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QUADRATURE IDENTITIES FOR INTERLACING AND

ORTHOGONAL POLYNOMIALS

D. S. LUBINSKY

Abstract. Let S be a real polynomial of degree n with real simple zeros
{xj}

n
j=1. Let R be a real polynomial of degree n − 1, whose zeros interlace

those of S. We prove the quadrature identity
Z ∞

−∞

P (t)

S2 (t)
h

„

R

S
(t)

«

dt =

„

Z ∞

−∞

h (t) dt

« n
X

j=1

P (xj)

(RS′) (xj)

valid for all polynomials P of degree ≤ 2n − 2 and any h ∈ L1 (R). We de-
duce identities involving orthogonal polynomials, and weak convergence results
involving orthogonal polynomials.

1. Introduction

Let µ be a positive measure on the real line with infinitely many points in its
support, and

∫

xjdµ (x) finite for j = 0, 1, 2, . . . . Then we may define orthonormal
polynomials

pn (x) = γnx
n + · · · , γn > 0,

satisfying
∫ ∞

−∞
pnpmdµ = δmn.

Barry Simon [15, Theorem 2.1, p. 5], proved that for polynomials P of degree
≤ 2n− 2,

1

π

∫ ∞

−∞

P (t)
(

γn−1

γn

)2

p2
n (t) + p2

n−1 (t)
dt =

∫

P (t) dµ (t) .

Simon calls this a Carmona type formula because of its analogy to identities of
Carmona in the theory of Schrodinger operators [3]. He also refers to earlier work
of Krutikov and Remling [8].

Without being aware of this formula, we used complex analytic methods to prove
more general formulae in [11], [12]: if Im (z) 6= 0, then for polynomials P of degree
≤ 2n− 2,

(1.1)
1

π
|Imz|

∫ ∞

−∞

P (t)

|zpn (t) − pn−1 (t)|2
dt =

γn−1

γn

∫

P (t) dµ (t) ,
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and via Poisson integrals

(1.2)

∫ ∞

−∞

P (t)

pn (t)
2h

(

pn−1 (t)

pn (t)

)

dt =
γn−1

γn

(
∫ ∞

−∞
h (t) dt

)(
∫

P (t) dµ (t)

)

.

for any h ∈ L1 (R). In discussions with Adhemar Bultheel, the author learned
that (1.1) can be recovered from identities for orthogonal rational functions [2,
Thm. 6.3.2, p. 136; Thm. 6.4.3, p. 145], and there are analogues within systems
theory [4]. However, even (1.1) was evidently new to researchers in orthogonal
polynomials.

In this paper, we generalize these, and provide substantially shorter proofs, using
Wendroff’s theorem on interlacing and orthogonal polynomials and Gauss type
quadrature. We begin with:

Theorem 1.1. Let R,S be real polynomials of respective degrees n− 1and n, with

positive leading coefficients, and real simple zeros that interlace. Denote the zeros

of S by {xj}n

j=1. Let h ∈ L1 (R)and P be a polynomial of degree ≤ 2n− 2. Then

(1.3)

∫ ∞

−∞

P (t)

S2 (t)
h

(

R (t)

S (t)

)

dt =

(
∫ ∞

−∞
h (t) dt

) n
∑

j=1

P (xj)

(S′R) (xj)
.

Note that the integral on the left is an ordinary Lebesgue integral, because in
intervals where S has a zero, convergence follows from the integrability of h. Note
too that all (S′R) (xj) > 0. We can also replace h (t) dt by a measure dν (t) =
ν′ (t) dt+ dνs (t), at least when the singular part νs has compact support:

Theorem 1.2. Assume the hypotheses of Theorem 1.1 on P,R, S. Let νbe a finite

signed measure on the real line, whose singular part νs has compact support. Then

(1.4)

∫ ∞

−∞

P (t)

S2 (t)
dν

(

R (t)

S (t)

)

=

(
∫ ∞

−∞
dν (t)

) n
∑

j=1

P (xj)

(S′R) (xj)
.

