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SMALL VALUES OF POLYNOMIALS
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Abstract. For a polynomial P of degree ≤ n, normalized by the condition

1

2π

∫ 2π

0
| P (reiθ) |p dθ = 1,

we show that E(P ; r; ε) := {z :| z |≤ r, | P (z) |≤ εn} has cap at most rεκnp,
where κnp ≤ 2 is explicitly given and sharp for each n, r. Similar estimates
are given for other normalizations, such as p = 0, and for planar measure, and
for generalized polynomials and potentials, thereby extending work of Cuyt,
Driver and the author for p = ∞. The relation to Remez inequalities is briefly
discussed.

1. Results and proofs

A famous lemma of Cartan estimates the size of the lemniscate {z :| P (z) |≤ εn}
(measured by α-dimensional content) when P is a monic polynomial of degree n.
Of course, the logarithmic capacity (cap) of such a set is just ε. Using these types
of results for monic polynomials, Pommerenke, for example, showed [9] that for any
polynomial P of degree ≤ n,

cap
{
z :| z |≤ r and ‖ P ‖L∞(|z|≤r) / | P (z) |≥ εn

}
≤ 3rε.

This was an essential ingredient of the Nuttall-Pommerenke theorem for Padé ap-
proximants.

Recently, A. Cuyt, K. Driver, and the author [2] showed that a simpler approach
involving the Green’s function and Bernstein-Walsh inequalities allows one to re-
place 3rε by 2rε and that this is sharp for each n, r. This was then applied to other
measures of size and multivariate polynomials. In this note, we obtain sharp esti-
mates when sup norms are replaced by Lp ones. Our estimates apply to logarithmic
capacity cap and planar Lebesgue measure meas. Using standard inequalities, one
can deduce estimates for Hausdorff contents and linear measure [7, pp. 202–203],
[5, p. 300]. We believe the simplicity of the approach, and the sharpness of the
constants, justify some attention. (For further orientation, the reader may refer to
[2] and the survey article [8].)
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Our main result deals not only with polynomials, but also with generalized poly-
nomials, and more generally exponentials of potentials. Recall that a generalized
polynomial of degree at most n is an expression

P (z) =
m∏
j=1

| z − zj |αj : αj ∈ (0,∞);
m∑
j=1

αj ≤ n.

The latter are in turn a special case of exponentials of potentials. Given a non-
negative Borel measure ω with compact support and total mass at most n, and
c ∈ [0,∞), we say that

P (z) = c exp
(∫

log | z − t | dω(t)
)

is an exponential of a potential of degree at most n. Note that if ω consists of finitely
many point masses, then P is a generalized polynomial of degree at most n. See
[1], [4] for further orientation on generalized polynomials.

Let us define for r > 0

‖ P ‖Lp(|z|=r):=


ess supθ∈[−π,π]

∣∣P (reiθ)
∣∣ , p = ∞,(

1
2π

∫ 2π

0 | P (reiθ) |p dθ
)1/p

, 0 < p <∞,

exp
(

1
2π

∫ 2π

0
log | P (reiθ) | dθ

)
, p = 0.

The L0 norm of a polynomial is sometimes called its Mahler measure [1].

Theorem 1.1. Let r, ε > 0 and 0 ≤ p ≤ ∞. Let P be an exponential of a potential
of degree at most n, normalized by the condition

‖ P ‖Lp(|z|=r)= 1.(1.1)

Let

E(P ; r; ε) :=
{
z :| z |≤ r, | P (z) |≤ εn

}
.(1.2)

Set κ0 := 1; κ∞ = 2 and

κλ := 2

[
Γ(λ+1

2 )√
πΓ(λ2 + 1)

]1/λ

(≤ 2), 0 < λ <∞.(1.3)

Then

cap
(
E(P ; r; ε)

) ≤ rεκnp; meas
(
E(P ; r; ε)

) ≤ π(rεκnp)2.(1.4)

These are sharp in the sense that for fixed n, r,

sup
ε>0

deg(P )=n

cap
(
E(P ; r; ε)

)
ε

= rκnp; sup
ε>0

deg(P )=n

meas
(
E(P ; r; ε)

)
ε2

= π(rκnp)2.

(1.5)

Here the sup is taken over ordinary polynomials P of degree n.

We note that there is continuity as p→∞, since

κλ = 2 +O

(
logλ
λ

)
, λ→∞.

