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Abstract

We analyse a family of mutually orthogonal polynomials on the unit ball with

respect to an inner product which involves the outward normal derivatives on

the sphere. Using their representation in terms of spherical harmonics, algebraic

and analytic properties will be deduced. First, we deduce explicit connection for-

mulas relating classical multivariate ball polynomials and our family of Sobolev

orthogonal polynomials. Then explicit representations for the norms and the

kernels will be obtained. Finally, the asymptotic behaviour of the corresponding

Christoffel functions is studied.
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1. Introduction

The term Sobolev orthogonal polynomials usually refers to a family of poly-

nomials which are orthogonal with respect to an inner product which simultane-

ously involves functions and their derivatives. In the one variable case this kind

of orthogonality has been studied during the last 25 years, and it constitutes5

the main subject of a vast literature (see [? ] and the references therein).
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Sobolev orthogonal polynomials in several variables have a considerably

shorter history. There are very few references on the subject and most of them

deal with Sobolev orthogonality on the unit ball Bd of Rd. Usually, the inner

product considered is some modification of the classical inner product on the

ball

〈f, g〉µ =
1

ωµ

∫
Bd
f(x)g(x)Wµ(x)dx,

where Wµ(x) = (1 − ‖x‖2)µ on Bd, µ > −1, and ωµ is a normalizing constant

such that 〈1, 1〉µ = 1.

One of the first works on this subject was a paper by Y. Xu [? ], where the

inner product

〈f, g〉I =
λ

σd

∫
Bd
∇f(x) · ∇g(x)dx+

1

σd

∫
Sd−1

f(ξ)g(ξ)dσ(ξ), λ > 0,

was considered. Here, dσ denotes the surface measure on the sphere Sd−1 and σd

denotes the surface area. In the same article, the author studied another inner10

product where the second term on the right hand side was replaced by f(0)g(0).

In both cases, the central symmetry of the inner products plays an essential role

and using spherical polar coordinates a mutually orthogonal polynomial basis

is constructed. The polynomials in this basis are expressed in terms of Jacobi

polynomials and spherical harmonics mimicking the standard construction of15

the classical ball polynomials.

In the present paper, we study orthogonal polynomials with respect to the

Sobolev inner product

〈f, g〉Sµ =
1

ωµ

∫
Bd
f(x)g(x)Wµ(x)dx+

λ

σd

∫
Sd−1

∂f

∂n
(ξ)

∂g

∂n
(ξ)dσ(ξ),

where λ > 0 and ∂
∂n stands for the outward normal derivative operator.

Using again spherical polar coordinates, we shall construct a sequence of

mutually orthogonal polynomials with respect to 〈·, ·〉Sµ , which depends on a

family of Sobolev orthogonal polynomials of one variable. The latter are usually20

called a non—diagonal Jacobi Sobolev—type family of orthogonal polynomials and

can be expressed in terms of Jacobi polynomials (see [? ]).
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Standard techniques provide us explicit connection formulas relating classical

multivariate ball polynomials and our family of Sobolev orthogonal polynomials.

The explicit representations for the norms and the kernels will be obtained.25

A very interesting problem in the theory of multivariate orthogonal poly-

nomials is that of finding asymptotic estimates for the Christoffel functions,

because these estimates are related to the convergence of the Fourier series. As-

ymptotics for Christoffel functions associated to the classical orthogonal poly-

nomials on the ball were obtained by Y. Xu in 1996 (see [? ]). Recently, more30

general results on the asymptotic behaviour of the Christoffel functions were

established by Kroó and Lubinsky [? ? ]. Those results include estimates in

a quite general case where the orthogonality measure satisfies some regularity

conditions.

Since our orthogonal polynomials do not fit into the above mentioned case,35

the asymptotic of the Christoffel functions deserves special attention. Not sur-

prisingly, our results show that in any compact subset of the interior of the unit

ball Christoffel functions in the Sobolev case behave exactly as in the classical

case, see Theorem 4. On the sphere the situation is quite different and we can

perceive the influence of the outward normal derivatives in the inner product,40

see Theorem 3.

