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ABSTRACT. Let W : R — (0,1] be continuous. Bernstein’s ap-
praximation problem, posed about 1910, dealt with approximation
by polynomials in the norm

0 f =l AW Hooomy -
The qualitative form of this problem was solved by Achieser, Mergelyan,
and Pollard, in the 1950’s. Quantitative forms of the problem
_-were actively investigated starting from the 1960’s. We survey this
topic, ending with recent developments and open problems. For
example, there are weights for which the polynomials are dense,
but which do not admit a Jackson-Favard inequality. In fact the
weight W (z) = exp (— |2]) exhibits this peculiarity. Moreover, not
all L, spaces are the same when degree of approximation is con-
sidered. We also pose some open problems.
Keywords: Weighted approximation, polynomial approximation,
Jackson-Bernstein theorems,
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1. INTRODUCTION

Suppose we wish to approximate by polynomials on the whole real
line, obtaining analogues of Weierstrass” Theorem. Then we have to
deal with the unboundedness of polynomials on unbounded intervals.
To cope with this difficulty, that distinguished approximator S.N. Bern-
stein multiplied by a weight, considering weighted polynomials such as

P (z)exp (—2%) ,z € R,
where P is a polynomial, or more generally,
Here W decays sufficiently fast at oo to counteract the growth of
every polynomial.
may 2005.
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The most intriguing question is what can be approximated, and in
what sense. This problem is known as Bernstein’s approzimation prob-
lem, after it was posed by Bernstein about 1910. A more precise state-
ment is as follows: let W : R — (0,1] be continuous. When is it true
that for every continuous f : R — R with

lllim (fW) (z) =0,
there exists a sequence of polynomials {F,},._, with
lmn | (f = o) W = 07

We say then that the polynomials are dense. The restriction that fW
has limit 0 at Zoo is essential: if z¥W (z) is bounded on the real line
for every non-negative k, then z*W {z) has limit 0 at oo for every
such k, and so the same is true of every weighted polynomial PW. So
we could not hope to approximate in the uniform norm, any function f
for which fW does not have limit 0 at 1-00. The version of Bernstein’s
problem considered here is not the most general form: in some versions,
W is not assumed to be contimious, allowing (for example), a weight
defined on a countable set of points.

Bernstein’s approximation problem was solved independently by Achieser,
Mergelyan, and Pollard, in the 1950’s. Their solutions involve regular-
ization of the weight. For example [10, p. 153] Mergelyan showed that
there is a positive answer to Bernstein’s problem iff

© logQ(t) ,
/_ ire dt = 00,
where Mergelyan’s regularization of W is

Q(z) = sup{|P(z)| : P a polynomial and 2315%9—1 < 1} .

In another formulation, there is a positive answer iff
Q(z) =00

for at least one non-real 2 (and then (2 () = oo for all non-real z).
Akhiezer [10, p. 158] used instead the regularization

W, (2) = sup {|P (2)| : P a polynomial with || PW || @< 1}.
He showed that the polynomials are dense iff

* 1
/ log W, (t) dt = co.
oo 1412
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Finally, Pollard [10, p. 164] showed that the polynomials are dense
essentially iff
0 P

sup { f lﬁf-l;}(zﬂldx . P a polynomial with || PW ||o.@®< 1} = .

Of course, these are not very transparent criteria. When the weight
is in some sense regular, simplifications are possible. If W is even,
and In1/W (€°) is even and convex, a simpler necessary and sufficient,
condition for density of the polynomials is [10, p. 170]

]w /WD),
0 1+ 332 '
In particular, for

1) W, (z) = exp (= |2]%),

the polynomials are dense iff o > 1. As regards necessary conditions,

Hall showed that ® log W (£)
: og
/_ _Tiye ‘dt = 00
is necessary for density. When density fails, only a limited class of
entire functions can be approximated. A comprehensive treatment of
this topic is given in Koosis’ book [10]. A concise elegant exposition
appears in [9, p. 28 ]

