then (1.4) holds for all n and P iff

(1.6) µ (α, β) < p < M (α, β) .

The most general suffi cient condition for a converse quadrature inequality seems
due to Yuan Xu [17, pp. 881-882]. When we restrict to Jacobi weights, with the
same weight on both sides, Xu’s inequality takes the following form:

Theorem C
Let α, β, τ , σ satisfy α, β, α+ σ, β + τ > −1. Let p > 1, and assume that

(1.7)
p

2

(
α+

1

2

)
− (α+ 1) < σ < (p− 1) (α+ 1)−max

{
0,
p

2

(
α+

1

2

)}
.

(1.8)
p

2

(
β +

1

2

)
− (β + 1) < τ < (p− 1) (β + 1)−max

{
0,
p

2

(
β +

1

2

)}
.

Then there exists B > 0 such that for n ≥ 1, and polynomials P of degree ≤ n− 1,
(1.9)∫ 1

−1

|P (x)|p (1− x)
α+σ

(1 + x)
β+τ

dx ≤ B
n∑
k=1

λkn |P (xkn)|p (1− xkn)
σ

(1 + xkn)
τ
.

Remarks
For a given α, β, p, it is always possible to choose σ, τ satisfying (1.7), (1.8) and
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α + σ, β + τ > −1. Indeed, the difference between the upper and lower bounds in
(1.7) is

p (α+ 1)−max

{
p

2

(
α+

1

2

)
, p

(
α+

1

2

)}
= pmin

{
α

2
+

3

4
,

1

2

}
> 0.

Inequalities of the type (1.9) for doubling weights have been established by Mas-
troianni and Totik [10], [11] under the additional condition that one needs to restrict
the degree of P in (1.9) further, such as deg (P ) ≤ ηn for some η ∈ (0, 1) depending
on the particular doubling weight.
Now let α > −1 and define the Bessel function of order α,

(1.10) Jα (z) =
(z

2

)α ∞∑
k=0

(−1)
k

(
z
2

)2k
k!Γ (k + α+ 1)

.

We shall also use

(1.11) J∗α (z) = Jα (z) /zα,

which has the advantage of being an entire function for all α > −1. J∗α has real
simple zeros, and we denote the positive zeros by

0 < j1 < j2 < ...

while for k ≥ 1,

j−k = −jk.
It is unfortunate that the symbol j is used for this zero, but this is the standard
notation, so we conform to it.
The connection between Jacobi polynomials and Bessel functions is given by the

classical Mehler-Heine asymptotic, which holds uniformly for z in compact subsets
of C [16, p. 192]:

lim
n→∞

n−αPα,βn

(
1− 1

2

( z
n

)2
)

= lim
n→∞

n−αPα,βn

(
cos

z

n

)
=
(z

2

)−α
Jα (z) = 2αJ∗α (z) .

(1.12)

In this paper, we use this asymptotic to pass from inequalities such as (1.3) and
(1.9) to analogous ones for entire functions involving zeros of Bessel functions.
There is an extensive literature dealing with quadrature sums and Lagrange

interpolation at the {jk}. In particular, there is the quadrature formula [3, p. 305],
[4, p. 49] ∫ ∞

−∞
|x|2α+1

f (x) dx =
2

τ2α+2

∞∑
k=−∞,k 6=0

1

|J∗′α (jk)|2
f

(
jk
τ

)
,

valid for all entire functions f of exponential type at most 2τ , for which the integral
on the left-hand side is finite. The paper of Grozev and Rahman also contains the
following converse Marcinkiewicz-Zygmund type inequality: let α ≥ − 1

2 and p > 1;

or −1 < α < − 1
2 and 1 < p < 2

|1+2α| . Then for entire functions f of exponential
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type ≤ τ for which |x|α+ 1
2 f (x) ∈ Lp (R\ (−δ, δ)), for some δ > 0, [4, Lemma 14,

p. 58; Lemma 13, p. 57]

(1.13)
∫ ∞
−∞

∣∣∣|x|α+ 1
2 f (x)

∣∣∣p dx ≤ B∗

τ

∞∑
k=−∞,k 6=0

∣∣∣∣ 1

τα+ 1
2 J∗′α (jk)

f

(
jk
τ

)∣∣∣∣p .
Here B∗ depends on α and p. In the other direction, since jk+1 − jk is bounded
below by a positive constant for all k, classical inequalities from the theory of entire
functions [6, p. 150] show that

∞∑
k=−∞,k 6=0

|f (jk)|p ≤ C
∫ ∞
−∞
|f (x)|p dx

for entire functions of finite exponential type for which the right-hand side is finite.
While Grozev and Rahman note the analogous nature of Lagrange interpolation

at zeros of Jacobi polynomials and Bessel functions, and also the Mehler-Heine
formula, their proofs proceed purely from properties of Bessel functions. It is the
purpose of this paper to show that one can pass from inequalities like (1.3) to
analogues for Bessel functions using scaling limits, keeping the same constants,
much as was done in [8].
For k ≥ 1, let

(1.14) Lk (z) = 2jk
J∗a (z)

J∗′α (jk) (z2 − j2
k)

denote the fundamental "polynomial" of interpolation at {jk}, so that
Lk (jm) = δjm.

For functions f : [0,∞)→ R, define the Lagrange interpolation series

(1.15) L [f ] (x) =

∞∑
k=1

f (jk)Lk (x) .

For even entire functions f of exponential type, with appropriate growth restric-
tions, we have f = L [f ], see Lemma 2.3 below, or [4]. Let P denote the set of all
finite linear combinations of {Lk}k≥1, that is expressions of the form

n∑
k=1

ckLk (x)

with any n ≥ 1 and arbitrary real {ck}. Let Lp1
(
(0,∞) , t2α+2σ+1

)
denote the space

of all even entire functions f of exponential type ≤ 1 with∫ ∞
0

|f (t)|p t2α+2σ+1dt <∞.