The paper is organized as follows. In the next section, we state the back-

ground materials on orthogonal polynomials on the unit ball and spherical har-

monics that we will need later. In Section 3, using spherical polar coordinates

we construct explicitly a sequence of mutually orthogonal polynomials with re-45

spect to 〈·, ·〉Sµ . Those polynomials are given in terms of spherical harmonics

and a family of univariate Sobolev orthogonal polynomials in the radial part,

their properties are studied in Section 4. In Section 5, we deduce explicit con-

nection formulas relating classical multivariate ball polynomials and our family

of Sobolev orthogonal polynomials. Moreover, an explicit representation for the50

kernels is obtained. The asymptotic behaviour of the corresponding Christoffel
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functions is studied in Section 6. And finally, in Section 7, we consider the

special case d = 2.

2. Preliminaries

In this section we describe background materials on orthogonal polynomials55

and spherical harmonics. The first subsection is devoted to recall some proper-

ties on the Jacobi polynomials that we shall need later. Second subsection recalls

the basic results on spherical harmonics and classical orthogonal polynomials

on the unit ball.

2.1. Classical Jacobi polynomials60

First, we collect some properties of classical Jacobi polynomials P (α,β)
n (t).

All of them are well known and can be found in [? , Chapt. 22] and [? ]. For

α, β > −1, these polynomials are orthogonal with respect to the Jacobi inner

product

(f, g)[α,β] =

∫ 1

−1

f(t) g(t)wα,β(t)dt,

where the weight function is defined as

wα,β(t) = (1− t)α(1 + t)β , −1 < t < 1.

Jacobi polynomials are normalized by

P (α,β)
n (1) =

(
n+ α

n

)
. (1)

The squares of the L2 norms are expressed as

h(α,β)
n =

(
P (α,β)
n , P (α,β)

n

)
[α,β]

=
2α+β+1 Γ(n+ α+ 1) Γ(n+ β + 1)

(2n+ α+ β + 1)n! Γ(n+ α+ β + 1)
. (2)

The polynomial P (α,β)
n (t) is of degree n and its leading coeffi cient k(α,β)

n is given

by

k(α,β)
n =

1

2n

(
2n+ α+ β

n

)
. (3)

The derivative of a Jacobi polynomial is again a Jacobi polynomial,

d

dt
P (α,β)
n (t) =

n+ α+ β + 1

2
P

(α+1,β+1)
n−1 (t). (4)
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The following relation between different families of the Jacobi polynomials

also hold:

P (α,β)
n (t) =

n+ α+ β + 1

2n+ α+ β + 1
P (α+1,β)
n (t)− n+ β

2n+ α+ β + 1
P

(α+1,β)
n−1 (t). (5)

As usual we will denote by p(α,β)
n (t) the orthonormal Jacobi polynomial of degree

n. Moreover, using (1), (2) and (4), we get

p(α,β)
n (1) =

(
2n+ α+ β + 1

2α+β+1

Γ (n+ α+ 1) Γ (n+ α+ β + 1)

Γ (n+ 1) Γ (n+ β + 1)

)1/2
1

Γ (α+ 1)
, (6)

p(α,β)′
n (1) =

(
2n+ α+ β + 1

2α+β+3

Γ (n+ α+ 1) Γ (n+ α+ β + 1)n

Γ (n) Γ (n+ β + 1)

)1/2

×n+ α+ β + 1

Γ (α+ 2)
. (7)

In addition to the Jacobi polynomials we will use the corresponding kernel

polynomials defined as

Kn(t, u;α, β) =

n∑
k=0

P
(α,β)
k (t)P

(α,β)
k (u)

h
(α,β)
k

, (8)

which are symmetric functions. When it is clear from the context, we will omit

the parameters α and β in the notation. We also denote the partial derivatives

K(0,1)
n (t, u) =

∂

∂u
Kn(t, u), K(1,1)

n (t, u) =
∂2

∂t ∂u
Kn(t, u).