The definition of the integral on the left is discussed in more detail in the proof
of Theorem 1.2.

One interesting case is where R is a multiple of S′:

Corollary 1.3. Let S be a real polynomial of degree n, with real simple zeros

{xj}n

j=1. Let α > 0, h ∈ L1 (R) and P be a polynomial of degree ≤ 2n− 2. Then

(1.5)

∫ ∞

−∞

P (t)

S2 (t)
h

(

α
S′ (t)

S (t)

)

dt =

(
∫ ∞

−∞
h (t) dt

) n
∑

j=1

P (xj)

αS′ (xj)
2 .

Theorem 1.1 also gives us the orthonormal polynomial of degree n − 1 for a
special weight:

Corollary 1.4. Let R and S be as in Theorem 1.1. Let h ∈ L1 (R) with
∫∞
−∞ h 6= 0.

Let

(1.6) ∆ =

n
∑

j=1

R

S′
(xj) .
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Then ∆ > 0 and 1√
∆
R is the orthonormal polynomial of degree ≤ n − 1 for the

possibly signed weight

(1.7) W (t) =
1

S2 (t)
(

∫∞
−∞ h

)h

(

R (t)

S (t)

)

, t ∈ R.

That is,
∫ ∞

−∞

1√
∆
R (t)P (t)W (t) dt =

{

0, deg (P ) < n− 1

1, P = 1√
∆
R

.

Theorem 1.1 leads to a substantial generalization of identities involving orthog-
onal polynomials from [12]:

Corollary 1.5. Let µ be a positive measure on the real line with at least n + 1
points in its support, with finite power moments

∫

xjdµ (x) for j = 0, 1, 2, . . . , 2n,
and orthonormal polynomials {pj}n

j=0. Let τ ∈ R not be a zero of pn−1, and

(1.8) ψn (t, τ) = pn (t) pn−1 (τ) − pn−1 (t) pn (τ) .

Let β ∈ R have the same sign as pn−1 (τ), and let h ∈ L1 (R). Then for polynomials

P of degree ≤ 2n− 2,
(1.9)
∫ ∞

−∞
P (t)

pn−1 (τ)

βψn (t, τ)
2h

(

pn−1 (t)

βψn (t, τ)

)

dt =

(
∫ ∞

−∞
h (t) dt

)

γn−1

γn

∫

P (t) dµ (t) .

In the special case where pn (τ) = 0, and β = 1/pn−1 (τ), we see that ψn (t) =
pn (t), and this reduces to (1.2) above. We note that this circle of ideas also leads
to explicit formulae for orthogonal polynomials associated with a reciprocal poly-
nomial weight [9].

We can deduce weak convergence results that substantially generalize those in
[12]. Recall that a determinate measure is one that is the unique solution to its
moment problem. In particular such a measure has all finite power moments, and
infinitely many points in its support.

Theorem 1.6. Let µ be a determinate positive measure on the real line, and let

{pn} denote the orthonormal polynomials for µ. For n ≥ 1, let an > 0, bn ≥ 0, and

(1.10) qn (t) = anpn (t) − bnpn−1 (t) .

Let h ∈ L1 (R) with
∫∞
−∞ h 6= 0, and let νn be the measure given by

(1.11) dνn (t) =

(

γn−1

γn

∫ ∞

−∞
h

)−1
an

qn (t)2
h

(

pn−1 (t)

qn (t)

)

dt.

Then as n→ ∞,

(1.12) dνn → dµ

weakly, in the following sense: for all functions f : R → R having polynomial growth

at ∞, and that are Riemann-Stieltjes integrable with respect to µ, we have

(1.13) lim
n→∞

∫ ∞

−∞
f (t) dνn (t) =

(
∫

f (t) dµ (t)

)

.