It follows from estimates below that P ⊂ Lp1
(
(0,∞) , t2α+2σ+1

)
at least when (1.17)

below holds. Also, let P̄ (p, σ) denote the closure of P in Lp1
(
(0,∞) , t2α+2σ+1

)
.

This is the set of all functions f ∈ Lp1
(
(0,∞) , t2α+2σ+1

)
such that for some sequence

{Pm} in P, we have

(1.16) lim
m→∞

∫ ∞
0

|f (t)− Pm (t)|p t2α+2σ+1dt = 0.

We prove:
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Theorem 1.1
Assume that p > 0, α, β,α+ σ, β + τ > −1, and

(1.17) −p
(
α

2
+

5

4

)
+ α+ σ + 1 < 0.

Let A be as in Theorem B. Then

(1.18) 2A

∞∑
k=1

j2σ
k J∗′α (jk)

−2 |f (jk)|p ≤
∫ ∞

0

|f (t)|p t2α+2σ+1dt,

for all f ∈ Lp1
(
(0,∞) , t2α+2σ+1

)
.

Remarks
(a) In using Theorem B to prove Theorem 1.1, we only really need that for each
fixed M ≥ 1, and n exceeding some threshold depending on M , we have for all P
of degree ≤ n− 1,

A

M∑
k=1

λkn |P (xkn)|p (1− xkn)
σ

(1 + xkn)
τ ≤

∫ 1

−1

|P (x)|p (1− x)
α+σ

(1 + x)
β+τ

dx.

(b) It is not clear if one can pass from Theorem 1.1 back to Theorem B, in the way
that we passed from the Plancherel-Polya inequalities back to the Marcinkiewicz-
Zygmund inequalities in [8].
(c) The restriction (1.17) on the parameters is need to ensure convergence. It is
implied by the restrictions in (1.7).
(d) We deduce a general result for not necessarily even functions:

Corollary 1.2
Assume that p > 0, α > −1, α+ σ > −1, and

(1.19) −p
(
α

2
+

3

4

)
+ α+ σ + 1 < 0.

There exists A1 > 0 such that

(1.20) A1

∞∑
k=−∞,k 6=0

|jk|2σ J∗′α (jk)
−2 |f (jk)|p ≤

∫ ∞
−∞
|f (t)|p |t|2α+2σ+1

dt,

for all for all entire functions f of exponential type ≤ 1 for which the integral in
the right-hand side converges.

Following is the converse quadrature sum inequality that we can deduce from
Theorem C:

Theorem 1.3
Assume that p > 1, α, β,α + σ, β + τ > −1, and that (1.7) and (1.8) hold. Let B
be as in Theorem C. Then for f ∈ Lp1

(
(0,∞) , t2α+2σ+1

)
, we have

(1.21)
∫ ∞

0

|f (t)|p t2α+2σ+1dt ≤ 2B

∞∑
k=1

j2σ
k J∗′α (jk)

−2 |f (jk)|p .

In particular this holds for σ = τ = 0 if p satisfies (1.6) with β = α. Moreover,
for any α, β, p, it is possible to choose σ and τ satisfying (1.7), (1.8) so that (1.21)
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holds.

Remarks
(a) Note that Theorem 1.3 requires only the conclusion (1.9), not the hypotheses
(1.7) and (1.8).
(b) By choosing 2σ + 2α+ 1 = p

(
α+ 1

2 −∆
)
, we can also recast (1.21) as

(1.22)
∫ ∞

0

∣∣∣tα+ 1
2−∆f (t)

∣∣∣p dt ≤ C ∞∑
k=1

∣∣∣jα+ 1
2−∆

k f (jk)
∣∣∣p ,

some C independent of f .

Corollary 1.4
Assume that p > 1, α ≥ − 1

2 , α+ σ > −1, and that

(1.23) σ > D :=
p

2

(
α+

1

2

)
− (α+ 1)

but

(1.24) σ 6= D + `
p

2
for some non-negative integer `.

There exists B1 > 0 such that

(1.25)
∫ ∞
−∞
|f (t)|p |t|2α+2σ+1

dt ≤ B1

∞∑
k=−∞,k 6=0

|jk|2σ J∗′α (jk)
−2 |f (jk)|p ,

for all entire functions f of exponential type ≤ 1, for which the left-hand side
converges.
We expect that the restriction (1.24) can be dropped.
In the sequel, C,C1, C2, ... denote constants independent of n, z, x, t, and poly-

nomials of degree ≤ n. The same symbol does not necessarily denote the same
constant in different occurrences. [x] denotes the greatest integer ≤ x. Given two
sequences {xn} , {yn} of non-zeros real numbers, we write

xn ∼ yn
if there exist constants C1 and C2 such that

C1 ≤ xn/yn ≤ C2

for n ≥ 1. Similar notation is used for functions and sequences of functions. We let

S (z) =
sin z

z
.

We prove Theorem 1.1, and Corollary 1.2 in Section 2; and Theorem 1.3 and Corol-
lary 1.4 in Section 3.

2. Proof of Theorem 1.1 and Corollary 1.2

Let us fix α, β and as in Section 1, let {xjn} denote the zeros of Pα,βn , and {`jn}
denote the fundamental polynomials of Lagrange interpolation at {xjn}. Thus

(2.1) `jn (x) =
Pα,βn (x)

Pα,β′n (xjn) (x− xjn)
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and

(2.2) `jn (xkn) = δjk.

We shall also need the orthonormal polynomials pα,βn (x) = γnx
n + ... satisfying

(2.3)
∫ 1

−1

pα,βn pα,βm wα,β = δmn;

the nth reproducing kernel

Kn (x, y) =

n−1∑
k=0

pα,βk (x) pα,βk (y)

=
γn−1

γn

pα,βn (x) pα,βn−1 (y)− pα,βn (y) pα,βn−1 (x)

x− y ;(2.4)

and nth Christoffel function

(2.5) λn (x) = 1/Kn (x, x) .

