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Abstract. Let µ be a measure on the unit circle that is regu-
lar in the sense of Stahl Totik, and Ullmann. Let {ϕn} be the
orthonormal polynomials for µ and {zjn} their zeros. Let µ be
absolutely continuous in an arc ∆ of the unit circle, with µ′ pos-
itive and continuous there. We show that uniform boundedness
of the orthonormal polynomials in subarcs Γ of ∆ is equivalent to
certain asymptotic behavior of their zeros inside sectors that rest
on Γ. Similarly the uniform limit limn→∞ |ϕn (z)|2 µ′ (z) = 1 is
equivalent to related asymptotics for the zeros in such sectors.
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1. Introduction

Let µ be a finite positive Borel measure on [−π, π) (or equivalently
on the unit circle) with infinitely many points in its support. Then we
may define orthonormal polynomials

ϕn (z) = κnz
n + ..., κn > 0,

n = 0, 1, 2, ... satisfying the orthonormality conditions

1

2π

∫ π

−π
ϕn (z)ϕm (z)dµ (θ) = δmn,

where z = eiθ. We denote the zeros of ϕn by {zjn}
n
j=1. They lie inside

the unit circle, and may not be distinct.
Soviet and Russian mathematicians have been leading lights in the

theory of orthogonal polynomials ever since Chebyshev laid the foun-
dations. Many in Gonchar’s own school are world leaders, and their
students continue that tradition. The celebrated work of Rakhmanov,
Aptekarev, Denisov, and Tulyakov on the Steklov conjecture [3], [4],
[18], [20] is just one of many examples. It is a privilege to pay tribute
to Gonchar’s memory.
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We shall assume that µ is regular in the sense of Stahl, Totik and
Ullmann [25], so that

lim
n→∞

κ1/n
n = 1.

This is true if for example µ′ > 0 a.e. in [−π, π), but there are pure
jump and pure singularly continuous measures that are regular.
Many aspects of the zeros {zjn} have been studied down the years,

for example, their distribution (often when projected onto the unit
circle), and "clock spacing" of zeros of paraorthogonal polynomials.
See Chapter 8 of Simon’s monograph [23]. One result relevant to this
paper, is due to Nevai and Totik [17], [23, Thm. 7.1.3, p. 383]. They
relate the largest disk centered at the origin containing all zeros of the
orthonormal polynomials to analytic continuation of the Szegő function
inside the unit circle. In this case, µ′ is infinitely differentiable on the
unit circle. Another classic result of Mhaskar and Saff gives suffi cient
conditions in terms of the recurrence coeffi cients for the zero counting
measures to converge weakly to the uniform distribution on the unit
circle [15], [23, Thm. 8.1.2, p. 392]. Breuer and Selig [7] recently
studied clock spacing of zeros of paraorthogonal polynomials, as did
Simanek [21], [22]. See also the references there.
In a very interesting recent paper, Bessonov and Denisov [6, Theorem

3] showed that the distance of the zeros to the unit circle is intimately
related to asymptotics of orthogonal polynomials. The following is a
reformulation of one of their results:

Theorem
Let µ be a measure on the unit circle satisfying the Szeg̋o condition∫ π

−π
log µ′

(
eit
)
dt > −∞.

For almost every ζ with |ζ| = 1, the following are equivalent:
(I)

lim
n→∞

|ϕn (ζ)|2 µ′ (ζ) = 1.

(II)

lim
n→∞

n

(
inf

1≤j≤n
|ζ − zjn|

)
=∞.

We prove related equivalences for local bounds and asymptotics but
for regular, rather than Szegő, measures:

Theorem 1.1
Let µ be a finite positive Borel measure on the unit circle that is regu-
lar in the sense of Stahl, Totik, and Ullmann. Let ∆ be an arc of the
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unit circle in which µ is absolutely continuous, while µ′ is positive and
continuous there. The following are equivalent:
(I) In every proper subarc Γ of ∆,

lim
n→∞

(
inf

{
n (1− |zjn|) : zjn 6= 0,

zjn
|zjn|

∈ Γ

})
=∞.

(II) In every proper subarc Γ of ∆, as n→∞, uniformly for z ∈ Γ,

(1.1) lim
n→∞

|ϕn (z)|2 µ′ (z) = 1.