In the 1950’s the search began for a quantitative form of Bernstein’s
Theorem. Bernstein and Jackson had provided guantitative forms of
Weierstrass’ Theorem before the first World War, and it is natural
to look for analogues in the weighted setting. Let us first recall the
classical unweighted case. Jackson and Bernstein independently proved
that - '

2)  Eulfle= inf |f—Pllor1a= % A PR

deg(P)<n

with € independent of f and n, and the inf being over (algebraic)
polynomials of degree at most n. The rate is best possible amongst ab-
solutely continuous functions f on [—1, 1] whose derivative is bounded.
More geperally, if f has a bounded kth derivative, then the rate is
o (;};) In addition, Jackson obtained general results involving mod-
uli of continuity: for example, if f is continuous, and its modulus of
continuity is
w(f;8) =sup{|f () — f ®)| : z,y € [-L,1] and |z —y| <},

then

Balilo < 0w (i),
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where C is independent of f and n.

Bernstein also obtained remarkable converse theorems, which show
that the rate (or degree) of approximation is determined by the smooth-
ness of f. These are best stated for trigonometric polynomial approxi-
mation: let 0 < a < 1. Bernstein showed that the error of approxima-
tion of a 2r—periodic function g on [0, 2] by trigonometric polynomials
of degree at most n decays with rate n™* iff g satisfies a Lipschitz con-
dition of order a.. For non-integer @ > 1, the error decays with rate
O (n~=) iff the [o]th derivative of f satisfies a Lipschitz condition of or-
der {a}. (Here [a], {o} respectively denote the integer and fractional
parts of ). Bernstein never resolved the exact smoothness required
for a rate of decay of n~'; that was solved much later in 1945 by A.
Zygmund (the father of the Chicago school of harmonic analysis, and
author of the classic "Trigonometric Series" [22]). Zygmund used a
second order modulus of continuity.

For approximation by algebraic polynomiials, converse theorems are
more complicated, as better approximation is possible near the end-
points of the interval of approximation. Only in the 1980’s were com-
plete characterizations obtained, with the aid of the Ditzian-Totik
modulus of continuity [6]. An earlier alternative approach is that of
Brudnyi-Dzadyk-Timan [3]. We shall discuss only the Ditzian-Totik
approach, since that has been adopted in weighted polynomial approx-
imation. Define the symmetric differences

Auf(e) = f (w+%) '—f(a:——-g-);
Af (=) = _Ah (Anf (@);

ALf(2) = :Ah (AR (@)
so that -
Ef(x) = § (f) (-1)'f (a:—l- k% —ih) .

If any of the arguments of f lies outside the interval of approximation
- [~1,1} in this setting - we adopt the convention that the difference is
0. The rth order Ditzian-Totik modulus of continuity in L, is

W (fih), = S | Ay izt (@) i1 -

Note the factor

p(z)=vVi—2*
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multiplying the increment h. This forces a smaller increment near the
endpoints 1 of [-1, 1], reflecting the possibility of better approxima-
tion rates there.

For 1 < p < oo, Ditzian and Totik [6, p. 79] proved the estimate

1
= i e < ) e
Balfly= gl 1= P s O (1)
with C independent of f and n. This implies the Jackson (or Jackson-
~ Favard) estimate [3, p. 260]

Eﬂ [f]p S Gn_" H (P‘r-f(r) "LP[_IJ-I’

n > r, provided f0V is absolutely continuous, and the norm on the
right-hand side is finite. Moreoever, they showed that if 0 < a <7,
then [3, p. 265]
3) Bo[f], =0 (n%) ,n — oo,
iff

Wy, (f;h), =0 (h*),h — 0+.
For example, if (3) holds with a = 33, this implies that f has 3 contin-
uous derivatives inside (—1,1) and [ satisifes a Lipschitz condition of
order 1/2 in each compact subinterval of {—1,1).