We note two special cases of this last result, with {an} , {bn} , {qn} as above:
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Example 1.7. For n ≥ 1, let an > 0, bn ≥ 0, ρ ≥ 0, and
(1.14)

dνn (t) =

(

γn−1

γn

√
πΓ
(

ρ+ 1
2

)

Γ (ρ+ 1)

)−1
an

q2n (t) + p2
n−1 (t)

(

qn (t)
2

q2n (t) + p2
n−1 (t)

)ρ

dt.

Then {dνn} satisfies the weak convergence in Theorem 1.6.

Note that Simon used his Carmona type formula to prove a special case of this
result where an = γn−1

γn
; bn = 0, ρ = 0. The case of general an, but bn = 0, ρ = 0

appears in [12].

Example 1.8. For n ≥ 1, let

(1.15) dνn (t) = 2

(

γn−1

γn

π2

)−1
log |qn (t)| − log |pn−1 (t)|

q2n (t) − p2
n−1 (t)

dt.

Then {dνn} satisfies the weak convergence in Theorem 1.6.

Using Corollary 1.3, we prove:

Theorem 1.9. Let µ be an absolutely continuous positive measure supported on

[−1, 1] with µ′ positive and continuous in (−1, 1), and µ′ (x)
√

1 − x2 bounded in

(−1, 1). Let h ∈ L1 (R) with
∫∞
−∞ h 6= 0, and let νn be the measure given by

(1.16) dνn (t) =

(
∫ ∞

−∞
h

)−1
1

pn (t)
2 h

(

p′n (t)

npn (t)

)

dt.

Then as n→ ∞, we have the weak convergence

(1.17) dνn (t) → 1

2

(

1 − t2
)

µ′ (t) dt

in the same sense as in Theorem 1.6.

Thus, for example,

dνn (t) =
1

π

1

p2
n (t) +

(

1
n
p′n (t)

)2 dt

satisfies (1.17). We prove the results in Section 2.

2. Proof of the results

We use Wendroff’s Theorem [16] and Gauss type quadrature formulae as devel-
oped in [5]. It is possible to prove Theorem 1.1 without these, and without any
reference to orthogonal polynomials, instead using Cauchy’s integral theorem and
Poisson integrals, as in [12]. It is also possible to use the theory of de Branges
spaces. However, the proof given here is substantially shorter, even in the special
case considered in [12].

Proof of Theorem 1.1. As mentioned previously, since the zeros of R and S
interlace, Wendroff’s theorem shows that there is a (nonunique) measure µ such
that R and S are orthogonal polynomials of respective degrees n − 1 and n for
µ [16], [1]. Let pj (x) = γjx

j + · · · denote the jth orthonormal polynomial for
µ, as in Section 1. We may multiply µ by a positive constant to ensure that
S = pn. Choose β > 0 so that R = βpn−1. Now we use the theory of Gauss
type quadratures as developed in Freud [5, pp. 19 ff.]. These amount to Gauss
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quadratures with one preassigned abscissa, and when that abscissa is an endpoint
of an interval of orthogonality, give Radau type quadratures. Let s 6= 0. This
corresponds to the ratio s = pn−1 (ξ) /pn (ξ) in [5, pp. 19 ff.]. There are n simple
zeros of the polynomial pn−1 (t) − spn (t), which we denote by {tj (s)}n

j=1. These

interlace the zeros of pn. Moreover, there is the Gauss type quadrature formula [5,
p. 21]

(2.1)

n
∑

j=1

(λnP ) (tj (s)) =

∫

Pdµ,

for polynomials P of degree ≤ 2n − 2. Here λn (t) is the nth Christoffel function
for µ, given by

(2.2) λn (t)
−1

=

n−1
∑

j=0

p2
j (t) =

γn−1

γn

(

p′n (t) pn−1 (t) − p′n−1 (t) pn (t)
)

.