Remarks
(i) By a proper subarc, we mean that both endpoints of Γ are at a
positive distance to the endpoints of ∆. All arcs in this paper are
assumed to be closed arcs, so contain their endpoints.
(ii) We note that if µ is absolutely continuous on the whole unit circle,
while µ′ is positive and continuous there, then by applying the above
result to two subarcs, we obtain the equivalence on the whole unit
circle. As far as the author is aware, even that is new.
(iii) Asymptotics of orthogonal polynomials on the unit circle have been
studied for at least a century, and there is an extensive literature. If
log µ′ is integrable over the unit circle, then there is an L2 asymptotic
for ϕn [8, Chapter V], [9], [23, p. 132], [26, Chapter 10]. There are
many suffi cient conditions for pointwise asymptotics on subarcs of the
unit circle, and their real line analogues and we cannot hope to review
this here. The most general result for pointwise asymptotics on the
unit circle, is almost certainly that of Badkov [5]. He showed that if
log µ′ is integrable on the unit circle, and in some subarc, µ is absolutely
continuous, while µ′ satisfies there a Dini-Lipschitz condition, then we
have a uniform asymptotic involving the Szegő function, and hence also
(1.1).
One of the particularly significant results for non-Szegő weights is

due to Rakhmanov [19, Thm 4, p. 151]: if µ is absolutely continuous
on the unit circle, and µ′ satisfies a Dini-Lipschitz condition on the unit
circle, then (1.1) holds uniformly on each subarc of the circle where µ′

is bounded below by a positive constant.
For bounds, we prove:

Theorem 1.2
Let µ be a finite positive Borel measure on the unit circle that is regu-
lar in the sense of Stahl, Totik, and Ullmann. Let ∆ be an arc of the
unit circle in which µ is absolutely continuous, while µ′ is positive and
continuous there. The following are equivalent:
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(I) In every proper subarc Γ of ∆, there exists C1 > 0 such that for
n ≥ 1,

inf

{
n (1− |zjn|) : zjn 6= 0,

zjn
|zjn|

∈ Γ

}
≥ C1.

(II) In every proper subarc Γ of ∆, there exists C2 > 0 such that for
n ≥ 1,

‖ϕn‖L∞(Γ) ≤ C2.

Remarks
(i) Again if µ is absolutely continuous on the whole unit circle, while
µ′ is positive and continuous there, then by applying the above result
to two subarcs, we obtain the equivalence on the whole unit circle.
(ii) Bounds on orthogonal polynomials have also been investigated for
a century, with one of the celebrated problems being Steklov’s conjec-
ture. It was E.A. Rakhmanov who resolved the conjecture, [18], [20],
with definitive later contributions by Ambroladze [1], [2], Aptekarev,
Denisov, and Tulyakov [3], [4]. There have been many who have con-
tributed in a major way to the broader issue of bounds - for example,
Badkov [5], Freud [8], Geronimus [9], Korous, Nevai [16]. Again, this
is a very incomplete list.
(iii) The main ideas underlying the results of this paper are universality
limits for reproducing kernels [10], [12], [27] and local limits for ratios
of orthogonal polynomials [13].
(iv) For orthogonal polynomials on the real line, the analogous result
to Theorem 1.2 involves the distance between zeros of orthogonal poly-
nomials of successive degrees [11].
This paper is organized as follows: in Section 2, we present Theo-

rems 2.1 and 2.2, which state more equivalences than those above. In
Section 3, we present four preliminary lemmas. We prove Theorem 2.1
in Section 4, and Theorem 2.2 in Section 5.
We close this section with more notation. The sinc kernel is

S (u) =
sin πu

πu
.

We let

ϕ∗n (z) = znϕn

(
1

z̄

)
.

The nth reproducing kernel for µ is

(1.2) Kn (z, u) =

n−1∑
j=0

ϕj (z)ϕj (u).
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The Christoffel-Darboux formula asserts that for z 6= u [23, p. 954]

(1.3) Kn (z, u) =
ϕ∗n (u)ϕ∗n (z)− ϕn (u)ϕn (z)

1− ūz .

We let

(1.4) Rn (z) =

n∑
j=1

1− |zjn|2

|z − zjn|2

and

(1.5) gn (z) =
zϕ′n (z)

nϕn (z)
.

If zjn = 0, we set τ jn = 0, while if zjn 6= 0, we set

(1.6) τ jn =
zjn
|zjn|

.

Throughout C,C1, C2, ... denote positive constants independent of
n, z, ζ and polynomials P of degree ≤ n. The same symbol need
not denote the same constant in different occurrences. For sequences
{xn} , {yn} of non-zero real numbers, we write

xn ∼ yn

if there exists C > 1 independent of n, but possibly depending on the
sequences, such that

C−1 ≤ xn/yn ≤ C for all n ≥ 1.

2. Further Equivalences

Theorems 1.1 and 1.2 are special cases respectively of Theorem 2.1
and 2.2 below.