It is well known (see [? , p. 71]) that

Kn(t, 1) =
2−α−β−1

Γ(α+ 1)

Γ(n+ α+ β + 2)

Γ(n+ β + 1)
P (α+1,β)
n (t). (9)

On the other hand, taking derivatives in the Christoffel—Darboux formula

for the kernels in [? , (4.5.2) p. 71], and expressing the derivative of the kernel

in terms of the Jacobi polynomials of parameters (α + 2, β), it can be shown65

that

K(0,1)
n (t, 1) = 2−α−β−2 Γ(n+ α+ β + 3)

Γ(α+ 2)Γ(n+ β + 1)

×
(
n(n+ α+ β + 1)

2n+ α+ β + 2
P (α+2,β)
n (t) − (n+ 1)(n+ β)

2n+ α+ β + 2
P

(α+2,β)
n−1 (t)

)
. (10)

In this way, we can compute the values of the kernels at the point (1, 1).
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Lemma 1. For n > 0, we get

Kn(1, 1) =
2−α−β−1

Γ(α+ 1)

Γ(n+ α+ β + 2)

Γ(n+ β + 1)

Γ(n+ α+ 2)

Γ(n+ 1) Γ(α+ 2)
,

K(0,1)
n (1, 1) =

2−α−β−2

Γ(α+ 1)

Γ(n+ α+ β + 3)

Γ(n+ β + 1)

Γ(n+ α+ 2)

Γ(n) Γ(α+ 3)
,

K(1,1)
n (1, 1) =

2−α−β−3

Γ(α+ 2)

Γ(n+ α+ β + 3)

Γ(n+ β + 1)

Γ(n+ α+ 2)

Γ(n) Γ(α+ 4)

× ((α+ 2)n(n+ α+ β + 2) + β).

2.2. Orthogonal polynomials on the unit ball and spherical harmonics

For a multi—index κ = (κ1, . . . , κd) ∈ Nd0, and x = (x1, . . . , xd), a monomial

in the variables x1, . . . , xd is a product

xκ = xκ11 . . . xκdd .

The number |κ| = κ1 + . . . + κd is called the total degree of xκ. A polynomial70

P in d variables is a finite linear combination of monomials.

Let Πd denote the space of polynomials in d real variables. For a given

non negative integer n, let Πd
n denote the linear space of polynomials in several

variables of total degree at most n, and let Pdn denote the space of homogeneous

polynomials of degree n. It is well known that

dim Πd
n =

(
n+ d

n

)
and dimPdn =

(
n+ d− 1

n

)
= rdn.

For x, y ∈ Rd, we use the standard notation of ‖x‖ for the Euclidean norm

of x, and 〈x, y〉 for the Euclidean product of x and y. The unit ball and the

unit sphere in Rd are denoted, respectively, by

Bd = {x ∈ Rd : ‖x‖ 6 1} and Sd−1 = {ξ ∈ Rd : ‖ξ‖ = 1}.

For µ ∈ R, let Wµ be the weight function defined by

Wµ(x) = (1− ‖x‖2)µ, ‖x‖ < 1.
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The function Wµ is integrable on the unit ball if µ > −1, for which we denote

the normalization constant of Wµ by

ωµ =

∫
Bd
Wµ(x) dx =

πd/2Γ(µ+ 1)

Γ(µ+ d/2 + 1)
. (11)

The weight Wµ is a radial and centrally symmetric function, that is, Wµ(−x) =

Wµ(x), for all x ∈ Bd.

Let us consider the classical inner product on the unit ball

〈f, g〉µ =
1

ωµ

∫
Bd
f(x) g(x)Wµ(x) dx,

which is normalized so that 〈1, 1〉µ = 1.

A polynomial P ∈ Πd
n is called orthogonal with respect to Wµ on the ball if75

〈P,Q〉µ = 0 for all Q ∈ Πd
n−1. Let Vdn(Wµ) denote the linear space of orthogonal

polynomials of total degree n with respect to Wµ. Then dim Vdn(Wµ) = rdn.

For n > 0, let {Pnν (x) : |ν| = n} denote a basis of Vdn(Wµ). Notice that every

element of Vdn(Wµ) is orthogonal to polynomials of lower degree. If the elements

of the basis are also orthogonal to each other, that is, 〈Pnν , Pnη 〉µ = 0 whenever80

ν 6= η, we call the basis mutually orthogonal. If, in addition, 〈Pnν , Pnν 〉µ = 1, we

call the basis orthonormal.