Of course, the restriction that n be an integer above can be dropped, without any
changes to the proof of (1.4). For (1.5), one can then no longer consider polynomials,
but generalized polynomials.
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We shall also prove a generalization of Theorem 1.1:

Theorem 1.2. Let r, p, ε > 0 and σ ∈ R. Let ψ : (0,∞) → R be continuous and
monotone increasing with

ψ(0) := lim
t→0+

ψ(t) < σ < lim
t→∞ψ(t) =: ψ(∞).

Assume, moreover, that ψ(et) is convex in (−∞,∞). Let P be an exponential of a
potential of degree at most n, normalized by the condition

1
2π

∫ 2π

0

ψ
(| P (reiθ) |p)dθ = σ.(1.6)

For λ > 0, let κλ,σ,ψ be the largest root of the equation

1
2π

∫ 2π

0

ψ

([ | 1− eiθ |
κλ,σ,ψ

]λ)
dθ = σ.(1.7)

Then

cap
(
E(P ; r; ε)

) ≤ rεκnp,σ,ψ; meas
(
E(P ; r; ε)

) ≤ π(rεκnp,σ,ψ)2.(1.8)

If ψ is in addition strictly increasing, these are sharp in the sense that for fixed
n, r,

sup
ε>0

deg(P )=n

cap(E
(
P ; r; ε)

)
ε

= rκnp,σ,ψ; sup
ε>0

deg(P )=n

meas(E
(
P ; r; ε)

)
ε2

= π(rκnp,σ,ψ)2.

(1.9)

Here the sup is taken over all ordinary polynomials P of degree n.

We note one further extension:

Theorem 1.3. Let r, p, ε, ψ, σ, P be as in Theorem 1.2 with the additional con-
dition that ψ has a finite limit at 0. Let ν be a positive Borel measure with compact
support. Let P be normalized by the condition∫

ψ (| P (z) |p) dν(z) = σ.(1.10)

Let κλ,σ,ψ,ν be the largest root of the equation

max
|t|≤r

∫
ψ

([ | z − t |
κλ,σ,ψ,ν

]λ)
dν(z) = σ.(1.11)

Then

cap
(
E(P ; r; ε)

) ≤ rεκnp,σ,ψ,ν ; meas
(
E(P ; r; ε)

) ≤ π(rεκnp,σ,ψ,ν)2
(1.12)

and if ψ is strictly increasing, these are sharp in the sense that for fixed n, r,

sup
ε>0

deg(P )=n

cap
(
E(P ; r; ε)

)
ε

= rκnp,σ,ψ,ν ; sup
ε>0

deg(P )=n

meas2
(
E(P ; r; ε)

)
ε2

= π(rκnp,σ,ψ,ν)2.

(1.13)
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We note that one may extend the result still further to the weighted capacities
treated by Saff and Totik [11]. However, the main application seems to be in
rational approximation, so we omit these.

The inequalities above have some relation to Remez inequalities. Indeed at first
sight, the following corollary seems to be of Remez type for the unit ball.

Corollary 1.4. Let r, ε > 0 and 0 ≤ p ≤ ∞. Let P be an exponential of a potential
of degree ≤ n. Then

‖ P ‖Lp(|z|=r) ≤
(

rεκnp

cap
(
E(P ; r; ε)

))n ;(1.14)

‖ P ‖Lp(|z|=r) ≤
 √

πrεκnp√
meas

(
E(P ; r; ε)

)
n

.(1.15)

These are sharp in the sense that for each r, n, we can find an ordinary polynomial
P of degree n and ε > 0 for which both sides of (1.14), (1.15) are arbitrarily close
to 1.

The apparent similarity to Remez inequalities (which are deeper) is misleading.
The above is sharp as meas

(
E(P ; r; ε)

)
approaches 0, whereas the rationale and

utility of Remez inequalities is usually for the case where it is as large as possible,
namely when it approaches πr2. See for example Theorem 2.5 of [4], which applies
to the unit ball when meas

(
E(P ; r; ε)

)
is bounded away from 0. In turn, some of

the Remez inequalities imply cruder forms of Theorem 1.1, 1.2. See [8] for a more
detailed comparison. We shall prove Theorem 1.2 and deduce Theorem 1.1 and
Corollary 1.4. The reader will easily see how to similarly prove Theorem 1.3.