Theorem 2.1
Let µ be a finite positive Borel measure on the unit circle that is regu-
lar in the sense of Stahl, Totik, and Ullmann. Let ∆ be an arc of the
unit circle in which µ is absolutely continuous, while µ′ is positive and
continuous there. The following are equivalent:
(a) uniformly for z in proper subarcs of ∆,

(2.1) lim
n→∞

|ϕn (z)|2 µ′(z) = 1.

(b) uniformly for z in proper subarcs of ∆,

(2.2) lim
n→∞

1

n

n∑
j=1

1− |zjn|2

|z − zjn|2
= 1.
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(c) uniformly for z in proper subarcs of ∆,

(2.3) lim
n→∞

Re

(
zϕ′n (z)

nϕn (z)

)
= 1.

(d) uniformly for z in proper subarcs of ∆,

(2.4) lim
n→∞

zϕ′n (z)

nϕn (z)
= 1.

(e) uniformly for z in proper subarcs of ∆,

(2.5) lim
n→∞

ϕn
(
zeiπ/n

)
ϕn (z)

= −1.

(f) uniformly for z in proper subarcs of ∆, and for u in compact subsets
of C,

(2.6) lim
n→∞

ϕn
(
z
(
1 + u

n

))
ϕn (z)

= eu.

(g) in proper subarcs Γ of ∆,

(2.7) lim
n→∞

(
inf

{
n (1− |zjn|) : zjn 6= 0,

zjn
|zjn|

∈ Γ

})
=∞.

(h) uniformly for z in proper subarcs of ∆,

(2.8) lim
n→∞

1

n2

n∑
j=1

1

|z − zjn|2
= 0.

Remarks
(i) Weaker versions of parts of Theorem 2.1 appear in Theorem 1.2
in [13], notably (b), (d), (e), (f), since we also made an unnecessary
assumption (1.7) in [13] about Im

(
ϕn
(
ze±iπ/n

)
/ϕn (z)

)
.

(ii) There was unfortunately an error in Lemma 4.2(a) in [13] that led
to gaps in proofs later in that paper. These gaps were corrected in [14].

Theorem 2.2
Let µ be a finite positive Borel measure on the unit circle that is regu-
lar in the sense of Stahl, Totik, and Ullmann. Let ∆ be an arc of the
unit circle in which µ is absolutely continuous, while µ′ is positive and
continuous there. The following are equivalent:
(a) for every proper subarc Γ of ∆,

(2.9) sup
n≥1
‖ϕn‖L∞(Γ) <∞.
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(b) for every proper subarc Γ of ∆,

(2.10) inf
n≥1

inf
z∈Γ

1

n

n∑
j=1

1− |zjn|2

|z − zjn|2
≥ C.

(c) for every proper subarc Γ of ∆, there exists n0 such that

(2.11) inf
n≥n0

inf
z∈Γ

∣∣∣∣Re

(
zϕ′n (z)

nϕn (z)
− 1

2

)∣∣∣∣ ≥ C.

(d) for every proper subarc Γ of ∆, there exists n0 such that

(2.12) inf
n≥n0

inf
z∈Γ

∣∣∣∣∣Re

(
ϕn
(
ze±iπ/n

)
ϕn (z)

)∣∣∣∣∣ ≥ C.

(e) for every proper subarc Γ of ∆,

(2.13) inf

{
n (1− |zjn|) : n ≥ 1, zjn 6= 0,

zjn
|zjn|

∈ Γ

}
≥ C.

(f) for every proper subarc Γ of ∆,

(2.14) sup
n≥1

sup
z∈Γ

1

n2

n∑
j=1

1

|z − zjn|2
≤ C.

3. Preliminary Lemmas

Throughout, we assume the hypotheses of Theorem 1.1, namely that
µ is regular in the sense of Stahl, Totik and Ullmann, while it is ab-
solutely continuous in ∆, with µ′ positive and continuous there. We
first recall some asymptotics for Christoffel functions and universality
and local limits.

Lemma 3.1
Let Γ be a proper subarc of ∆.
(a) Uniformly for z ∈ Γ,

(3.1) lim
n→∞

1

n
Kn (z, z)µ′ (z) = 1.

(b) Uniformly for z ∈ Γ and a, b in compact subsets of C,

(3.2) lim
n→∞

Kn

(
z
(
1 + i2πa

n

)
, z
(

1 + i2πb̄
n

))
Kn (z, z)

= eiπ(a−b)S (a− b) .
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(c) Let {ζn} ⊂ Γ. Assume that

(3.3) sup
n≥1

1

n

∣∣∣∣∣
n∑
j=1

1

ζn − zjn

∣∣∣∣∣ <∞ and sup
n≥1

1

n2

n∑
j=1

1

|ζn − zjn|
2 <∞.