Since the weight function Wµ(x) is centrally symmetric, then an orthogonal

polynomial on the ball of degree n is a sum of monomials of even degree if n is

even, and sum of monomials of odd degree if n is odd ([? , p. 78]).85

Harmonic polynomials of degree n in d—variables are polynomials in Pdn that

satisfy the Laplace equation ∆Y = 0, where

∆ =
∂2

∂x2
1

+ . . .+
∂2

∂x2
d

is the usual Laplace operator.

If Y (x) is a harmonic polynomial of degree n, by Euler’s equation for homo-

geneous polynomials, we deduce

〈x,∇〉Y (x) =

d∑
i=1

xi
∂

∂xi
Y (x) = nY (x). (12)
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Let Hdn denotes the space of harmonic polynomials of degree n. It is well

known that

adn = dimHdn =

(
n+ d− 1

n

)
−
(
n+ d− 3

n

)
.

Spherical harmonics are the restriction of harmonic polynomials to the unit

sphere. If Y ∈ Hdn, then in spherical—polar coordinates x = rξ, r = ‖x‖ > 0,

and ξ ∈ Sd−1, we get Y (x) = rnY (ξ), so that Y is uniquely determined by its

restriction to the sphere. We shall also use Hdn to denote the space of spherical90

harmonics of degree n.

Let dσ denote the surface measure on Sd−1 and let σd denote the surface

area,

σd =

∫
Sd−1

dσ =
2πd/2

Γ(d/2)
. (13)

Using Green’s formula on the sphere it is easy to see that spherical harmonics

of different degrees are orthogonal with respect to the inner product

〈f, g〉Sd−1 =
1

σd

∫
Sd−1

f(ξ)g(ξ)dσ(ξ).

In spherical—polar coordinates a mutually orthogonal basis of Vdn(Wµ) can

be given in terms of the Jacobi polynomials and spherical harmonics (see for

example, [? ]).

Lemma 2. For n ∈ N0 and 0 6 j 6 n/2, let {Y n−2j
ν (x) : 1 6 ν 6 adn−2j}

denote an orthonormal basis for Hdn−2j. Define

Pnj,ν(x;µ) = P
(µ,βnj )

j (2 ‖x‖2 − 1)Y n−2j
ν (x), (14)

where βnj = n− 2j + d−2
2 .95

Then the set {Pnj,ν(x;µ) : 0 6 j 6 n/2, 1 6 ν 6 adn−2j} is a mutually

orthogonal basis of Vdn(Wµ).

More precisely,

〈Pnj,ν , Pmk,η〉µ = Hµ
j,nδn,m δj,k δν,η,

where Hµ
j,n = 〈Pnj,ν , Pnj,ν〉µ is given by

Hµ
j,n =

1

2µ+βnj +2

σd
ωµ

h
(µ,βnj )

j .

8



3. A Sobolev inner product on the ball

Let us define the Sobolev inner product

〈f, g〉Sµ =
1

ωµ

∫
Bd
f(x)g(x)Wµ(x) dx+

λ

σd

∫
Sd−1

∂f

∂n
(ξ)

∂g

∂n
(ξ)dσ(ξ), (15)

where Wµ(x) = (1 − ‖x‖2)µ, µ > −1, is the classical weight function on the

ball, ωµ and σd are given by (11) and (13), respectively, and ∂
∂n stands for the

outward normal derivative operator, which on the sphere Sd−1 is given by

∂f

∂n
=

d∑
i=1

xi
∂f

∂xi
.

We observe that the above inner product is centrally symmetric, in the sense

that 〈xκ, xτ 〉Sµ = 0 whenever |κ| + |τ | odd. This implies that an orthogonal100

polynomial of degree n is a sum of monomials of even degree if n is even, and a

sum of monomials of odd degree if n is odd.

In next theorem we will construct a mutually orthogonal basis relative to

the previous Sobolev inner product, which will be given explicitly in terms

of spherical harmonics and a family of Sobolev orthogonal polynomials in one105

variable.