Lemma 2.1
(a) For each k ≥ 1,

(2.6) lim
n→∞

n2 (1− xkn) =
j2
k

2
.

(b) Uniformly for n ≥ 2, 1 ≤ k ≤ n,
(2.7) n2 (1− xkn) ∼ k2.

(c) Uniformly for z in compact subsets of the plane,

(2.8) lim
n→∞

`kn

(
1− 1

2

( z
n

)2
)

= lim
n→∞

`kn

(
cos

z

n

)
= Lk (z) .

(d)

(2.9) Lk (jm) = δkm.

(e) For n ≥ 1, 1 ≤ k ≤ n, η > 0 and −1 ≤ x ≤ xkn − ηn−2,

(2.10) |`kn (x)| ≤ Ckα+ 3
2

(
n2 (1− x)

)−α2− 5
4

(
1 + x+

1

n2

)− β2− 1
4

.

(f) For k ≥ 1, and x ∈ [0,∞),

(2.11) |Lk (x)| ≤ C j
α+ 3

2

k (1 + x)−α−
1
2

|x2 − j2
k|

.

(g) For k ≥ 1, and |x− jk| ≤ j−1
k ,

(2.12) |Lk (x)| ≤ C.
Proof
(a) This is a classical limit [16, p, 193, eqn. (8.1.3)].
(b) It is shown in [16, p. 238, eqn. (8.9.1)] that

θkn := arccosxkn =
1

n
(kπ +O (1)) ,
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uniformly for 1 ≤ k ≤ n, n ≥ 1. Then for k = o (n) ,

(2.13) n2 (1− xkn) = 2n2

(
sin

θkn
2

)2

=
1

2
(kπ +O (1))

2
.

Together with (2.6), this implies that for all k ≤ n,

n2 (1− xkn) ≥ Ck2.

This easily implies the result.
(c) Since the Mehler-Heine formula (1.12) holds uniformly for z in compact subsets
of the plane, we may differentiate it. Thus uniformly for z in compact subsets of
the plane,

(2.14) lim
n→∞

n−α−2Pα,β′n

(
1− 1

2

( z
n

)2
)
z = −2αJ∗′α (z) .

Then

lim
n→∞

n−α−2Pα,β′n (xkn)

= lim
n→∞

n−α−2Pα,β′n

(
1− 1

2n2

[
j2
k + o (1)

])
= −2αJ∗′α (jk) /jk,

and consequently,

lim
n→∞

`kn

(
1− 1

2

( z
n

)2
)

= lim
n→∞

n−αPα,βn

(
1− 1

2

(
z
n

)2)[
n−α−2Pα,β′n (xkn)

] [
n2 [1− xkn]− z2

2

]
=

J∗α (z) 2jk
J∗′α (jk) [z2 − j2

k]
= Lk (z) .

(d) This is an immediate consequence of (a), (c), and (2.2).
(e) We use the alternate representation

`kn (x) = λn (xkn)Kn (x, xkn)

= λn (xkn)
γn−1

γn

pα,βn (x) pα,βn−1 (xkn)

x− xkn
,

and standard estimates, that are conveniently summarized in [14, p. 36]: uniformly
in k and n,

(2.15)
∣∣∣pα,βn−1 (xkn)

∣∣∣ ∼ wα,β (xkn)
−1/2 (

1− x2
kn

)1/4
;

(2.16) λn (xkn) ∼ 1

n
wα,β (xkn)

(
1− x2

kn

)1/2
;

uniformly in x ∈ [−1, 1] and n,

(2.17)
∣∣pα,βn (x)

∣∣ ≤ C (1− x+
1

n2

)−α2− 1
4
(

1 + x+
1

n2

)− β2− 1
4

;
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Since also
γn−1
γn
≤ 1 (of course they have limit 1

2 ), these estimates give uniformly
in x ∈ [−1, 1] and n ≥ 1,

|`kn (x)| ≤ C

n

(
1− x+ 1

n2

)−α2− 1
4
(
1 + x+ 1

n2

)− β2− 1
4 wα,β (xkn)

1/2 (
1− x2

kn

)3/4
x− xkn

.

Then for 1 ≤ k ≤ n and x ≤ xkn − ηn−2, so that xkn − x ≥ C (k, η) (1− x), we
have for n ≥ n0 (k), from (2.7),

|`kn (x)| ≤ C

n
(1− x)

−α2−
5
4

(
1 + x+

1

n2

)− β2− 1
4

(1− xkn)
α
2 + 3

4

≤ Ckα+ 3
2

(
n2 (1− x)

)−α2− 5
4

(
1 + x+

1

n2

)− β2− 1
4

.

(f) A convenient summary of what is needed is given in [4, pp. 49-50]. We have [4,
eqn. (11), (19)]

|J∗α (x)| ≤ C(1 + x)−α−
1
2 , x ∈ [0,∞);

(2.18) |J∗′α (jk)| > Cj
−α− 1

2

k , k ≥ 1.

Then (2.11) follows.
(g) We use that for some ξ between x and jk,

Lk (x) = 2jk
J∗′a (ξ)

J∗′α (jk) (x+ jk)
.

Next, we need [4, pp. 49-50]

Jα (x) =

√
2

πx

[
cos
(
x− απ

2
− π

4

)
+O

(
x−1

)]
;

J ′α (x) = −
√

2

πx

[
sin
(
x− απ

2
− π

4

)
+O

(
x−1

)]
;

jk =

(
k +

α

2
− 1

4

)
π +O

(
k−1

)
.