Next, order the zeros {xj}n

j=1 of pn = S as

−∞ = xn+1 < xn < · · · < x1 < x0 = ∞,

and for 0 ≤ j ≤ n, let

Ij = (xj+1, xj) , 0 ≤ j ≤ n,

and

φj (t) =
pn−1 (t)

pn (t)
, t ∈ Ij .

Now as the zeros of pn−1 and pn interlace,

(2.3)
pn−1 (t)

pn (t)
=

n
∑

j=1

cj
t− xj

,

with all cj > 0. (It follows from the Lagrange interpolation formula that cj =
(pn−1/p

′
n) (xj), but we shall not need this.) Then for 1 ≤ j ≤ n− 1, φj is strictly

decreasing in Ij , from ∞ to −∞, so has an inverse φ
[−1]
j : (−∞,∞) → Ij . For j = 0,

instead φj is strictly decreasing in I0 from ∞ to 0, so φ
[−1]
0 : (0,∞) → I0. For j = n,

instead φj is strictly decreasing in In from 0 to −∞, so φ
[−1]
n : (−∞, 0) → In. Also,

for t ∈ Ij ,

(2.4) φ′j (t) =

(

p′n−1pn − p′npn−1

)

(t)

pn (t)
2 = −

(

γn−1

γn

)−1
1

λn (t) pn (t)
2 ,

by (2.2). Next, if s > 0, we see that we can order the zeros {tj (s)} of pn−1 − spn

so that for 1 ≤ j ≤ n,

tj (s) = φ
[−1]
j−1 (s)

while for s < 0,

tj (s) = φ
[−1]
j (s) .

Thus we can rewrite (2.1) as

n
∑

j=1

(λnP )
(

φ
[−1]
j−σ (s)

)

=

∫

Pdµ,



6 D. S. LUBINSKY

where σ = σ (s) = −1 if s > 0, and σ = 0 if s < 0. We now multiply by h (s) and
integrate:

(2.5)

n
∑

j=1

∫ ∞

−∞
(λnP )

(

φ
[−1]
j−σ (s)

)

h (s) ds =

(
∫ ∞

−∞
h (s) ds

)
∫

Pdµ.

Note that (λnP ) (t) = P (t) /
∑n−1

j=0 p
2
j (t) is bounded, so the integral on the left is

absolutely convergent. We can rewrite the left-hand side as
n
∑

j=1

∫ 0

−∞
(λnP )

(

φ
[−1]
j (s)

)

h (s) ds+

n
∑

j=1

∫ ∞

0

(λnP )
(

φ
[−1]
j−1 (s)

)

h (s) ds

=

n−1
∑

j=1

∫ ∞

−∞
(λnP )

(

φ
[−1]
j (s)

)

h (s) ds

+

∫ ∞

0

(λnP )
(

φ
[−1]
0 (s)

)

h (s) ds+

∫ 0

−∞
(λnP )

(

φ[−1]
n (s)

)

h (s) ds.

We now make the substitution s = φj (t), with the relevant choice of j, and use
(2.4) to continue this as

−
n
∑

j=0

∫

Ij

(λnP ) (t)h (φj (t))φ′j (t) dt

=

(

γn−1

γn

)−1 n
∑

j=0

∫

Ij

P (t)

p2
n (t)

h

(

pn−1 (t)

pn (t)

)

dt

=

(

γn−1

γn

)−1 ∫ ∞

−∞

P (t)

S2 (t)
h

(

R (t)

βS (t)

)

dt.

Using this and the usual Gauss quadrature for µ allows us to rewrite (2.5) as
(

γn−1

γn

)−1 ∫ ∞

−∞

P (t)

S2 (t)
h

(

R (t)

βS (t)

)

dt

=

(
∫ ∞

−∞
h (s) ds

) n
∑

j=1

(λnP ) (xj)

=

(

γn−1

γn

)−1(∫ ∞

−∞
h (s) ds

) n
∑

j=1

P (xj)

(p′npn−1) (xj)
,

by (2.2). Thus,
∫ ∞

−∞

P (t)

S2 (t)
h

(

R (t)

βS (t)

)

dt =

(
∫ ∞

−∞
h (s) ds

) n
∑

j=1

βP (xj)

(S′R) (xj)
.

