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Abstract. We establish local pointwise asymptotics for orthonormal polyno-
mials inside the support of the measure using universality limits. For example,
if a measure µ has compact support, is regular in the sense of Stahl, Totik and
Ullmann, and in some subinterval I, µ is absolutely continuous and µ′ is pos-
itive and continuous, we prove that for yjn in a compact subset of Io with
p′n (yjn) = 0, we have

lim
n→∞

pn

(
yjn +

z
nω(yjn)

)
pn (yjn)

= cosπz

uniformly in yjn and for z in compact subsets of the plane. Here ω is the
equilibrium density for the support of µ.
Research supported by NSF grant DMS1800251

1. Results

Let µ be a finite positive Borel measure with compact support. Then we may
define orthonormal polynomials

pn (x) = γnx
n + ..., γn > 0,

n = 0, 1, 2, ... satisfying the orthonormality conditions∫
pnpmdµ = δmn.

One of the key limits in random matrix theory, the so-called universality limit [1],
[3], [4], [5], [8], [13], [14] involves the reproducing kernel

Kn (x, y) =

n−1∑
k=0

pk (x) pk (y)

For x in the interior of supp[µ] (the "bulk" of the support), at least when µ′ (x) is
finite and positive, the universality limit typically takes the form

lim
n→∞

Kn

(
x+ a

µ′(x)Kn(x,x)
, x+ b

µ′(x)Kn(x,x)

)
Kn (x, x)

= S (a− b) ,

uniformly for a, b in compact subsets of C, where S is the sinc kernel,

S (a) =
sinπa

πa
.

One feature of the universality limit is that it holds very generally, far more
generally than pointwise asymptotics for orthonormal polynomials, that at one
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stage were used to prove it. It is the purpose of this paper to show that we can
at least partially go in the other direction. We establish local asymptotics for
orthonormal polynomials inside the support of the measure. The main ideas we use
were introduced and first applied in the context of universality at the endpoints of
the interval of orthogonality in [6].
We shall need more notation. Let supp[µ] denote the compact support of the

measure µ. We say that µ is regular (in the sense of Stahl, Totik, and Ullmann) if
for every sequence of polynomials {Pn} with degree Pn at most n,

lim sup
n→∞

 |Pn (x)|(∫
|Pn|2 dµ

)1/2

1/n

≤ 1

for quasi-every x ∈supp[µ] (that is except in a set of logarithmic capacity 0). If the
support consists of finitely many intervals, and µ′ > 0 a.e. in each subinterval, then
µ is regular, though much less is required [9]. An equivalent formulation involves
the leading coeffi cients {γn} of the orthonormal polynomials for µ :

lim
n→∞

γ1/nn =
1

cap (supp [µ])
,

where cap denotes logarithmic capacity.
Recall that the equilibrium measure for the compact set supp[µ] is the probability

measure that minimizes the energy integral∫ ∫
log

1

|x− y|dν (x) dν (y)

amongst all probability measures ν supported on supp[µ]. If I is an interval con-
tained in supp[µ], then the equilibrium measure is absolutely continuous in I, and
moreover its density, which we denote throughout by ω, is continuous in the interior
Io of I [7, p.216, Thm. IV.2.5].
The zeros xjn of pn are listed in decreasing order:

x1n > x2n > ... > xn−1,n > xnn.

They interlace the zeros yjn of p′n :

p′n (yjn) = 0 and yjn ∈ (xj+1,n, xjn) , 1 ≤ j ≤ n− 1.

We prove:

Theorem 1.1
Assume that µ is a regular measure with compact support. Let I be a closed subin-
terval of the support in which µ is absolutely continuous, and µ′ is positive and
continuous. Let J be a compact subset of the interior Io of I. Then

lim
n→∞

pn

(
yjn +

z
nω(yjn)

)
pn (yjn)

= cosπz

uniformly for yjn ∈ J and z in compact subsets of C. Here ω is the equilibrium
density for the support of µ.
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Corollary 1.2

lim
n→∞

(
pn

(
yjn +

z
nω(yjn)

))2
+
(

1
nπω(yjn)

)2 (
p′n

(
yjn +

z
nω(yjn)

))2
pn (yjn)

2 = 1,

uniformly for z in compact subsets of the plane.