From every infinite sequence of positive integers, we can choose an
infinite subsequence S such that uniformly for u in compact subsets of
C,

(3.4) lim
n→∞,n∈S

ϕn
(
ζn
(
1 + u

n

))
ϕn (ζn)

= eu + C (eu − 1) ,

where

(3.5) C = lim
n→∞,n∈S

(
ζn
n

ϕ′n (ζn)

ϕn (ζn)
− 1

)
,

Proof
(a) See for example [24, p. 123, Thm. 2.16.1].
(b) See for example [10, Thm. 6.3, p. 559] or [24, p. 124, Thm. 2.16.1].
(c) This follows immediately from Theorem 1.3 in [13] as we have the
universality limit (3.2). We note that there was a mistake in Lemma
4.2(a) in [13] that was corrected in [14]. However, the mistake did not
in any way affect the proof of Theorem 1.3 there. �
Some of the assertions in the following lemma appear in [13], but we

include proofs for the reader’s convenience. Recall that Rn and gn were
defined respectively by (1.4) and (1.5).

Lemma 3.2
Let Γ be a proper subarc of ∆.
(a) For |z| = 1,

(3.6)
1

n
Rn (z) = Re [2gn (z)− 1] .

(b) Uniformly for z ∈ Γ, and fixed real α,

(3.7) lim
n→∞

Im
[
eiπαϕn (z)ϕn (ze2πiα/n)

]
µ′ (z) = − sin πα.

(c) Uniformly for z ∈ Γ, and fixed real α,

(3.8)
limn→∞{Re

[
eπiαϕn (z)ϕn (ze2πiα/n)

]
1
n
Rn

(
ze2πiα/n

)
µ′ (z)

− (2 sinπα)
(
Im gn

(
ze2πiα/n

))
} = cosπα.

(d) Uniformly for z ∈ Γ,

(3.9) lim
n→∞

1

n
Rn (z) |ϕn (z)|2 µ′ (z) = 1.
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(e) Uniformly for z ∈ Γ, and fixed real α,

(3.10)
(
1− e−2πiα

)
gn (z) = 1−

ϕn
(
ze−2πiα/n

)
ϕn (z)

(1 + o (1)) + o (1) .

Proof
Throughout this proof, we assume that

ζ = ze2πiα/n

with α real or complex.
(a) Elementary manipulation shows that

1− |zjn|2

|z − zjn|2
= 2 Re

(
z

z − zjn

)
− 1.

Dividing by n and adding for j = 1, 2, ..., n gives (3.6).
(b) The Christoffel-Darboux formula (1.3) and universality limit (3.2)
(as well as the uniformity of that limit) give uniformly for α in compact
subsets of C,

lim
n→∞

ϕ∗n (z)ϕ∗n (ζ)− ϕn (z)ϕn (ζ)

[1− z̄ζ]Kn (z, z)

= lim
n→∞

Kn (ζ, z)

Kn (z, z)

= lim
n→∞

Kn

(
z
(
1 + 2πiα

n
[1 + o (1)]

)
, z
)

Kn (z, z)
= eiπαS (α) .

(3.11)

Here by (3.1),

lim
n→∞

[1− z̄ζ]Kn (z, z) = −2πiαµ′ (z)−1 .

Thus

lim
n→∞

[
ϕ∗n (z)ϕ∗n (ζ)− ϕn (z)ϕn (ζ)

]
µ′ (z) = −2πiαeiπαS (α)

= −2ieπiα sinπα = 1− e2πiα.(3.12)

Next, if α is real,

ϕ∗n (z)ϕ∗n (ζ) = e2πiαϕn (z)ϕn (ζ)

so combining this and (3.12) gives

lim
n→∞

eπiα
{
eiπαϕn (z)ϕn (ζ)− e−πiαϕn (z)ϕn (ζ)

}
µ′ (z) = −2ieπiα sin πα.

Dividing by 2ieπiα gives (3.7).
(c) We go back to (3.12), which holds uniformly for α in compact
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subsets of C. This uniformity allows us to differentiate with respect to
α: after cancelling a factor of 2πi, we obtain

(3.13) lim
n→∞

[
ϕ∗n (z)ϕ∗′n (ζ)− ϕn (z)ϕ′n (ζ)

] ζ
n
µ′ (z) = −e2πiα.