From these we see that for large enough k and |ξ − jk| ≤ j−1
k ,

J∗′α (ξ) = −αξ−α−1Jα (ξ) + ξ−αJ ′α (ξ)

= O
(
j
−α− 3

2

k k−1
)

+O
(
j
−α− 1

2

k

)
= O (|J∗′α (jk)|) ,

by (2.18). See [4, p. 50, eqn. (18)]. Thus for large enough k, and |x− jk| ≤ j−1
k ,

|Lk (x)| ≤ C.
Since each Lk is continuous, this is also trivially true for small k. �

Next, we need the Lagrange interpolation series of a function f : [0,∞) → R,
defined at (1.15). We also need its mth partial sum,

(2.19) Sm [f ] (x) =

m∑
k=1

f (jk)Lk (x) .
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Following is the main part of the proof of Theorem 1.1:

Lemma 2.2
Assume the hypotheses of Theorem 1.1. For P ∈ P, we have

(2.20) 2A

∞∑
k=1

j2σ
k J∗′α (jk)

−2 |P (jk)|p ≤
∫ ∞

0

|P (t)|p t2α+2σ+1dt.

Proof
We shall need a limit for λn (xkn): for each fixed k, as n → ∞, [16, p. 353, eqn.
(15.3.11)]

λn (xkn) = 2α+β+1

[(
jk
2

)α
J ′α (jk)

−1

]2

n−2α−2 (1 + o (1))

= 2β−α+1J∗′α (jk)
−2
n−2α−2 (1 + o (1)) .(2.21)

We shall assume that

P (x) =

M∑
k=1

ckLk (x) .

Fix a positive integer L (it will be chosen large enough later), ε ∈
(
0, 1

2

)
, and let

(2.22) Rn (x) =

(
M∑
k=1

ck`k,[n(1−ε)] (x)

)
U[n εL ] (x)

L
,

where

(2.23) Um (x) =
Tm (x)− Tm (1)

T ′m (1) (x− 1)
=
Tm (x)− Tm (1)

m2 (x− 1)
,

and Tm is the usual Chebyshev polynomial of degree m. We shall apply the
Marcinkiewicz-Zygmund inequality in Theorem B to Rn. The factor involving
Um is included to ensure convergence of integrals below. Note that Rn has degree
≤ [n (1− ε)]− 1 + L

([
n εL
]
− 1
)
≤ n− 1. We see that

Um

(
1− 1

2

( z
m

)2
)

= 2
Tm
(
cos z

m + o
(

1
m2

))
− 1

−z2

= 2
cos z − 1

−z2
+ o (1)

= S
(z

2

)2

+ o (1) ,

uniformly for z in compact subsets of the plane. (Recall that S (z) = sin z
z ; we are

also using that Um is a polynomial). Then using this last limit and (2.8), we see
that

Rn

(
1− 1

2

( z
n

)2
)

=

(
M∑
k=1

ck`k,[n(1−ε)]

(
1− 1

2

( z
n

)2
))

U[n εL ]

(
1− 1

2

( z
n

)2
)L

=

(
M∑
k=1

ckLk ((1− ε) z)
)
S
( εz

2L

)2L

+ o (1)

= P ((1− ε) z)S
( εz

2L

)2L

+ o (1) ,
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uniformly for z in compact subsets of the plane. Thus, given fixed r > 0, we have
as n→∞,∫ 1

1− 1
2 ( rn )

2
|Rn (x)|p (1− x)

α+σ
(1 + x)

β+τ
dx

= 2β+τ−(α+σ)n−2(α+σ)−2

∫ r

0

∣∣∣∣∣P ((1− ε) t)S
(
εt

2L

)2L

+ o (1)

∣∣∣∣∣
p

t2α+2σ+1dt.

(2.24)

Also, for each fixed k, we see that as n→∞,

λn (xkn) |Rn (xkn)|p (1− xkn)
σ

(1 + xkn)
τ

= 2β+τ−(α+σ)+1n−2(α+σ)−2j2σ
k J∗′α (jk)

−2

∣∣∣∣∣P ((1− ε) jk)S

(
εjk
2L

)2L

+ o (1)

∣∣∣∣∣
p

.

Thus,

M∑
k=1

λn (xkn) |Rn (xkn)|p (1− xkn)
σ

(1 + xkn)
τ

= (1 + o (1)) 2β+τ−(α+σ)+1n−2(α+σ)−2
M∑
k=1

j2σ
k J∗′α (jk)

−2

×
∣∣∣∣∣P ((1− ε) jk)S

(
εjk
2L

)2L

+ o (1)

∣∣∣∣∣
p

.

(2.25)

Next, for some CP depending on P, ε, we see from (2.10) and (2.22-2.23) that for
large enough r and −1 ≤ x ≤ 1− r/n2,

(2.26) |Rn (x)| ≤ CP
(
n2 (1− x)

)−α2− 5
4−L

(
1 + x+

1

n2

)− β2− 1
4

,

so that ∫ 1− 1
2 ( rn )

2

−1

|Rn (x)|p (1− x)
α+σ

(1 + x)
β+τ

dx

≤ CCpP


(
n−α−

5
2−2L

)p ∫ 0

−1

(
1 + x+ 1

n2

)−( β2 + 1
4 )p

(1 + x)
β+τ

dx

+
∫ 1− 1

2 ( rn )
2

0

(
n2 (1− x)

)−(α2 + 5
4+L)p

(1− x)
α+σ

dx


≤ CCpP


(
n−α−

5
2−2L+max{β+ 1

2 ,0}
)p ∫ 0

−1
(1 + x)

β+τ
dx

+n−2α−2σ−2
∫∞
1
2 r

2 s
−(α2 + 5

4+L)p+α+σds

 .

We assume that L is so large that

(2.27) −p
(
α+

5

2
+ 2L

)
+ pmax

{
β +

1

2
, 0

}
< −2α− 2σ − 2
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and

(2.28) −
(
α

2
+

5

4
+ L

)
p+ α+ σ < −2.