We note that Bernstein-Szegő inequalities involving expressions of the form

P (x)
2
+
(

1
nπω(x)

)2
P ′ (x)

2, where P is a polynomial of degree at most n, have

been established by Totik [11, Thm. 3.2].
We shall deduce Theorem 1.1 from a general proposition for a sequence of mea-

sures {µn}. The corresponding orthonormal polynomials and reproducing kernels
are denoted respectively by pn (µn, x) and Kn (µn, x, x). The zeros of pn (µn, x) are
denoted by

xnn,n < xn−1n,n < ... < x2n,n < x1n,n.

Theorem 1.3
Assume that for n ≥ 1 we have a measure µn supported on the real line with infin-
itely many points in its support. Let {ξn} be a bounded sequence of real numbers,
and {τn} be a sequence of positive numbers that is bounded above and below by
positive constants, such that uniformly for a, b in compact subsets of C,

(1.1) lim
n→∞

Kn

(
µn, ξn +

aτn
n , ξn +

bτn
n

)
Kn (µn, ξn, ξn)

= S (a− b) .

Let us be given some infinite sequence of integers T . The following are equivalent:
(I)

(1.2) sup
n∈T

1

n

∣∣∣∣∣∣
n∑
j=1

1

ξn − xjn,n

∣∣∣∣∣∣ <∞ and sup
n∈T

1

n2

n∑
j=1

1

(ξn − xjn,n)
2 <∞.

(II) For each R > 0, there exists CR such that

(1.3) sup
n∈T

sup
|z|≤R

∣∣∣∣∣pn
(
µn, ξn +

τnz
n

)
pn (µn, ξn)

∣∣∣∣∣ ≤ CR.
(III) From every subsequence of T , there is a further subsequence S such that

(1.4) lim
n→∞,n∈S

pn
(
µn, ξn +

zτn
n

)
pn (µn, ξn)

= cos (πz) +
α

π
sinπz,

uniformly for z in compact subsets of C, where

(1.5) α = lim
n→∞,n∈S

τn
n

p′n (µn, ξn)

pn (µn, ξn)

and α is bounded independently of S.

This paper is organised as follows. In the next section, we prove Theorem 1.3.
In Section 3, we prove Theorem 1.1 and Corollary 1.2. In the sequel C,C1, C2, ...
denote constants independent of n, x, θ. The same symbol does not necessarily
denote the same constant in different occurences.
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2. Proof of Theorem 1.3

In this section only, we abbreviate pn (µn, z) as pn (z) and Kn (µn, z, w) as
Kn (z, w).

Lemma 2.1
Assume (1.1) and that through the subsequence S, uniformly for z in compact sub-
sets of C,

(2.1) lim
S

pn
(
ξn +

zτn
n

)
pn (ξn)

= f (z) .

(a) Then for u, z, w ∈ C,
(2.2) f (u) sinπ (w − z) = f (w) sinπ (u− z) + f (z) sinπ (w − u) .
(b)

(2.3) f (z) = cosπz +
1

π
f ′ (0) sinπz.

Here

(2.4) f ′ (0) = lim
S

τn
n

p′n (ξn)

pn (ξn)
.

Proof
(a) From

pn−1
pn

(z)− pn−1
pn

(w) =

[
pn−1
pn

(z)− pn−1
pn

(u)

]
+

[
pn−1
pn

(u)− pn−1
pn

(w)

]
and the Christoffel-Darboux formula, we deduce that

Kn (z, w)

pn (z) pn (w)
(w − z) = Kn (u, z)

pn (z) pn (u)
(u− z) + Kn (w, u)

pn (u) pn (w)
(w − u) .