Proof of Theorem 1.2. We let E := E(P ; r; ε), a bounded Gδ set (as P is upper
semi-continuous). If cap(E) = 0, the first inequality in (1.8) is trivial, so we assume
that the capacity is positive. We may also assume that E is compact. (Indeed if E
is not compact, then the argument below applies to any compact subset of E, and
the inner regularity of logarithmic capacity and Lebesgue measure then give (1.8)
in general.) As E is a compact set, it has a Green’s function

g(z) :=
∫

log | z − t | dµ(t) + log
1

cap(E)

so that µ is a unit positive measure with support in E, the so-called equilibrium
measure of E. Note that g ≥ 0 in C and g = 0 in E outside a set of cap 0 [12, pp.
224-228]. Then the Bernstein-Walsh inequality gives:

P (z) ≤ eng(z) ‖ P ‖L∞(E)≤ eng(z)εn.(1.16)

This is often stated only for absolute values of ordinary polynomials, and in the
above form is really a special case of the second maximum principle for subharmonic
functions. Let us sketch the proof: since g ≥ 0, we may assume that P has degree
n. The function

F (z) := logP (z)− ng(z)− log ‖ P ‖L∞(E)

is subharmonic in C\E and ≤ 0 in E and has a finite limit at ∞. The fact that
g ≥ 0 and the upper semi-continuity of logP give for boundary points z0 of E, and
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z approaching z0 from outside E,

lim sup
z→z0

F (z) ≤ lim sup
z→z0

(
logP (z)− log ‖ P ‖L∞(E)

)
≤ logP (z0)− log ‖ P ‖L∞(E)≤ 0.

By the second maximum principle for subharmonic functions [12, p.223], F ≤ 0 in
each of the components of C\E. Thus F ≤ 0 in C and we have (1.16). Next, by
our normalization (1.6), and then by (1.16) and Jensen’s inequality applied to the
convex function ψ(et), (recall that µ has total mass 1)

σ =
1
2π

∫ 2π

0

ψ
(| P (reiθ) |p) dθ

≤ 1
2π

∫ 2π

0

ψ
(
e
∫
np[log|reiθ−t|+ log ε

cap(E) ]dµ(t)
)
dθ

≤ 1
2π

∫ 2π

0

∫
ψ

([ | reiθ − t | ε
cap(E)

]np)
dµ(t)dθ

=
∫

1
2π

∫ 2π

0

ψ

([ | reiθ − t | ε
cap(E)

]np
)dθ
)
dµ(t)

≤ sup
|t|≤r

1
2π

∫ 2π

0

ψ

([ | reiθ − t | ε
cap(E)

]np)
dθ

= sup
τ∈[0,1]

1
2π

∫ 2π

0

ψ

([ | 1− τeiθ | rε
cap(E)

]np)
dθ.

In the third last line, we used Fubini’s theorem, which is applicable as the inte-
grand is bounded above. Now the function z → np log | 1 − z | +np log rε

cap(E) is
subharmonic in the plane. Moreover, t→ ψ(et) is convex, and composition of a sub-

harmonic function with a convex one preserves subharmonicity, so ψ
([

|1−z|rε
cap(E)

]np)
is subharmonic and continuous for | z |< 1. It follows that the last integral increases
with τ (see [10, pp. 336-337]) and hence we may continue this as

σ ≤ 1
2π

∫ 2π

0

ψ

([ | 1− eiθ | rε
cap(E)

]np)
dθ.

(Monotone convergence allows us to let τ → 1 and deduce convergence of the
integral for τ = 1: consider separately ψ(0) finite or −∞.) Now for fixed λ > 0,
the function

κ→ 1
2π

∫ 2π

0

ψ

([ | 1− eiθ |
κ

]λ)
dθ

is monotone decreasing in κ, and has limit ψ(∞) > σ as κ→ 0+ and limit ψ(0) < σ
as κ→∞. Moreover, it is a continuous function of κ > 0. (To see this, note that if
we omit small neighbourhoods of θ = 0, 2π, then the resulting integral is continuous
in κ. Moreover, the monotonicity of ψ shows that the tail integrals for θ close to
0, 2π may be bounded above for κ ≥ κ0 by the corresponding tail integrals for
κ = κ0. The mere convergence of the whole integral for κ = κ0 allows one to
estimate the tail integrals.) Thus (1.7) has a root κλ,σ,ψ and by continuity, this
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may be taken as the largest root. Then the inequality

1
2π

∫ 2π

0

ψ

([ | 1− eiθ |
κnp,σ,ψ

]np)
dθ = σ ≤ 1

2π

∫ 2π

0

ψ

([ | 1− eiθ | rε
cap(E)

]np)
dθ

forces

κnp,σ,ψ ≥ cap(E)
rε

and then the first inequality in (1.8) follows. Polya’s inequality [5, p. 300]

meas2(E) ≤ π
(
cap(E)

)2
then gives the second inequality in (1.8).