Then
(2.29)∫ 1− 1

2 ( rn )
2

−1

|Rn (x)|p (1− x)
α+σ

(1 + x)
β+τ

dx ≤ Cn−2α−2σ−2
(
o (1) + r−1

)
,

where C is independent of n and r. Combining this, (1.3), (2.24), and (2.25), yields,
as n→∞,

2A

M∑
k=1

j2σ
k J∗′α (jk)

−2

[
P ((1− ε) jk)S

(
εjk
2L

)2L
]p

≤
∫ r

0

∣∣∣∣∣P ((1− ε) t)S
(
εt

2L

)2L
∣∣∣∣∣
p

t2α+2σ+1dt+ C/r.

Letting r →∞ gives,

2A

M∑
k=1

j2σ
k J∗′α (jk)

−2

[
P ((1− ε) jk)S

(
εjk
2L

)2L
]p

≤
∫ ∞

0

∣∣∣∣∣P ((1− ε) t)S
(
εt

2L

)2L
∣∣∣∣∣
p

t2α+2σ+1dt

≤
∫ ∞

0

|P ((1− ε) t)|p t2α+2σ+1dt,(2.30)

as |S (t)| ≤ 1. Next, we want to let ε → 0+. Observe that P ((1− ε) t) → P (t)
uniformly for t in compact subsets of [0,∞). Moreover, (2.11) shows that for
ε ∈

(
0, 1

2

)
, and for some C2 depending only on P , we have for t ≥ C2,

(2.31) |P ((1− ε) t)| ≤ Ct−α− 5
2

Then uniformly in ε ∈
(
0, 1

2

)
, t ≥ C2,

|P ((1− ε) t)|p t2α+2σ+1 ≤ Ctα(2−p)− 5
2p+2σ+1 ≤ Ct−1−η,

for some η > 0, by (1.17). Lebesgue’s Dominated Convergence Theorem gives, from
(2.30)

2A

M∑
k=1

j2σ
k J∗′α (jk)

−2 |P (jk)|p ≤
∫ ∞

0

|P (t)|p t2α+2σ+1dt.

Since P (jk) = 0 for k > M , we obtain the result. �
Next, we show that P̄ (p, σ) contains Lp1

(
(0,∞) , t2α+2σ+1

)
:

Lemma 2.3
Suppose that f ∈ Lp1

(
(0,∞) , t2α+2σ+1

)
. Then f ∈ P̄ (p, σ).

Proof
Suppose first that for some

(2.32) E > α+ 5
1

2
,
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(2.33) |f (x)| ≤ C (1 + x)
−E

, x ∈ (0,∞) .

Note that then |x|α+ 1
2 f (x) ∈ L2 (R\ (−1, 1)), so f = L [f ] [4, p. 57, Lemma 13].

Note too that we use the evenness of f to simplify the Lagrange interpolation series
in [4]. We shall show that Sm [f ]→ f in the norm of P̄ (p, σ), that is

(2.34) lim
m→∞

∫ ∞
0

|f (x)− Sm [f ] (x)|p x2σ+2α+1dx = 0.

Let

Ik =
[
jk − j−2

k , jk + j−2
k

]
for k ≥ 1.

Observe that if x ≤ jk/2
|x− jk| ≥ jk/2 ≥ x

and if x ≥ 2jk, then

|x− jk| ≥ x/2.

If jk2 ≤ x ≤ 2jk and x /∈ Ik, then

|x− jk| ≥ j−2
k ≥ 1

2
xj−3
k .

Thus using (2.11), if x /∈ Ik, then

(2.35) |Lk (x)| ≤ Cjα+4 12
k (1 + x)−α−2 12 .

If x ∈ Ik, we instead use (2.12):

|Lk (x)| ≤ C.

Then if

I =
⋃
k≥1

Ik,

we have for x ∈ [0,∞)\I,

|f − Sm [f ]| (x) = |L [f ]− Sm [f ]| (x)

≤ C(1 + x)−α−2 12

∞∑
k=m+1

|f (jk)| jα+4 12
k

≤ C(1 + x)−α−2 12

∞∑
k=m+1

k−E+α+4 12

≤ C(1 + x)−α−2 12m−E+α+5 12 ,

by (2.32) and the fact that jk ∼ k. If x ∈ Ik1 for some k1, then since all the {Ik}
are disjoint, we have instead

|f − Sm [f ]| (x) ≤ C(1 + x)−α−2 12m−E+α+5 12 + C

{
k−E1 , if k1 ≥ m

0, if k1 < m

≤ C

{
m−E , if k1 ≥ m

(1 + x)−α−2 12m−E+α+5 12 , if k1 < m
.
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Then ∫ ∞
0

|f − Sm [f ]|p (x)x2σ+2α+1dx

≤ C
(
m−E+α+5 12

)p ∫
[0,∞)\

⋃
k≥m

Ik

(1 + x)[−α−2 12 ]p (x)x2σ+2α+1dx+ Cm−Ep
∫
⋃
k≥m

Ik

1

≤ C
(
m−E+α+5 12

)p
+ Cm−Ep

∞∑
k=m

j−2
k

→ 0 as m→∞.

Here we also use (1.17) to ensure the convergence of the integral over [0,∞)\
⋃
k≥m

Ik.

Finally, we drop the restrictions (2.32) and (2.33). Suppose that f is an even
entire function of exponential type satisfying

(2.36)
∫ ∞

0

|f (t)|p t2σ+2α+1dt <∞.

Let ε ∈
(
0, 1

2

)
and

(2.37) gε (z) = f ((1− ε) z)S
( ε

M
z
)M

,

where S (z) = sin z
z and M is some large positive number. Note that gε is entire

of exponential type ≤ 1 as S
(
ε
M z
)
has type ε

M . Moreover, we claim that for
large enough M , gε satisfies the bound (2.33). Indeed, the Hadamard factorization
theorem shows that f ((1− ε) z) will have infinitely many zeros, as it is entire of
type ≤ 1 and satisfies (2.36). Thus if we choose suffi ciently many zeros, say {zj}Nj=1,
we will have from (2.36) that

∫ ∞
−∞

∣∣∣∣∣∣∣∣∣
f ((1− ε) t)
N∏
j=1

(
t2 − z2

j

)
∣∣∣∣∣∣∣∣∣
p

dt <∞.