Replace z, w, u respectively by ξn +
zτn
n , ξn +

wτn
n , ξn +

uτn
n . Divide each denom-

inator by pn (ξn)
2 and each numerator by Kn (ξn, ξn). Take limits through the

subsequence S. If f (u) f(w)f (z) 6= 0, we obtain from (1.1) and (2.1),

S (z − w)
f (z) f (w)

(w − z) = S (u− z)
f (z) f (u)

(u− z) + S (w − u)
f (u) f (w)

(w − u)

and hence
sinπ (w − z)
f (z) f (w)

=
sinπ (u− z)
f (z) f (u)

+
sinπ (w − u)
f (u) f (w)

yielding (2.2).
(b) The double angle formula for trigomometric functions yields the elementary
identity

cosπu sinπ (w − z) = cosπw sinπ (u− z) + cosπz sinπ (w − u) .
Then we can recast (2.2) as
(2.5)
[f (u)− cosπu] sinπ (w − z) = [f (w)− cosπw] sinπ (u− z)+[f (z)− cosπz] sinπ (w − u) .
Setting u = 0 and using f (0) = 1 gives

0 = − [f (w)− cosπw] sinπz + [f (z)− cosπz] sinπw
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so if (sinπz) (sinπw) 6= 0, we have
f (z)− cosπz

sinπz
=
f (w)− cosπw

sinπw
.

So both sides are necessarily constant. Fix any such w, and call the right-hand side
c. We have at first for all non-integer z, and then for all z,

f (z)− cosπz = c sinπz.

We see that
f ′ (0) = cπ,

so

f (z) = cosπz +
1

π
f ′ (0) sinπz.

Finally, because of the uniform convergence, we can differentiate the asymptotic
relation, and deduce (2.4). �

Proof of Theorem 1.3
(I) ⇒ (II)

log

∣∣∣∣∣pn
(
ξn +

τnz
n

)
pn (ξn)

∣∣∣∣∣ =

n∑
j=1

log

∣∣∣∣1 + τnz

n (ξn − xjn,n)

∣∣∣∣
=

1

2

n∑
j=1

log

(
1 +

2τnRe (z)

n (ξn − xjn,n)
+

τ2n |z|
2

(n (ξn − xjn,n))
2

)

≤ τnRe (z)

n

n∑
j=1

1

ξn − xjn,n
+
τ2n |z|

2

2n2

n∑
j=1

1

(ξn − xjn,n)
2 .

(2.6)

Then our hypotheses give the uniform boundedness.
(II)⇒(I)
Suppose we have the uniform boundedness (1.3). Then by normality from every
subsequence, we can choose another subsequence S such that

lim
S

pn
(
ξn +

τnz
n

)
pn (ξn)

= f (z) ,

where f is an entire function. Then also from (1.3), with R = 1,

sup
|z|≤1

|f (z)| ≤ C1.

Because of the uniform convergence for z in compact sets, the differentiated se-
quence also converges, so

lim
n→∞

∣∣∣∣τnn p′n (ξn)

pn (ξn)

∣∣∣∣ = |f ′ (0)| .
Since {τn} is bounded above and below, and by Cauchy’s inequalities, |f ′ (0)| is
bounded above independently of the subsequence S,

sup
n∈T

∣∣∣∣∣∣
n∑
j=1

1

n (ξn − xjn,n)

∣∣∣∣∣∣ = sup
n∈T

1

n

∣∣∣∣p′n (ξn)pn (ξn)

∣∣∣∣ <∞.
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Next, setting z = iy, we have for y ∈ [−R,R] ,

CR ≥ log
∣∣∣∣∣pn

(
ξn +

iτny
n

)
pn (ξn)

∣∣∣∣∣ = 1

2

n∑
j=1

log

(
1 +

τ2ny
2

(n (ξn − xjn))
2

)
.