For weights on the whole real line, the first attempts at general Jack-
son theorems seem due to Dzrbasjan. In the 1960’s and 1970’s, Freud
and Nevai made major strides in this topic [20]. Let us review some of
the fundamental features discovered by Freud, in the case of the weight
W, (z) = exp(— |z|%),@ > 1. A little elementary calculus shows that
the weighted monomial z"W,, () attains its maximum modulus on the
real line at

g = (nfa)Y".

Thereafter it decays quickly to zero. With this in mind, Freud and
Nevai proved that there are constants C; and C; such that for all
polynomials F,, of degree at most n,

(4) ” P, W, ”LP(R)S Ci “ Py2We ”Lp[—c'lqmcmnl .

The constants C; and C5 can be taken indepndent of n, F, and even
the L, parameter p € [1, 00]. Outside the interval [~Cign, C1gn], FaWo,
decays quickly to zero. This meant that one cannot hope to approx-
imate fW by P,W outside [—Cign, Cigs]. So either a "tail term"
| W llz,(2>C1q] ™ust appear in the error estimate, or be handled
some other way. Inequalities of the form (4) are called restricted range
inequalities, or infinite-finite range inequalities. The sharp form of these
was found later by Mbaskar and Saff, using potential theory [17], [21].
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The next task is to determine what happens on [—Cjgy,, C16s)- Now
if we had to approximate in the unweighted setting on this interval, a
scale change in the Jackson-Bernstein estimate (2) gives

ccl n

” f’ ||Loo[“c'1q“>clq“] -

1 - <

degl(%]ggn " -f P ”Loo[‘CI‘ZnsCIQn]-—

Remarkably, the same is true when we insert the weight W, in both
norms:

(5) c
- dn
ln‘f “ (-f - P) Wa “Loo[*le'n,CI‘In]S _3.-“- “ f’Wa ”Lm["“CIQnsclf]n] *

deg(P)<n n
Very roughly, this works for the following reason: it seems that if Cy is
small enough, we can approximate 1/W, on [~Cign, Ci1g,] by a poly-
nomial R, /> of degree < n/2, and then use the remaining part n/2
degree polynomial in P to approximate fW, itself on [~Ciga, C1qy)-
In real terms, this approach works only for a small class of weights.
Nevertheless, it at least indicated the form that general results should
take. To obtain an estimate over the whole real line, Freud then proved

a "fail inequality", such as
Caq
(6)  fWa frtizizciga < ;n | f'We ll2p(m)

with C, independent of f and n. Combining (5), (6), and that suit-
able weighted polynomials are tiny outside [—Ciga, C1¢s] yielded an
estimate of the form

. 059'71.
@) BalfiWal, = inf | (7= PYWa < 7y
with Cy independent of f and n.

While this might illustrate some of the ideas, we emphasize the
techmical details underlying proper proofs of this Jackson (or Jackson-
Favard) inequality are formidable. Freud and Nevai developed an orig-
inal theory of orthogonal polynomials for the weights W2 partly to use
in this approximation theory. In this short paper, we shall not present
all the technical details. We note that Freud proved (7) for W, for
a > 2. The technical estimates required to extend this to the case
1 < a < 2 were provided by the author and El Levin [13]. What
about @ < 17 Well, recall that the polynomials are only dense if ¢ > 1,
so there is no point in considering & < 1. But @ = 1 is still worth
consideration, and we shall discuss that below.

One consequence of (7) is an estimate of the rate of weighted poly-
nomial approximation of f in terms of that of f'. Indeed il £, is any

| f'We [z, ®)s
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polynomial of degree < n — 1, then

Gl | (f — BY W |10

En [f’ Wa]‘P = By [f — Pu; Wa]p <

and since P, may be any polynomial of degree< n — 1, we obtain

Cs4n
:Lq En—l [f’; Wa]p )

which can be iterated. The inequality (8) (and sometime even (7)) is
called a Jackson or Jackson-Favard inequality.

Freud also obtained estimates involving moduli of continuity. Here
one cannot avold the tail term, and has to build it directly into the
modulus. Partly for this reason, there are many forms of the modulus,
and more than one way to decide which interval is the principal interval,
and over what interval we take the tail. We shall follow essentially the
modulus used by Ditzian and Totik [6], Ditzian and the author [4], and
Mhaskar [17].