Then the function f((1−ε)t)
N∏
j=1

(t2−z2j )
belongs to the Paley-Wiener space Lp1 and so is

bounded on the real line [6, p.149]. Then for t ≥ 1,

|gε (t)| ≤ C |t|2N−M ,

so choosing M large enough, gε satisfies (2.33). Consequently gε ∈ P̄ (p, σ). Next,
we show that as ε→ 0+, gε → f in the appropriate norm. Let R > 0. Using that
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|S| ≤ 1, we see that∫ ∞
0

|f (t)− gε (t)|p t2σ+2α+1dt

≤
∫ R

0

|f (t)− gε (t)|p t2σ+2α+1dt+ 2p
∫ ∞
R

(|f (t)|p + |gε (t)|) t2σ+2α+1dt

≤
∫ R

0

|f (t)− gε (t)|p t2σ+2α+1dt+ 2p
∫ ∞
R

|f (t)|p t2σ+2α+1dt

+2p (1− ε)−(2α+2σ+2)
∫ ∞
R(1−ε)

|f (t)|p t2σ+2α+1dt

≤
∫ R

0

|f (t)− gε (t)|p t2σ+2α+1dt+ 2p+1+(2α+2σ+2)

∫ ∞
R/2

|f (t)|p t2σ+2α+1dt,

as ε ∈
(
0, 1

2

)
. We can first choose R > 0 so large that the second integral in the

last right-hand side is smaller than a given δ > 0, and then use that gε (t)→ f (t)
uniformly in [0, R] as ε→ 0+. Then as gε ∈ P̄ (p, σ), so also f ∈ P̄ (p, σ). �

The Proof of Theorem 1.1
Suppose first that f ∈ Lp1

(
(0,∞) , t2α+2σ+1

)
and in addition (2.32) and (2.33) hold.

Then we know that (2.34) is true. By Lemma 2.2, for m ≥ 1,

2A

m∑
k=1

j2σ
k J∗′α (jk)

−2 |f (jk)|p

= 2A

m∑
k=1

j2σ
k J∗′α (jk)

−2 |Sm [f ] (jk)|p

≤
∫ ∞

0

|Sm [f ] (t)|p t2α+2σ+1dt.

Letting m→∞, and using (2.34), we obtain for each fixed N ≥ 1,

2A

N∑
k=1

j2σ
k J∗′α (jk)

−2 |f (jk)|p ≤
∫ ∞

0

|f (t)|p t2α+2σ+1dt.

Now letting N → ∞ gives (1.18). Now consider the general case, so that we drop
(2.32-33). Let ε > 0 and define gε by (2.37), with M large enough. Since |S| ≤ 1,
we have for N ≥ 1,

2A

N∑
k=1

j2σ
k J∗′α (jk)

−2 |gε (jk)|p ≤
∫ ∞

0

|f ((1− ε) t)|p t2α+2σ+1dt

= (1− ε)−p
∫ ∞

0

|f (t)|p t2α+2σ+1dt.

Letting ε→ 0, and then N →∞ gives (1.18). �

Proof of Corollary 1.2
Let

(2.38) fe (t) = f (t) + f (−t) and fo (t) = f (t)− f (−t)



MARCINKIEWICZ-ZYGMUND INEQUALITIES 17

denote the even and odd parts of f , and let

(2.39) g (t) = fo (t) /t.

Since f (t) = fe (t) + tg (t), and both fe and g are even,
∞∑

k=−∞,k 6=0

|jk|2σ J∗′α (jk)
−2 |f (jk)|p

≤ 2p
∞∑

k=−∞,k 6=0

|jk|2σ J∗′α (jk)
−2 {|fe (jk)|p + |jk|p |g (jk)|p}

= 2p+1
∞∑
k=1

j2σ
k J∗′α (jk)

−2 {|fe (jk)|p + |jk|p |g (jk)|p}

≤ 2p+1

{
A−1

1

∫ ∞
0

|fe (t)|p t2σ+2α+1dt+A−1
2

∫ ∞
0

|g (t)|p t2(σ+ p
2 )+2α+1dt

}
,

by Theorem 1.1 with A1 and A2 corresponding to the constants for σ and σ + p
2

respectively. We continue this as

≤ 22p+1

{
A−1

1

∫ ∞
0

(|f (t)|p + |f (−t)|p) t2σ+2α+1dt+A−1
2

∫ ∞
0

(|f (t)|p + |f (−t)|p) t2σ+2α+1dt

}
≤ 22p+1

(
A−1

1 +A−1
2

) ∫ ∞
−∞
|f (t)|p |t|2s+2α+1

dt.

Note that Theorem 1.1 is applicable to the function g with σ replaced by σ + p
2 ,

since (1.17) becomes (1.19) with this adjusted choice of σ. �

3. Proof of Theorem 1.3 and Corollary 1.4

Lemma 3.1
Assume the conclusion (1.9) of Theorem C.
(a) For each P ∈ P, we have

(3.1)
∫ ∞

0

|P (t)|p t2α+2σ+1dt ≤ 2B

∞∑
k=1

j2σ
k J∗′α (jk)

−2 |P (jk)|p .

(b) Assume that f ∈ Lp1
(
(0,∞) , t2α+2σ+1

)
. Then

(3.2)
∫ ∞

0

|f (t)|p t2α+2σ+1dt ≤ 2B

∞∑
k=1

j2σ
k J∗′α (jk)

−2 |f (jk)|p .

Proof
(a) Let P be as in the proof of Lemma 2.2 and define Rn by (2.22). We know that
by (2.24) and (2.29),∫ 1

−1

|Rn (x)|p (1− x)
α+σ

(1 + x)
β+τ

dx

= 2β+τ−(α+σ)n−2(α+σ)−2

∫ r

0

∣∣∣∣∣P ((1− ε) t)S
(
εt

2L

)2L

+ o (1)

∣∣∣∣∣
p

t2α+2σ+1dt

+n−2α−2σ−2
(
o (1) +O

(
r−1
))
.