Now we again specialize to real α, and use that for |ζ| = 1,

ϕ∗′n (ζ) = nζn−1ϕn (ζ)− ζn−2ϕ′n (ζ)

so that using z̄ζ = e2πiα/n, and recalling the definition (1.5) of gn

ϕ∗n (z)ϕ∗′n (ζ)
ζ

n
= e2πiαϕn (z)ϕn (ζ)− e2πiαϕn (z)ϕn (ζ)gn (ζ).

Substituting in (3.13), and dividing by eπiα,

lim
n→∞

[
eπiαϕn (z)ϕn (ζ)− eπiαϕn (z)ϕn (ζ)gn (ζ)− e−πiαϕn (z)ϕn (ζ) gn (ζ)

]
µ′ (z)

= −eπiα

(3.14)

or

lim
n→∞

[
eπiαϕn (z)ϕn (ζ)− 2 Re

{
eπiαϕn (z)ϕn (ζ)gn (ζ)

}]
µ′ (z) = −eπiα.

Taking real parts,

lim
n→∞

Re
[
eπiαϕn (z)ϕn (ζ)

{
1− 2gn (ζ)

}]
µ′ (z) = − cosπα.

Then using (3.7),

lim
n→∞
{Re

[
eπiαϕn (z)ϕn (ζ)µ′ (z)

]
Re [1− 2gn (ζ)] + 2 sin πα Im gn (ζ)}

= − cos πα.

Finally apply (3.6).
(d) Here we set α = 0 in (3.8).
(e) From (a),

gn (ζ) = 2 Re gn (ζ)− gn (ζ) =
1

n
Rn (ζ) + 1− gn (ζ) .

We substitute this in (3.14) and cancel a term:

lim
n→∞

[−eπiαϕn (z)ϕn (ζ)
1

n
Rn (ζ) + gn (ζ)

{
eπiαϕn (z)ϕn (ζ)− e−πiαϕn (z)ϕn (ζ)

}
]µ′ (z)

= −eπiα.
Using (3.9) and (3.7), and continuity of µ′, we obtain

lim
n→∞

[
−eπiαϕn (z)

ϕn (ζ)
(1 + o (1)) + gn (ζ) 2i (− sin πα)

]
= −eπiα
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⇒ lim
n→∞

[
ϕn (z)

ϕn (ζ)
(1 + o (1)) + gn (ζ) 2ie−πiα sin πα

]
= 1.

Because of the uniformity, we can substitute ze−2πiα/n for z so that ζ
becomes z. �
We now prove parts of Theorems 2.1, 2.2. Recall τ jn =

zjn
|zjn| as at

(1.6).

Lemma 3.3
(a) The following are equivalent:
(i) in every proper subarc Γ of ∆,

inf {n (1− |zjn|) : τ jn ∈ Γ, n ≥ 1} ≥ C > 0.

(ii) in every proper subarc Γ of ∆,

sup
z∈Γ,n≥1

1

n2

n∑
j=1

1

|z − zjn|2
<∞.

(b) The following are equivalent:
(i) in every proper subarc Γ of ∆,

lim
n→∞

[inf {n (1− |zjn|) : τ jn ∈ Γ}] =∞.

(ii) in every proper subarc Γ of ∆,

lim
n→∞

[
sup
z∈Γ

1

n2

n∑
j=1

1

|z − zjn|2

]
= 0.

Proof
(a) (i)⇒(ii)
Let Γ,Γ1 be proper subarcs of ∆ such that Γ is a proper subarc of Γ1.
In particular, we assume that the distance from both endpoints of Γ to
the endpoints of Γ1 is positive. We have for z ∈ Γ,

1

n2

∑
τ jn∈Γ1

1

|z − zjn|2
≤ 1

Cn

∑
τ jn∈Γ1

1− |zjn|2

|z − zjn|2

≤ 1

Cn
Rn (z) ≤ C1 |ϕn (z)|−2 ,

by (3.9) and positivity and continuity of µ′. Next, we know from (3.7)
with α = 1

2
, that

|ϕn (z)|
∣∣ϕn (zeiπ/n)∣∣µ′ (z) ≥ 1 + o (1)
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so it follows that either

1

n2

∑
τ jn∈Γ1

1

|z − zjn|2
≤ C1 or

1

n2

∑
τ jn∈Γ1

1

|zeiπ/n − zjn|2
≤ C1

(or possibly both). But because of our hypothesis, for τ jn ∈ Γ1, z ∈ Γ,∣∣∣∣ z − zjn
zeiπ/n − zjn

∣∣∣∣ =

∣∣∣∣∣1 +
z
(
1− eiπ/n

)
zeiπ/n − zjn

∣∣∣∣∣
≤ 1 +

2 sin (π/2n)

1− |zjn|
≤ C2

while a similar bound holds for the reciprocal. So for z ∈ Γ,

1

n2

∑
τ jn∈Γ1

1

|z − zjn|2
≤ C3.