Let us assume that τn ≥ d for all n. Then also for each j,

C1 ≥ log

(
1 +

d2

(n (ξn − xjn,n))
2

)

⇒ eC1 ≥ 1 + d2

(n (ξn − xjn,n))
2

⇒ C1 := eC1 − 1 ≥ d2

(n (ξn − xjn,n))
2 .

Now there exists C2 depending only on C1 such that

log (1 + t) ≥ C2t for t ∈ [0, C1] .
Then

C1 ≥ log

∣∣∣∣∣pn
(
ξn +

iτn
n

)
pn (ξn)

∣∣∣∣∣
=

1

2

n∑
j=1

log

(
1 +

τ2n

(n (ξn − xjn,n))
2

)

≥ C2
2
d2

n∑
j=1

1

(n (ξn − xjn,n))
2 .

Here C,C2, d are independent of n, so we have also

sup
n∈T

n∑
j=1

1

(n (ξn − xjn,n))
2 <∞.

(II)⇒(III)
Because of the uniform convergence, we can extract a subsequence S of T such that

lim
n∈S

pn
(
ξn +

τnz
n

)
pn (ξn)

= f (z)

uniformly for z in compact subsets of C. Then Lemma 2.1 shows that f has the
form (1.4-5).
(III)⇒(II)
Since α is bounded independently of the subsequence, we obtain the uniform bound-
edness in (1.3). �

3. Proof of Theorem 1.1

Our analysis depends heavily on results established by Vili Totik [13], [14]. We
list the results we need in the following lemma:

Lemma 3.1
Assume that µ is a regular measure with compact support. Assume that in some
closed subinterval I of the support, logµ′ ∈ L1 (I). Assume that x ∈ I is a Lebesgue
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point of both µ′ and logµ′.
(a)

lim
n→∞

Kn

(
x+ a

µ′(x)Kn(x,x)
, x+ b

µ′(x)Kn(x,x)

)
Kn (x, x)

= S (a− b)

uniformly for a, b in compact subsets of C.
(b) Given any L > 0, we have for |xkn − x| ≤ L/n,

lim
n→∞

n (xkn − xk+1,n)ω (x) = 1.

(c) Given any A > 0, we have uniformly for a ∈ [−A,A]

lim
n→∞

1

n
Kn

(
x+

a

n
, x+

a

n

)
µ′ (x) = ω (x) .

When µ′ is continuous and positive in I all the above results hold uniformly for
x ∈ J , where J is any closed subinterval of I0.
Proof
(a), (b), See Theorems 2.1 and 2.2 in [13] (see also Theorems 1-3 in [14] for the
statement without uniformity).
(c) See Theorem 3.1 in [13]. �
Recall that yjn ∈ (xj+1,n, xjn) has p′n (yjn) = 0. Let

zjn =
1

2
(xj+1,n + xjn) , 1 ≤ j ≤ n− 1.

Lemma 3.2
Assume the hypotheses of Theorem 1.1. Let J be a compact subinterval of the
interior of I.
(a) For n ≥ 1, j ≥ 1,

(3.1)
n∑
k=1

1

yjn − xkn
= 0.

(b) There exists C such that for xjn ∈ J and k = j, j + 1,

(3.2) |yjn − xkn| ≥
C

n
.

(c) The bounds (1.2) hold with all µn = µ and ξn = yjn for the full sequence
T = {1, 2, 3, ...}.
Proof
(a)

(3.3) 0 =
p′n (yjn)

pn (yjn)
=

n∑
k=1

1

yjn − xkn
.