Theorem 1. Let {q(α,β;M)
j (t)}j>0 denote the univariate Sobolev orthogonal po-

lynomials orthogonal with respect to the Sobolev inner product

(f, g)S[α,β;M ] =

∫ 1

−1

f(t)g(t)(1− t)α(1 + t)β dt+ f(1)Mg(1)t, (16)

where f(1) = (f(1), f ′(1)) and M is a 2 × 2 symmetric positive semidefinite

matrix. Let {Y n−2j
ν (x) : 1 6 ν 6 adn−2j} be an orthonormal basis of the

spherical harmonics Hdn−2j. Let us define the polynomials in d variables

Qnj,ν(x) = q
(µ,βnj ;Mn−2j)

j (2‖x‖2 − 1)Y n−2j
ν (x), (17)

with βnj = n− 2j + δ, δ = d−2
2 ,

A0 = λ 2δ+µ+2ωµ
σd
, (18)
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and

Mn−2j = 2n−2j A0

 (n− 2j)2 4(n− 2j)

4(n− 2j) 16

 . (19)

Then, for n > 0, the set {Qnj,ν(x) : 0 6 j 6 n/2, 1 6 ν 6 adn−2j} is a mutually

orthogonal basis of Vdn(Wµ, S), the linear space of polynomials of degree n which

are orthogonal with respect to the Sobolev inner product (15).

Moreover,

H̃µ
j,ν = 〈Qnj,ν , Qnj,ν〉Sµ =

λ

2n−2j A0
h̃

(µ,βnj ;Mn−2j)

j , (20)

where h̃
(µ,β;M)
j = (q

(µ,β;M)
j , q

(µ,β;M)
j )S[µ,β;M ].110

Proof. In order to check the orthogonality, we need to compute the product

〈Qnj,ν , Qmk,η〉Sµ =
1

ωµ

∫
Bd
Qnj,ν(x)Qmk,η(x)Wµ(x) dx (21)

+
λ

σd

∫
Sd−1

∂Qnj,ν
∂n

(ξ)
∂Qmk,η
∂n

(ξ) dσ(ξ).

Let us start with the computation of the first integral.

I1 =
1

ωµ

∫
Bd
Qnj,ν(x)Qmk,η(x)Wµ(x) dx.

Using spherical—polar coordinates and the orthogonality of the spherical har-

monics we obtain

I1 =
σd
ωµ

∫ 1

0

q
(µ,βnj )

j (2r2 − 1)q
(µ,βmk )
k (2r2 − 1)(1− r2)µ rn−2j+m−2k+d−1 dr

× δn−2j,m−2kδνη

=
σd
ωµ

∫ 1

0

q
(µ,βnj )

j (2r2 − 1)q
(µ,βnj )

k (2r2 − 1)(1− r2)µ r2(n−2j)+d−1 dr

× δn−2j,m−2kδνη,

where q
(µ,βnj )

j ≡ q(µ,βnj ;Mn−2j)

j and q(µ,βmk )
k ≡ q(µ,βmk ;Mm−2k)

k .

Finally, the change of variables t = 2r2−1 moves the integral to the interval115

[−1, 1],

I1 =
1

2β
n
j +µ+2

σd
ωµ

∫ 1

−1

q
(µ,βnj )

j (t)q
(µ,βnj )

k (t)(1− t)µ(1 + t)β
n
j dt (22)

×δn−2j,m−2kδνη.
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Let us now compute the second integral in (21),

I2 =
λ

σd

∫
Sd−1

∂Qnj,ν
∂n

(ξ)
∂Qmk,η
∂n

(ξ) dσ(ξ).

In order to easily get that integral, we need some previous results.

Computing the normal derivatives

∂

∂n

(
q

(µ,β;M)
j (2‖ξ‖2 − 1)

)
= 4‖ξ‖2(q

(µ,β;M)
j )′(2‖ξ‖2 − 1),

and using Euler’s formula (12), we deduce

∂

∂n

(
q

(µ,β;M)
j (2‖ξ‖2 − 1)Y n−2j

ν (ξ)
)

=
(

4‖ξ‖2(q
(µ,β;M)
j )′(2‖ξ‖2 − 1) + (n− 2j)q

(µ,β;M)
j (2‖ξ‖2 − 1)

)
Y n−2j
ν (ξ).