(3.3)
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Next by (2.16) and (2.26), for xkn ≤ 1− r
n2 ,

λn (xkn) |Rn (xkn)|p (1− xkn)
σ

(1 + xkn)
τ

≤ C

n
(1− xkn)

α+σ+ 1
2 (1 + xkn)

β+τ+ 1
2

∣∣∣∣∣(n2 (1− xkn)
)−α2− 5

4−L
(

1 + xkn +
1

n2

)− β2− 1
4

∣∣∣∣∣
p

.

Since uniformly in k and n, we have

xkn − xk+1,n ∼
1

n

√
1− x2

kn,

we see that given N = N (n) < n,

n∑
k=N+1

λn (xkn) |Rn (xkn)|p (1− xkn)
σ

(1 + xkn)
τ

≤ C

n∑
k=N+1

(xkn − xk+1,n) (1− xkn)
α+σ

(1 + xkn)
β+τ

∣∣∣∣∣(n2 (1− xkn)
)−α2− 5

4−L
(

1 + xkn +
1

n2

)− β2− 1
4

∣∣∣∣∣
p

≤ C

∫ xNn

−1

(1− x)
α+σ

(1 + x)
β+τ

∣∣∣∣∣(n2 (1− x)
)−α2− 5

4−L
(

1 + x+
1

n2

)− β2− 1
4

∣∣∣∣∣
p

dx

≤ C

∫ 0

−1

(1 + x)
β+τ

∣∣∣∣∣(n2
)−α2− 5

4−L
(

1 + x+
1

n2

)− β2− 1
4

∣∣∣∣∣
p

dx

+C

∫ xNn

0

(1− x)
α+σ

∣∣∣(n2 (1− x)
)−α2− 5

4−L
∣∣∣p dx

≤ Cn−(α+ 5
2+2L)p+pmax{β+ 1

2 ,0} + Cn−2(α+σ)−2

∫ ∞
n2(1−xNn)

tα+σ−(α2 + 5
4+L)pdt

= n−2α−2σ−2
(
o (1) +O

(
N−1

))
,

(3.4)

by (2.7) and provided L is so large that (2.27) and (2.28) hold. Combining (1.9),
(2.25), (3.3) and (3.4), gives as n→∞,[∫ r

0

∣∣∣∣∣P ((1− ε) t)S
(
εt

2L

)2L
∣∣∣∣∣
p

t2α+2σ+1dt+O
(
r−1
)]

≤ 2B

N∑
k=1

j2σ
k J∗′α (jk)

−2

[
P ((1− ε) jk)S

(
εjk
2L

)2L
]p

+O
(
N−1

)
.

Since |S (t)| ≤ 1, we obtain, letting N →∞, and then r →∞,

∫ ∞
0

∣∣∣∣∣P ((1− ε) t)S
(
εt

2L

)2L
∣∣∣∣∣
p

t2α+2σ+1dt ≤ 2B

∞∑
k=1

j2σ
k J∗′α (jk)

−2 |P ((1− ε) jk)|p .
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We now want to let ε→ 0+. We use (2.31) and (2.18) above, which give uniformly
in ε ∈

(
0, 1

2

)
,

∞∑
k=N

j2σ
k J∗′α (jk)

−2 |P ((1− ε) jk)|p

≤ C

∞∑
k=N

j2σ
k

(
j
α+ 1

2

k

)2 (
j
−α− 5

2

k

)p
= C

∞∑
k=N

j
−(α+ 5

2 )p+2σ+2α+1

k → 0,

as N → ∞, since jk ≥ Ck, and by (1.17). Then we can let ε → 0+, so that for
each R > 0,

∫ R

0

|P (t)|p t2α+2σ+1dt ≤ 2B

∞∑
k=1

j2σ
k J∗′α (jk)

−2 |P (jk)|p .

Now we let R→∞ in the left-hand side.
(b) By Lemma 2.3, f ∈ P̄ (p, σ). Let {Pm} ⊂ P satisfy (1.16). Recall that we are
assuming p > 1. We use the inequality

||b|p − |a|p| ≤ |b− a| p
(
|a|p−1

+ |b|p−1
)
.

Then using Hőlder’s inequality,

∞∑
k=1

j2σ
k J∗′α (jk)

−2 ||Pm (jk)|p − |f (jk)|p|

≤ p

∞∑
k=1

j2σ
k J∗′α (jk)

−2 |Pm (jk)− f (jk)|
(
|Pm (jk)|p−1

+ |f (jk)|p−1
)

≤ p

( ∞∑
k=1

j2σ
k J∗′α (jk)

−2 |Pm (jk)− f (jk)|p
)1/p

×


( ∞∑
k=1

j2σ
k J∗′α (jk)

−2 |Pm (jk)|p
) p−1

p

+

( ∞∑
k=1

j2σ
k J∗′α (jk)

−2 |f (jk)|p
) p−1

p


≤ pA−1

(∫ ∞
0

|Pm − f | (t)p t2α+2σ+1dt

)1/p

×
{(∫ ∞

0

|Pm| (t)p t2α+2σ+1dt

)(p−1)p

+

(∫ ∞
0

|f | (t)p t2α+2σ+1dt

)(p−1)p
}
,

by Theorem 1.1. Note that this is applicable as each Lk ∈ Lp1
(
(0,∞) , t2α+2σ+1

)
.

Using (1.16), we obtain from the above

lim
m→∞

∞∑
k=1

jkJ
∗′
α (jk)

−2 |Pm (jk)|p =

∞∑
k=1

jkJ
∗′
α (jk)

−2 |f (jk)|p .
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Hence, using (a) of this lemma,∫ ∞
0

|f (t)|p t2α+2σ+1dt = lim
m→∞

∫ ∞
0

|Pm (t)|p t2α+2σ+1dt

≤ lim
m→∞

2B

∞∑
k=1

j2σ
k J∗′α (jk)

−2 |Pm (jk)|p

= 2B

∞∑
k=1

j2σ
k J∗′α (jk)

−2 |f (jk)|p .