The first order Ditizan-Totik modulus for the weight W, has the
form

(8) By [f; Wal, <

wip(fsWes?) = sup, W Wa (Bnf) 1l iz aris)
+inf || (f - W “LP(R\[_tT}'&,tTE'&])'

‘Why the inf over the econstant ¢ in the tail term? It ensures that if
f is constant, then the modulus vanishes identically, as one expects

from a first order modulus. Why the strange interval [—hTa, hT-5]?
It ensures that when we substitute

(1

=2 _ o Yep-141/a

then
1
[~ATS, A5 = [~Cgn, Cdn),

for an appropriate constant C' (independent of n). More generally if
r 2 1, the rth order modulus is

wr,P(f: Waat) = Us<lllal;t ” Wa (Ahf) "Lp[__h-ré-a-,h-r}-&]
Ot N U P

Again the inf in the tail term ensures that if f is a polynomial of
degree < r — 1, then the modulus of continuity vanished identically,




8 D.S5. LUBINSKY

as is expected from an rth order modulus. The Jackson theorem takes
the form

(10) B, [f; Wal, < Curg(f, Wa,n 1+3).

This is valid for 1 < p < o, and the constant C is independent of f
and 1 (but depends on p and W,).

One can consider more general weights than W, of course. Almost
invariably the weight considered has the form W = exp (—@Q), and the
rate of growth of  has a major impact on the form of the modutus.
Let us suppose for example, that () is of polynomial growth at co, the
so-called Freud case. The most general class of such weights for which
a Jackson theorem is known is the following:

Definition (Freud Weights)
Let W == exp (—Q), where Q : R — R is even, Q' exists and is positive
in (0,00). Moreover, assume that xQ' (z) is strictly increasing, with
right limit 0 at 0, and for some \,A,B >1,C >0,
1 Q0)
T (=)
Then we write W € F.

< B,z >C.

For such W, we take g, to be the positive root of the equation
= g.Q' (gn) -

Again, this is the point where £"W (z) assumes its maximum modulus
on the real line. To replace the function t"l'"i'&', we can use the function

o (t) = inf{q,, : % < t} 1> 0,
The modulus of contimiity becommes
wep(f;W,8) = sup || W(ALS) |z -otm 00
0<h<t

(11) toglE =AW L eeomonn -

The Jackson theorem is the obvious analogue of (10) {4, Theorem 1.2,
p. 102]:

(12) By [f; W, < Cuny(f, W, 22).

Moreover, if W satisfies a mild additional condition on ¢}, or admits
an appropriate Markov-Bernstein inequality, and o < 7, then there is
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the equivalence [4, p. 105]

Ef; W], = O((gﬁ)a) , T — 00

n
> wep( LW ) =0%),t>0+.

One of the important $ools in this equivalence are K—functionals and
the concept of realization. This is a topic on its own. In the setting
of weighted polynomial approximation, it has been explored by Freud
and Mhaskar, and later Ditzian and Totik, Damelin and the the author.
See [1], [2], [4], [17], [18] for references.

In the (technical) proof of the Jackson theorem (12}, the function f is
first approximated by a piecewise polynomial (or spline). Then special
polynomials that approximate characteristic functions, and Whitney’s
theorem on local polynomial approximation are used to turn the spline
approximation into a polynomial approximation. For the case where @
is of faster than polynomial growth, the modulus of continuity becomes
more complicated, as again there are endpoint effects, close to £Cg,.
We refer the reader to [2]. There are also analogous developments for
exponential weights on [-1,1] [14].