Finally, we replace h (s) by h (sβ) and dilate the variable s in
∫∞
−∞ h (βs) ds to

obtain the result. �

Proof of Theorem 1.2. Since (1.4) is linear in the measure ν, and Theorem 1.1
deals with the absolutely continuous case, we may assume that ν is singular. Be-
cause of our assumption that this singular ν has compact support, the condition
φj (t) ∈supp[ν] forces t to lie a positive distance from xj or xj+1 (except for x0 = ∞
or xn = −∞). Thus dν (φj (t)) is a well defined measure on Ij . We can then follow
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the steps above: instead of integrating at (2.5) with respect to h (s) ds, we integrate
with respect to dν (s) and follow the same steps as above. �

Proof of Corollary 1.3. We choose R = αS′ so that (S′R) (xj) = αS′ (xj)
2
. �

Proof of Corollary 1.4. Theorem 1.1 and our definition ofW give for P of degree
≤ 2n− 2,

∫ ∞

−∞
P (t)W (t) dt =

n
∑

j=1

P (xj)

(RS′) (xj)
.

Then choosing P = 1√
∆
RT , where T has degree ≤ n− 1, we obtain

(2.6)

∫ ∞

−∞

(

1√
∆
R (t)

)

T (t)W (t) dt =
1√
∆

n
∑

j=1

T (xj)

S′ (xj)
.

When T = 1√
∆
R, this last right-hand side becomes 1, recall (1.6). Now suppose

that T has degree ≤ n− 2. Using the Lagrange interpolation formula at the zeros
of S, gives for all z,

T (z) =
n
∑

j=1

T (xj)

S′ (xj)

S (z)

z − xj

,

so

zT (z)

S (z)
=

n
∑

j=1

T (xj)

S′ (xj)

z

z − xj

.

Since the left-hand side is O
(

z−1
)

at ∞, we can let z → ∞ to obtain

0 =

n
∑

j=1

T (xj)

S′ (xj)
.

Then for T of degree ≤ n− 2, (2.6) gives the desired orthogonality
∫ ∞

−∞

(

1√
∆
R (t)

)

T (t)W (t) dt = 0.

�

Proof of Corollary 1.5. Since τ is fixed, we shall abbreviate ψn (t, τ) as ψn (t) in
this proof. We choose S = βψn and R = pn−1 in Theorem 1.1. By our hypothesis
on β, both R and S have positive leading coefficients. Moreover, the zeros of R
and S interlace. Indeed, let {xj,n−1}n−1

j=1 denote the zeros of pn−1, where −∞ =

xn,n−1 < xn−1,n−1 < xn−2,n−1 < · · · < x1,n−1 < x0,n−1 = ∞. Then

sign (βψn (xj,n−1)) = sign (pn (xj,n−1)) = (−1)
j
, 1 ≤ j ≤ n− 1,

Moreover, βψn (x) is positive for large positive x, and has sign (−1)n for large
negative x. It follows that ψn has a simple zero, which we denote by tj , in
(xj,n−1, xj−1,n−1), 1 ≤ j ≤ n. Theorem 1.1 gives

(2.7)

∫ ∞

−∞

P (t)

β2ψ2
n (t)

h

(

pn−1 (t)

βψn (t)

)

dt =

(
∫ ∞

−∞
h (t) dt

) n
∑

j=1

P (tj)

(βψ′
npn−1) (tj)

.
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Next, we show that this has the same abscissas as the Gauss type quadrature
associated with the zeros of ψn. To this end, let

Kn (t, s) =
n−1
∑

j=0

pj (t) pj (s) =
γn−1

γn

pn (t) pn−1 (s) − pn−1 (t) pn (s)

t− s

denote the nth reproducing kernel for µ, and let

Ln (t, s) =
γn−1

γn

ψn (t) pn−1 (s) − ψn (s) pn−1 (t)

t− s
.