�
Next, we reformulate Xu’s suffi cient conditions for converse quadrature sum in-

equalities into the form given in Theorem C:

Lemma 3.2
Assume that (1.7) and (1.8) hold. Then the converse quadrature inequality (1.9)
holds.
Proof
Let q = p

p−1 . By taking u = wσ,τ and β′ = uwα,β in Xu’s Theorem 2.1 [17, pp.
881-882], we see that his conditions for (1.9) become:∫ 1

−1

(wσ,τ )
1−q

wα,β < ∞;∫ 1

−1

(wσ,τ )
1−q (

wα,β
)1−q/2 (

w1/2,1/2
)−q/2

< ∞;∫ 1

−1

wσ,τ
(
wα,β

)1−p/2 (
w1/2,1/2

)−p/2
< ∞.

In terms of the parameters α, σ, p, q, these require

σ (1− q) + α > −1;

σ (1− q) + α (1− q/2)− q/4 > −1;

(3.5) σ + α (1− p/2)− p/4 > −1.

Since (q − 1) (p− 1) = 1, we can reformulate the first two as

σ − (α+ 1) (p− 1) < 0;

σ − (p− 1)

[
α

(
1− p

2 (p− 1)

)
− p

4 (p− 1)
+ 1

]
< 0,

or

σ − (α+ 1) (p− 1) +
p

2

(
α+

1

2

)
< 0.

Together, these first two conditions give the upper bound

σ < (α+ 1) (p− 1)−max

{
0,
p

2

(
α+

1

2

)}
.

The third condition (3.5) gives

σ >
p

2

(
α+

1

2

)
− (α+ 1) .
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Combining the last two conditions gives (1.7). The inequality (1.8) involving
β, τ , p, q follows similarly. Then Xu’s Theorem 2.1 gives (1.9). �

Proof of Theorem 1.3
This follows directly from Lemmas 3.1 and 3.2 above. Note that the upper bound
on σ in (1.7) implies that on σ in (1.17). Indeed the former upper bound minus the
latter is

(p− 1) (α+ 1)−max

{
0,
p

2

(
α+

1

2

)}
−
[
p

(
α

2
+

5

4

)
− (α+ 1)

]
= p

(
α

2
− 1

4

)
−max

{
0,
p

2

(
α+

1

2

)}
= min

{
p

(
α

2
− 1

4

)
,−p

2

}
≤ −p

2
< 0,

so (1.7) is indeed more restrictive. �

The Proof of Corollary 1.4
Step 1: We first prove this for even f ∈ Lp1

(
(0,∞) , t2σ+2α+1

)
.

Choose a non-negative integer ` such that

`
p

2
< σ −D < (`+ 1)

p

2
.

Here D is defined by (1.23). Then

σ = D + `
p

2
+ ρ,

for some ρ ∈
(
0, p2

)
. Let

σ̂ = D + ρ,

so that

(3.6) 2σ = 2σ̂ + `p.

We next show that σ̂ satisfies (1.7). Firstly σ̂ > D, so satisfies the lower bound in
(1.7). Next, the difference of the upper bound in (1.7) and σ̂ is

(p− 1) (α+ 1)−max

{
0,
p

2

(
α+

1

2

)}
−D − ρ

> (p− 1) (α+ 1)−max

{
0,
p

2

(
α+

1

2

)}
−p

2

(
α+

1

2

)
+ (α+ 1)− p

2

=
p

2

(
α+

1

2

)
−max

{
0,
p

2

(
α+

1

2

)}
= 0,

as α ≥ − 1
2 . So indeed, the right inequality in (1.7) holds for σ̂. Also, (1.23) shows

that the left inequality in (1.7) holds. Thus the conclusion of Theorem 1.3 holds
for the class Lp1

(
(0,∞) , t2α+2σ̂+1

)
. Here we also note that α+ σ̂ > −1 follows from

(1.23). Now let f ∈ Lp1
(
(0,∞) , t2α+2σ+1

)
, and then set

h (t) = t`f (t) ,
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which is entire of exponential type ≤ 1. Note that by (3.6),∫ ∞
0

|h (t)|p t2α+2σ̂+1dt =

∫ ∞
0

|f (t)|p t2α+2σ̂+1dt <∞.

Then Theorem 1.3 applied to h gives∫ ∞
0

|h (t)|p t2α+2σ̂+1dt ≤ 2B (σ̂)

∞∑
k=1

j2σ̂
k J∗′α (jk)

−2 |h (jk)|p .

In view of (3.6), and our choice of h, this becomes∫ ∞
0

|f (t)|p t2α+2σ+1dt ≤ 2B (σ̂)

∞∑
k=1

j2σ
k J∗′α (jk)

−2 |f (jk)|p ,

which implies (1.25) since f is even.
Step 2: Now consider non-even f
As in the proof of Corollary 1.2, we define fe, fo, g by (2.38) and (2.39). We have
both

(3.7)
∫ ∞

0

|fe (t)|p t2α+2σ+1dt ≤ 2B3

∞∑
k=1

j2σ
k J∗′α (jk)

−2 |fe (jk)|p ,

and since the restrictions (1.23) and (1.24) hold for g with σ replaced by σ + p
2 ,∫ ∞

0

|g (t)|p t2α+2(σ+ p
2 )+1dt ≤ 2B3

∞∑
k=1

j
2(σ+ p

2 )
k J∗′α (jk)

−2 |g (jk)|p ,

which gives ∫ ∞
0

|f0 (t)|p t2α+2σ+1dt ≤ 2B3

∞∑
k=1

j2σ
k J∗′α (jk)

−2 |f0 (jk)|p .

This and (3.7) and some elementary inequalities give the result. �
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