In recent years, there has been less focus on this type of weighted ap-
proximation. Instead much of the focus has been on Saff’s Polynomial
Approzimation Problem, which involves varying weights, rather than a
fixed weight. Thus one might seek to approximate by weighted poly-
nomials of the form P, (z) W (z)" or P, (z) W (anz), where a, is the
so-called Mhaskar-Rakhmanov-Saff number for 2. The number a,, is
a sharper version of ¢,. Saff’s approximation problem and its circle of
ideas has applications in asymptotics of orthogonal and extremal poly-
nomials, mathematical physics, random matrices... - see for example
[21]. |

Recall that we left discussion of W, (z) = exp (— |z|) till later. Cu-
riously it is issues close to that weight that have arisen most recently
- and have served to renew at least the author’s interest in classical
weighted approximation. While investigating asymptotics of Sobolev
orthogonal polynomials, the question arose of which weights admit
some form of the Jackson-Favard inequality (7). Curiously, these in-
equalities enable one to relate asymptotic behavior of derivatives of
Sobolev orthogonal polynomials to classical orthogonal polynomials [8].




10 D S. LUBINSKY

This forced the author to revisit some very old results of Freud. In
1978, Freud, Giroux and Rahman [7, p. 360] proved that

B fiWh]y = degi@i;gn | (f ~ P) W1 o)
1
< clo(ngn)+ [ i@,
where
wife)=sup [ "I e+ - ) @] da+e [ il
: |hige J—o0 —00

Here C is independent of f and n, and v/n could be replaced by n'~¢
for any fixed & € (0,1). Ditzian, the author, Nevai and Totik [5] later
extended this result to a characterization in ;. The technique used
by Freud, Giroux and Rahman was essentially an L, technique, using
the relation between one-sided weighted approximation, Gauss quadra-
tures, and Christoffel functions. Only recently has it been possible to
establish the analogous results in L,, p > 1 [15]. The author modified
the spline method from [4]. As the peaking polynomials used there
do not work for W;, they were replaced by the reproducing kernel for
orthogonal polynomials for W2, and in the proofs, the author needed
bounds for these orthogonal polynomials, implied by recent work of
Kriecherbauer and McLaughlin [12].

~ If we examine the modulus used in (9) for W,,, a > 1, we see that the
interval [—-AT=, hT=] is no longer meaningful for @ = 1. It turns out
to be replaced by [—exp (1) ,exp (32)], for some fixed € € (0,1).
The modulus becomes

wrp(f, Wi,t) = Sup, | Wi (ALS) "Lp[*exp(l—gﬁ en(15)]

13) + inf | (F = PY Wl m- e(152) 41 ep(225) 1) -

deg(P)f_Zr—l Fy

The author proved [15] that for 0 < p < 00, and n > Cs,

)
log (Con)”
Here 4, (5, Cs are iﬁdependent of f and n.
While this may be a technical achievement, it is scarcely surprising,
given that Freud, Giroux and Rahman already had the rate O (@) .

What is perhaps more interesting is that the rate n~ /@ for W, a > 1,

becomes - as @ — 1+. This suggests that we ought to obtain an

(14) En [.f 3 Wl]p < Clwr,p(f ’ VV:
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analogue of (7) of the form

E, [f,WI]p_lgn Wl -

Remarkably enough this is false, and there is no Jackson-Favard in-
equality for Wi, not even if we replace logn by a sequence decreasing
arbitrarily slowly to 0. More generally we answered in [16] the ques-
tion: which weights admit a Jackson type theorem, of the form (7), with
{gn/n}>_, replaced by some sequence {n, }~- | with limit 07 We proved:

Theorem

Let W : R — (0,00) be continuous. The following are equivalent:
(a) There exists a sequence {9, }.., of positive numbers with limit 0
and with the following property. For each 1 < p < oo, and for all
absolutely continuous f with || f'W ||, ®) finite, we ha’ue

>
) . nf =PIV @S . | W lneyn 2 L
(b) Both
(16) lim W (z) f W=
00 0
and
-1 0
(17) lim (%ﬁI]IW) [ W =0

with analogous limits as © — —oo.
Two fairly direct corollaries of this are:

Corollary
Let W : R — (0,00) be continuous, with W = €2, where Q(z) is
differentiable for large |z|, and

(18) lim @' (z) = oo and _lim Q' (z) = —oo.