(b) Now from the Christoffel-Darboux formula,

Kn (xkn, zjn) =

γn−1
γn

pn−1 (xkn) pn (zjn)

xkn − zjn
so as zjn is the midpoint of [xj+1,n, xjn] ,

γn−1
γn

pn−1 (xkn) pn (zjn) =
1

2
(xjn − xj+1,n)Kn (xkn, zjn) .
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From Lemma 3.1(b) and continuity of ω in I [7, p. 216, Thm. IV.2.5],

lim
n→∞

(xjn − xj+1,n)nω (xjn) = 1,

so for k = j, j + 1,

γn−1
γn

pn−1 (xkn) pn (zjn)µ
′ (zjn)

=
1

2

1 + o (1)

nω (xjn)
Kn

(
xkn, xkn −

1

2

1

nω (xjn)
(1 + o (1))

)
µ′ (zjn)

=
1

2
S
(
1

2

)
+ o (1) =

1

π
+ o (1) ,

by Lemma 3.1(a), (c) and uniformity. Thus uniformly for xjn ∈ J and k = j, j+1,

lim
n→∞

γn−1
γn
|pn−1 (xkn) pn (zjn)|µ′ (zjn) =

1

π
.

As |pn (yjn)| = max[xj+1,n,xjn] |pn| ≥ |pn (zjn)|, then uniformly for xjn ∈ J and
k = j, j + 1,

(3.4) lim inf
n→∞

γn−1
γn
|pn−1 (xkn) pn (yjn)|µ′ (yjn) ≥

1

π
.

Here we also have used continuity of µ′. Suppose there does not exist C satisfying
(3.2). Then for infinitely many n and j, we have

yjn − xkn =
εn

nω (xjn)

where εn → 0 as n→∞. Then from the Christoffel-Darboux formula,
γn−1
γn

pn−1 (xkn) pn (yjn)µ
′ (yjn)

=
εn

nω (xjn)
Kn (yjn,xkn)µ

′ (yjn)

=
εn

nω (xjn)
Kn

(
xkn ± εn

1

nω (xjn)
(1 + o (1)) , xkn

)
µ′ (yjn)

= εnS (εn) + o (1) = o (1) ,

by Lemma 3.1(a), (c), contradicting (3.4). Thus we have (3.2).
(c) Let J be a subinterval of Io. From Lemma 3.1(c), we have uniformly for
n ≥ 1, x ∈ J,

λn (µ, x) =
1

Kn (x, x)
∼ 1

n
.

By the Markov-Stieltjes inequalities [2, p. 33, (I.5.10)] for xkn ∈ J, and (for exam-
ple) j ≤ k − 2, ∫ xjn

xkn

µ′ ≥
k−1∑
i=j+1

λn (µ, xin) ≥ C
k − j
n

.

It follows that for |j − k| ≥ 2, such that xjn ∈ I,

|yjn − xkn| ≥ C
|j − k|
n
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and then

1

n2

j−2∑
k=1

+

n∑
k=j+2

 1

(yjn − xkn)2
≤ C

∑
k:|j−k|≥2

1

(j − k)2
≤ C1.

Here we are also using that supp[µ] \I is a positive distance from J . Together with
(b), this shows that

sup
n≥1

1

n2

n∑
k=1

1

(yjn − xkn)2
≤ C.

Together with (a), this shows that (1.2) is satisfied for the full sequence T =
{1, 2, 3, ...}. �

Proof of Theorem 1.1
We have shown (1.2) holds, so from Theorem 1.3 with τn = 1

ωn(yjn)
that for appro-

priate subsequences S,

lim
n→∞,n∈S

pn

(
yjn + z

1
nω(yjn)

)
pn (yjn)

= cosπz + α sinπz,

where

α = lim
n→∞,n∈S

1

nω (yjn)

p′n (yjn)

pn (yjn)
= 0.

Then the result follows, for full sequences, as the limit is independent of the subse-
quence. �

Proof of Corollary 1.2
We can differentiate the asymptotics in Theorem 1.1 to obtain

lim
n→∞

p′n

(
yjn + z

1
nω(yjn)

)
nω (yjn) pn (yjn)

= −π sinπz,

so that Corollary 1.2 follows. �
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