Then also for the remaining terms, as the distance from the boundary
of Γ to that of Γ1 is positive, and z ∈ Γ,

1

n2

∑
τ jn /∈Γ1

1

|z − zjn|2
≤ C4n

n2
= o (1) .

Adding the two estimates gives the result.
(ii)⇒(i)
Choosing z = τ jn ∈ Γ gives

1

n2 (1− |zjn|)2 =
1

n2 |z − zjn|2
≤ 1

n2

n∑
k=1

1

|z − zkn|2
≤ C,

by our hypothesis.
(b) (i)⇒(ii)
Let Γ,Γ1 be as above. For z ∈ Γ,

1

n2

∑
τ jn∈Γ1

1

|z − zjn|2
≤

 1

n

∑
τ jn∈Γ1

1− |zjn|2

|z − zjn|2

 1

infτ jn∈Γ1 n
(
1− |zjn|2

)
= o

(
1

n
Rn (z)

)
.

We can now proceed as in (a).
(b) (ii)⇒(i)
Again, proceed much as in (a). �
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Lemma 3.4
Assume that in every proper subarc Γ of ∆,

sup
n≤1
‖ϕn‖L∞(Γ) <∞.

Then in every proper subarc Γ of ∆, there exists C > 0 such that for
n ≥ 1 and zjn 6= 0, τ jn ∈ Γ,

n (1− |zjn|) ≥ C.

Proof
Let Γ be a proper subarc of ∆. Suppose the conclusion is false. Then
we can can choose an infinite subsequence S of integers, and for j =
j (n) ∈ S, zjn with τ jn = zjn/ |zjn| ∈ Γ such that

n (1− |zjn|)→ 0.

Write

zjn = τ jn

(
1 + 2πi

αn
n

)
;u = τ jn

(
1 + 2πi

v̄

n

)
where v = v (n), that is v depends on n and αn → 0 as n→∞. Then
from the universality limit (3.2), (which by our assumptions holds in a
larger arc than Γ), uniformly for v in compact sets,

Kn (zjn, u)

Kn (τ jn, τ jn)
= eiπ(αn−v)S (αn − v) + o (1)

= e−iπvS (v) + o (1) .(3.15)

Next from the Christoffel-Darboux formula (1.3),

(3.16) ϕ∗n (u)ϕ∗n (zjn) = {Kn (τ jn, τ jn) (1− ūzjn)} Kn (zjn, u)

Kn (τ jn, τ jn)

and setting u = τ jn so that v = 0 in both formulas, and using (3.1),
as well as the fact that n (1− |zjn|)→ 0, gives

ϕ∗n (τ jn)ϕ∗n (zjn) = Kn (τ jn, τ jn) (1− |zjn|)
Kn (zjn, τ jn)

Kn (τ jn, τ jn)

= o (1) (1 + o (1)) = o (1) .(3.17)

Now apply (3.15), (3.16) with u = τ jne
iπ/n, so that in u above, v =

1
2

+ o (1) , and

Kn (zjn, u)

Kn (τ jn, τ jn)
= e−iπ/2S

(
1

2

)
+ o (1) ,
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while

ϕ∗n (τ jneiπ/n)ϕ∗n (zjn)

=
{
Kn (τ jn, τ jn)

(
1− e−iπ/n

[
1 + 2πi

αn
n

])} Kn (zjn, u)

Kn (τ jn, τ jn)

=

{
Kn (τ jn, τ jn)

(
1− e−iπ/n + o

(
1

n

))}{
e−iπ/2S

(
1

2

)
+ o (1)

}
so that using (3.1), ∣∣ϕ∗n (τ jneiπ/n)ϕ∗n (zjn)

∣∣ ∼ 1.

Dividing (3.17) by this, gives∣∣∣∣ ϕn (τ jn)

ϕn (τ jneiπ/n)

∣∣∣∣ =

∣∣∣∣ ϕ∗n (τ jn)

ϕ∗n (τ jneiπ/n)

∣∣∣∣ = o (1) .