Then there exists a sequence {n, }o , of positive numbers with limit 0
such that for each 1 < p < 0o, and for all absolutely continuous f with
| £'W [[L,m) finite, we have (15).

Corollary

Let W : R —» (0,00) be continuous, with W = ™%, where Q(z) is
differentiable for large |z|, and Q' (z) is bounded for large |z|. Then
Jor both p=1 and p = oo, there does not exist a sequence {n,}. , of
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positive numbers with limit O satisfying (15) for all absolutely continu-
ous [ with || f'W ||, m) finite.

In particular for W;, there is no Jackson-Favard inequality, since both
(16) and (17) are false. Thus there is a real difference between density
of weighted polynomials, and weighted Jackson-Favard theorerns. It is
possible to have the former without the latter,

Essentially (16) is necessary and sufficient for an L; Jackson theorem,
and (17) is necessary and sufficient for an L., Jackson theorem. An
obvious question is the independence of these conditions (16) and (17).
Does either imply the other? In fact they are independent. Moreover,
there are weights satisfying one but not the other, and also admitting
an L; Jackson theorem but not an L, Jackson theorem (or conversely).
This is a highly unusual occurrence in weighted approximation - in fact
the first occurrence of this phenomenon known to this author. Density
. of polynomials, and the degree of approximation is almost invariably
the same for any L, space (suitably weighted of course). Koosis [10,
pp- 210-211] makes a lengthy remark about the latter. We proved:

Theorem
(a) There exists continuous W : R — (0,00) with
(19) 1< W(z)/exp(—2®) <2(1 +a]),z € R,

admatting an Ly, Jackson theorem , but not an Ly Jackson theorem.
That is, for p = oo, there exist {n,}.., with imit 0 at oo satisfying
(15), but there does not exist such a sequence for p=1.

(b) There exists continuous W : R — (0, 00} with

(20) 1> W(z)/exp(~2®) >2/(1+|z]),z €R,

admitting an Ly Jackson theorem, but not an L., Jackson theorem.
That is, for p = 1, there ezist {n,}.., with limit 0 at oo safisfying
(15), but there does not exist such a sequence for p = co.

We note that the weights in this result are equal to the Hermite
weight Wa (z) = exp (—z?) “most” of the time, with spikes upwards
or downwards in small intervals. The weights we construct are not
decreasing in [0, 00), though they can be made infinitely differentiable.
We expect that with more work one can construct decreasing W in
[0, 00) still satisfying these conclusions.

A key ingredient ingredient in the above theorem is an estimate for
tails:

Theorem
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Assume that W : R — (0, 00) is continuous.

(a) Assume W satisfies (16) and (17), with analogous limits al —co.
Then there exists a decreasing positive function n : [0,00) — (0,00)
with limit 0 at co such that for 1 <p<ooand A 20,

(21) I FW lemyean< 2 () | FW |L,m®)

for all absolutely continuous functions f : R — R for which f(0) =0
and the right-hand side is finite.

(b) Conversely assume that (21) holds for p = 1 and for p = oo, for
large enough X. Then the limits (16) and (17) in Theorem 1.1 are
valid, with analogous limits at —oo.

The above results deal with L, for all 1 < p < co. What happens
if we focus on a single L, space? We pose:

Problem 1
Fix p € [1,00]. Find necessary and sufficient conditions on W for an
L, Jackson-Favard inequality like (15).

We note that while the tail estimate (21) plays a key role, it is by
no means the only ingredient. In [16], we used both (16) and (17) to
prove infinite-finite range inequalities like (4). Hence, as a separate
problem, we pose:

Problem 2
Fix p € {1, 00]. Find necessary and sufficient conditions on W for a tail
estimate (21). _

Finally, we note that weights close to W; are worthwhile candidates
for investigating Jackson theorems involving moduli of continuity. To
be explicit, we pose:

Problem 3
Find the analogue of (14) for the weight

W (x) = exp (— |z} (log (1 + 2%))%) ,a € R.
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