By substituting in the definition (1.8) of ψn, and cancelling terms, we see that

(2.8) Ln (t, s) = Kn (t, s) pn−1 (τ) .

Moreover, l’Hospital shows that

Ln (t, t) =
γn−1

γn

(

ψ′
n (t) pn−1 (t) − ψn (t) p′n−1 (t)

)

.

In particular, combining this and (2.8), we obtain

Ln (tj , tj) =
γn−1

γn

ψ′
n (tj) pn−1 (tj) = Kn (tj , tj) pn−1 (τ) .

The last two parts of this identity and (2.7) yield
∫ ∞

−∞

P (t)

β2ψ2
n (t)

h

(

pn−1 (t)

βψn (t)

)

dt =

(
∫ ∞

−∞
h (t) dt

)

γn−1

γn

1

βpn−1 (τ)

n
∑

j=1

P (tj)

Kn (tj , tj)
.

The Gauss type quadrature for the abscissa {tj} [5, Thm. 3.2, p. 21] then gives
∫ ∞

−∞

P (t)

β2ψ2
n (t)

h

(

pn−1 (t)

βψn (t)

)

dt =

(
∫ ∞

−∞
h (t) dt

)

γn−1

γn

1

βpn−1 (τ)

∫

P (t) dµ (t) .

Then (1.9) follows. �

Proof of Theorem 1.6. We first assume that h does not change sign in R. In
Corollary 1.5, we choose τ = τn and β = βn such that

pn (τn)

pn−1 (τn)
=
bn
an

and βn =
an

pn−1 (τn)
.

This is possible even if bn = 0, as pn and pn−1 have no common zeros. Then we
see that

βnψn (t, τn) = anpn (t) − bnpn−1 (t) = qn (t) ,

so
pn−1 (τn)

βnψn (t, τn)2
h

(

pn−1 (t)

βnψn (t, τn)

)

=
an

qn (t)2
h

(

pn−1 (t)

qn (t)

)

.

Then with dνn defined by (1.11), we see from Corollary 1.5 that for polynomials P
of degree ≤ 2n− 2,

∫ ∞

−∞
P (t) dνn (t) =

∫ ∞

−∞
P (t) dµ (t) .

We can now proceed as in [12]. Since h does not change sign, the measure νn

is non-negative. Let f be Riemann-Stieltjes integrable with respect to µ and of
polynomial growth at ∞, and let ε > 0. Since µ is determinate, there exist upper
and lower polynomials Pu and Pℓ such that

(2.9) Pℓ ≤ f ≤ Pu in (−∞,∞)
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and

(2.10)

∫

(Pu − Pℓ) dµ < ε.

See, for example, [5, Theorem 3.3, p. 73]. Then for n so large that 2n− 2 exceeds
the degree of Pu and Pℓ, Corollary 1.5 gives

∫ ∞

−∞
fdνn −

∫

f dµ ≤
∫

Pudνn −
∫

Pℓdµ =

∫

(Pu − Pℓ) dµ < ε.

Similarly, for such n,
∫ ∞

−∞
fdνn −

∫

f dµ ≥
∫

Pℓdνn −
∫

Pudµ =

∫

(Pℓ − Pu) dµ > −ε.

Thus for h of one sign, (1.12) holds. In the general case, we write h = h+ − h−
where h+ and h− are non-negative, and let dν+

n and dν−n denote the corresponding
measures. Our proof so far shows that as n→ ∞, we have weakly

(
∫ ∞

−∞
h

)

dνn =

(
∫ ∞

−∞
h+

)

dν+
n −

(
∫ ∞

−∞
h−

)

dν−n

→
(
∫ ∞

−∞
h+

)

dµ−
(
∫ ∞

−∞
h−

)

dµ =

(
∫ ∞

−∞
h

)

dµ.