We turn to the proof of the sharpness. Let 0 < a < r and

P (z) :=
(
c(z − a)

)n
where c > 0 is chosen to give P with normalization (1.6), so that

σ =
1
2π

∫ 2π

0

ψ
([
c | reiθ − a | ]np)dθ.

Our extra hypothesis that ψ is strictly increasing shows that if a → r, then cr →
1/κnp,σ,ψ. If ε is small enough, then the ball centre a, radius ε/c, is contained in
the ball | z |≤ r. Then we see that for such ε,

E(P ; r; ε) =
{
z :| z − a |≤ ε/c

}
and hence

cap
(
E(P ; r; ε)

)
= ε/c; meas

(
E(P ; r; ε)

)
= π(ε/c)2.

The fact that 1/c may be made arbitrarily close to rκnp,σ,ψ establishes (1.9).

For p = ∞, the proof of Theorem 1.1 is easy and exactly as in [2], so is omitted.
We turn to the more difficult p ∈ [0,∞), applying Theorem 1.2 for suitable σ, ψ.

Proof of Theorem 1.1 for 0 < p <∞. We evaluate κλ,σ,ψ for ψ(t) = t and σ = 1.
Dropping the subscripts σ, ψ, we see that (1.7) gives

κλλ =
1
2π

∫ 2π

0

| 1− eiθ |λ dθ =
2λ+1

π

∫ π/2

0

| sinu |λ du

=
2λ√
π

Γ
(
λ+1

2

)
Γ
(
λ
2 + 1

) .
See, for example, [3, p. 217, no.858.515]. To bound κλ for λ > 0, we note that

π1/2Γ
(
λ+1

2

)
Γ
(
λ
2 + 1

) = B

(
1
2
,
λ+ 1

2

)
=
∫ 1

0

t−1/2(1− t)λ/2−1/2dt

≤
∫ 1

0

t−1/2(1− t)−1/2dt = B

(
1
2
,
1
2

)
= π.

Thus,
κλ ≤ 2.



SMALL VALUES OF POLYNOMIALS AND POTENTIALS 535

Proof of Theorem 1.1 for p = 0. We evaluate κλ,σ,ψ for ψ(t) = log t and σ = 0. (It
is easy to check that the hypotheses of Theorem 1.2 are fulfilled with p = 1 there.)
Note also that

‖ P ‖L0(|z|=r)= 1 ⇔ 1
2π

∫ 2π

0

ψ
(| P (reiθ) |) dθ = 0.

From (1.7), dropping the subscripts σ, ψ,

0 =
1
2π

∫ 2π

0

ψ

([ | 1− eiθ |
κλ

]λ)
dθ

⇔ log
1
κλ

+
1
2π

∫ 2π

0

log | 1− eiθ | dθ = 0.

As the integral is 0 [10, p. 307], we obtain κλ = 1.

We remark that the asymptotic for κλ given after Theorem 1.1 follows directly
from Stirling’s formula. We also note that ψ(t) := log+ t := max{0, log t} satis-
fies the hypotheses for the first part of Theorem 1.2. Thus one may normalize
exponentials of potentials P to have Nevanlinna “norm”

‖ P ‖∗:= exp
(

1
2π

∫ 2π

0

log+ | P (reiθ) | dθ
)

= exp(σ) > 1

and deduce bounds on the size of cap
(
E(P ; r; ε)

)
. Finally, we give the

Proof of Corollary 1.4. Given an exponential of a polynomial P of degree at most
n, let

ρ :=‖ P ‖Lp(|z|=r)
and Q(z) := P (z)/ρ. Then Q admits the normalization (1.1) and

E(P ; r; ε) = E

(
Q; r;

ε

ρ1/n

)
.

Theorem 1.1, applied to Q, gives

cap
(
E(P ; r; ε)

) ≤ r
ε

ρ1/n
κnp.

Rearranging this gives (1.14). Similarly we obtain (1.15). Finally from Theorem
1.1, we can obtain P for which the left-hand side of (1.14), (1.15) is 1, while
cap
(
E(P ; r; ε)

)
is arbitrarily close to rεκnp and meas

(
E(P ; r; ε)

)
is arbitrarily close

to π(rεκnp)2.
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