But from (3.7) with α = 1
2
,∣∣ϕn (τ jneiπ/n)ϕn (τ jn)

∣∣ ≥ 1 + o (1) ,

so ∣∣ϕn (τ jneiπ/n)∣∣2 =

∣∣∣∣ ϕn (τ jn)

ϕn (τ jneiπ/n)

∣∣∣∣−1 ∣∣ϕn (τ jneiπ/n)ϕn (τ jn)
∣∣

→ ∞ as n→∞,
contradicting the assumed boundedness of {ϕn}. �

4. Proof of Theorem 2.1

Proof of Theorem 2.1
(a)⇔(b)
This is immediate from (3.9).
(b)⇔(c)
This is immediate from the identity (3.6).
(c)⇔(d)
It is immediate that (2.4)⇒(2.3). Now assume (2.3) holds. We must
show that Im gn (z) → 0 as n → ∞, uniformly in Γ. From the estab-
lished equivalence (b)⇔(c), we have (2.2), so from (3.8) with α = 1

2
,

and (3.9),

(4.1) lim
n→∞

{
− Im

[
ϕn (z)ϕn (zeiπ/n)µ′ (z)

]
− 2

(
Im gn

(
zeπi/n

))}
= 0.

Next, we have already proved that (c) is equivalent to (a), so using
(2.1) for ζ = z, zeiπ/n and continuity of µ′,

lim
n→∞

∣∣∣ϕn (z)ϕn (zeiπ/n)
∣∣∣µ′ (z) = 1,
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while from (3.7) with α = 1
2
,

lim
n→∞

Re
[
ϕn (z)ϕn (zeiπ/n)

]
µ′ (z) = −1.

Hence

lim
n→∞

Im
[
ϕn (z)ϕn (zeiπ/n)

]
µ′ (z) = 0.

Then (4.1) gives

(4.2) lim
n→∞

Im gn
(
zeπi/n

)
= 0.

All of the above limits hold uniformly in Γ, and even in a larger subarc
of ∆. Because of the uniformity in z, we may replace zeiπ/n by z. So
indeed (2.3)⇒(2.4).
(d) ⇔(e)
From (3.10) with α = −1

2
,

2gn (z) = 1−
ϕn
(
zeπi/n

)
ϕn (z)

(1 + o (1)) + o (1)

and so (2.4)⇔(2.5).
(a)⇔(f)
Let Γ1 be a proper subarc of ∆ properly containing Γ. Assume first
(2.1) holds. We apply Lemma 3.1(c) with all ζn = z, so must verify
(3.3) there. The first condition in (3.3), with all ζn = z, follows imme-
diately from (2.4) - and in turn, we have proved that follows from (2.1).
For the second, observe first from Lemma 3.4 and our hypothesis, that

inf {n (1− |zjn|) : τ jn ∈ Γ} ≥ C.

Then Lemma 3.3(a) shows that the second condition in (3.3) holds with
all ζn = z. From Lemma 3.1(c), we obtain that every subsequence of
positive integers contains a further subsequence S such that uniformly
for u in compact subsets of C,

lim
n→∞,n∈S

ϕn
(
z
(
1 + u

n

))
ϕn (z)

= eu + C (eu − 1) ,

where

C = lim
n→∞,n∈S

(
z

n

ϕ′n (z)

ϕn (z)
− 1

)
.

But from (2.4) (which we know follows from(a)), C = 0, so the limit is
independent of the subsequence, and we have (2.6).
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Now conversely assume we have the local limit (2.6). Then setting
u = iπ/n and using the uniformity,

lim
n→∞

ϕn(zeiπ/n)

ϕn (z)
= lim

n→∞

ϕn(z
(
1 + iπ

n
[1 + o (1)]

)
)

ϕn (z)
= eiπ = −1,

so we have (2.5) and hence the result from the established equivalence
(a)⇔(e).
(f)⇒(g)
This is a consequence of the fact that eu has no zeros. Indeed, if there
were a subsequence of zeros zjn, n ∈ S, j = j (n), with τ jn ∈ Γ,
and 1 − |zjn| = O

(
1
n

)
, then writing zjn = τ jn (1 + iαn/n), we have

αn = O (1), and by the local limit,

0 =
ϕn (τ jn (1 + iαn/n))

ϕn (τ jn)
= eπiαn + o (1) ,

leading to a contradiction.
(g)⇔(h)
This is Lemma 3.3(b).
(h)⇒(f)
Now

1

n
g′n (z) =

1

n2

d

dz

(
n∑
j=1

[
1 +

zjn
z − zjn

])

= − 1

n2

n∑
j=1

zjn

(z − zjn)2 .

Let A > 0. Our hypothesis gives uniformly for z ∈ Γ,

1

n
g′n (z) = o (1)

and hence for ζ, z ∈ Γ with |ζ − z| ≤ A/n,

(4.3) |gn (z)− gn (ζ)| = o (1) .