�

Proof of Example 1.7. We choose h (t) =
(

1 + t2
)−1−ρ

. Then (cf. [6, p. 285,
3.194.3])

∫ ∞

−∞
h =

√
πΓ
(

ρ+ 1
2

)

Γ (ρ+ 1)

and we can easily recast (1.11) as (1.14). �

Proof of Example 1.8. We choose

h (x) =
log x−2

1 − x2

which has h ∈ L1 (R). Moreover, the fact that h is even and a substitution show
that [6, p. 533, 4.231.13]

∫ ∞

−∞
h = 8

∫ 1

0

log x−1

1 − x2
dx = π2.

We can easily recast (1.11) as (1.15). �

Proof of Theorem 1.9. Since µ′ (x)
√

1 − x2 is bounded, we have for n ≥ 1 and
x ∈ [−1, 1] [5, Lemma III.3.2, p. 103]

(2.11) nλn (x) ≤ C.

Since µ′ is continuous in (−1, 1), we have uniformly for x in compact subsets of
(−1, 1), (cf. [13, pp. 104-5])

(2.12) lim
n→∞

nλn (x) = π
√

1 − x2µ′ (x) .

Moreover,

(2.13) lim
n→∞

γn−1

γn

=
1

2
.
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As we vary n, we denote the zeros of pn by {xjn}n

j=1. Then uniformly for xjn in

compact subsets of (−1, 1), we have from (2.2),

n

p′n (xjn)
2 =

(

γn−1

γn

)2

(nλn (xjn))λn (xjn) p2
n−1 (xjn)

=
π

4

√

1 − x2
jnµ

′ (xjn)λn (xjn) p2
n−1 (xjn) (1 + o (1)) .(2.14)

Moreover, uniformly for 1 ≤ j ≤ n,

(2.15)
n

p′n (xjn)
2 ≤ Cλn (xjn) p2

n−1 (xjn) .

Since for every bounded and Riemann integrable function g, [13, Theorem 3.2.3,
page 17],

lim
n→∞

n
∑

j=1

λn (xjn) p2
n−1 (xjn) g (xjn) =

2

π

∫ 1

−1

√

1 − t2g (t) dt,

it follows easily from (2.14) and (2.15), that for every polynomial P ,

(2.16) lim
n→∞

n
∑

j=1

nP (xjn)

p′n (xjn)
2 =

1

2

∫ 1

−1

P (t)
(

1 − t2
)

µ′ (t) dt.

We now proceed as in the proof of Theorem 1.6. Let f be as there, let ε > 0, and
as there, let Pℓ and Pu satisfy (2.9) and (2.10). We may assume that h ≥ 0 and
also

∫∞
−∞ h = 1. Then as n→ ∞,

∫ ∞

−∞

f (t)

p2
n (t)

h

(

p′n (t)

npn (t)

)

dt− 1

2

∫ 1

−1

f (t)
(

1 − t2
)

µ′ (t) dt

≤
∫ ∞

−∞

Pu (t)

p2
n (t)

h

(

p′n (t)

npn (t)

)

dt− 1

2

∫ 1

−1

Pℓ (t)
(

1 − t2
)

µ′ (t) dt

=

n
∑

j=1

nPu (xjn)

p′n (xjn)
2 −

n
∑

j=1

nPℓ (xjn)

p′n (xjn)
2 + o (1)

=
1

2

∫ 1

−1

(Pu (t) − Pℓ (t))
(

1 − t2
)

µ′ (t) dt+ o (1)

≤
∫

(Pu − Pℓ) dµ+ o (1) < ε+ o (1) .

The lower bound is similar. �
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