Next (3.10) with α = −1
2
gives

2gn (z) = 1−
ϕn
(
zeiπ/n

)
ϕn (z)

(1 + o (1)) + o (1) .

Also, replacing z by zeiπ/n and using (3.10) with α = 1
2
gives

2gn
(
zeiπ/n

)
= 1− ϕn (z)

ϕn (zeiπ/n)
(1 + o (1)) + o (1) .
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Thus from (4.3),∣∣∣∣∣ϕn
(
zeiπ/n

)
ϕn (z)

(1 + o (1))− ϕn (z)

ϕn (zeiπ/n)
(1 + o (1))

∣∣∣∣∣ = o (1)

so that (
ϕn
(
zeiπ/n

)
ϕn (z)

)2

= 1 + o (1) .

In view of (3.7) with α = 1
2
, necessarily

lim
n→∞

ϕn
(
zeiπ/n

)
ϕn (z)

= −1.

Then we have the conclusion (2.5) and the established equivalence
(e)⇔(f) gives the result. Note that all the limits above hold uniformly
in Γ, so we have uniformity in (2.5). �

5. Proof of Theorem 2.2

Proof of Theorem 2.2
We note that several of the equivalences hold automatically for finitely
many n. So we should deal with large enough n.
(a)⇔(b)
This is immediate from (3.9) and the continuity of µ′.
(b)⇔(c)
This is immediate from (3.6).
(c)⇔(d)
This follows from (3.10) with α = −1

2
, which implies

2gn (z)− 1 = −
ϕn
(
ze±iπ/n

)
ϕn (z)

(1 + o (1)) + o (1) .

(a)⇒(e)
This was proved in Lemma 3.4.
(e)⇔(f)
This was proved in Lemma 3.3(a).
(f)⇒(a)
Assume the result is false. Then we can choose Γ ⊂ ∆, a sequence S
of positive integers, and for n ∈ S, ζn ∈ Γ such that

|ϕn (ζn)| → ∞.
Then from (3.9),

1

n
Rn (ζn)→ 0.
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Let C > 0. Let {un} be a sequence on the unit circle such that
|ζn − un| ≤ C

n
, n ≥ 1. We claim that

(5.1)
1

n
Rn (un)→ 0.

Indeed, let Γ1 contain Γ as a proper subarc. If zjn ∈ Γ1, then using
(2.13) (which we may because of our equivalence (e)⇔(f))∣∣∣∣un − zjnζn − zjn

∣∣∣∣ ≤ 1 +
|un − ζn|
1− |zjn|

≤ C,

with a similar lower bound. The terms with zjn /∈ Γ1 are easier, so
Rn (ζn) ∼ Rn (un) and we have (5.1). Next, using our equivalence
(e)⇔(f),

1

n2

∑
τ jn∈Γ1

1

|un − zjn|2
≤ C

n

∑
τ jn∈Γ1

1− |zjn|2

|un − zjn|2

≤ C

n
Rn (un) = o (1)

while the tail sum admits the estimate
1

n2

∑
τ jn /∈Γ1

1

|un − zjn|2
≤ C

n

n2
= o (1)

so
1

n2

n∑
j=1

1

|un − zjn|2
= o (1) .

We now proceed much as in the proof of (h)⇒(f) in Theorem 2.1. We
have

1

n
g′n (un) = − 1

n2

n∑
j=1

zjn

(un − zjn)2 = o (1) .

It follows that if |un − ζn| ≤ C/n, and un, ζn ∈ Γ,

|gn (un)− gn (ζn)| = o (1) .

Then from (3.10) with α = 1
2
, and appropriate choices of un,∣∣∣∣∣ϕn

(
ζne

iπ/n
)

ϕn (ζn)
(1 + o (1))− ϕn (ζn)

ϕn (ζne
iπ/n)

(1 + o (1))

∣∣∣∣∣ = o (1)

⇒
(
ϕn
(
ζne

iπ/n
)

ϕn (ζn)

)2

= 1 + o (1)

⇒
ϕn
(
ζne

iπ/n
)

ϕn (ζn)
= −1 + o (1) ,
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in view of (3.7) with α = 1
2
. Next, using (3.10),

gn (ζn) = 1 + o (1)

which gives using (3.6) that

1

n
Rn (ζn) = 1 + o (1)

and hence using (3.9), that

|ϕn (ζn)|2 µ′ (ζn) = 1 + o (1) .

This contradicts our assumption that {ϕn (ζn)} is unbounded.�
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