Thus, the second integral splits into four terms,

I2 =
λ

σd

(
16 q′j(1) q′k(1) + 4 (n− 2j) q′j(1) qk(1) + 4 (n− 2j) qj(1) q′k(1)

+(n− 2j)2 qj(1) qk(1)
) ∫

Sd−1
Y n−2j
ν (ξ)Y n−2k

η (ξ) dσ(ξ)

= λ
(

16 (q′j(1) q′k(1) + 4 (n− 2j) q′j(1) qk(1) + 4 (n− 2j) qj(1) q′k(1)

+(n− 2j)2 qj(1) qk(1)
)
δn−2j,m−2k δν,η,

where we have omitted the superscript in q
(µ,βnj ;Mn−2j)

j for brevity.120

Finally, this can be written in matrix form as follows

I2 = λq
(µ,βnj ;Mn−2j)

j (1) M̃n−2j q
(µ,βnj ;Mn−2j)

k (1)t (23)

where q
(µ,βnj ;Mn−2j)

j (1) =
(
q

(µ,βnj ;Mn−2j)

j (1), (q
(µ,βnj ;Mn−2j)

j )′(1)
)
and

M̃n−2j =

 (n− 2j)2 4(n− 2j)

4(n− 2j) 16

 .
Observe that Mn−2j = 2n−2j A0 M̃n−2j .

To end the proof, we just have to take together (22) and (23) to get the

value of (21) in terms of the Sobolev inner product (16) as

〈Qnj,ν , Qmk,η〉Sµ =
λ

2n−2j A0

(
q

(µ,βnj ;Mn−2j)

j , q
(µ,βnj ;Mn−2j)

k

)S
[µ,βnj ;Mn−2j ]

×δn−2j,m−2k δν,η.
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Then the result follows from the orthogonality of the univariate Sobolev orthog-

onal polynomials.125

�

4. The univariate non—diagonal Sobolev inner product

In this section we will explore some properties of the univariate Sobolev

orthogonal polynomials involved in (17).

Let (·, ·)S[α,β;M ] be the non—diagonal Sobolev inner product defined in (16)

by

(f, g)S[α,β;M ] =

∫ 1

−1

f(t) g(t)(1− t)α(1 + t)βdt+ f(1)Mg(1)t,

where M is a positive semidefinite matrix and f(1) = (f(1), f ′(1)).130

Let {q(α,β;M)
n (t)}n>0 be the orthogonal polynomials with respect to this inner

product, normalized with leading coeffi cient k(α,β)
n given in (3). Some properties

for the monic orthogonal polynomials with respect to this inner product can be

found in [? ? ].

In what follows, when not confusing, we will simplify the notations q(α,β;M)
n ≡135

q
(α,β)
n ≡ qn, and (f, g)S[α,β;M ] ≡ (f, g)S .

These univariate Sobolev orthogonal polynomials can be expressed in terms

of the classical Jacobi polynomials as follows.

Lemma 3. For α, β > −1, it holds

q
(α,β)
j (t) = b

(α,β)
j,j P

(α+2,β)
j (t) + b

(α,β)
j,j−1 P

(α+2,β)
j−1 (t) + b

(α,β)
j,j−2 P

(α+2,β)
j−2 (t), (24)

where

b
(α,β)
j,j =

(j + α+ β + 2)(j + α+ β + 1)

(2j + α+ β + 2)(2j + α+ β + 1)
,

b
(α,β)
j,j−1 =

(j + α+ β + 1)

2j + α+ β

(
− 2(j + β)

2j + α+ β + 2
− cjj−1

)
,

b
(α,β)
j,j−2 =

j + β − 1

2j + α+ β

(
j + β

2j + α+ β + 1
+ cjj−2

)
,
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with140

cjj−1 = 2−α−β−2 Γ(j + α+ β + 1)

Γ(α+ 1)Γ(j + β)
Pj(1) Λj−1

 2

(j − 1)(j + α+ β)

 ,
cjj−2 = 2−α−β−2 Γ(j + α+ β + 1)

Γ(α+ 1)Γ(j + β)
Pj(1) Λj−1

 2

j(j + α+ β + 1)

 ,
and

Pj(1) ≡ P(α,β)
j (1) =

(
P

(α,β)
j (1), (P

(α,β)
j )′(1)

)
,

Λj−1 ≡ Λ
(α,β;M)
j−1 = (I +MKj−1)

−1
M, (25)

Kj−1 ≡ K(α,β)
j−1 =

 Kj−1(1, 1) K
(1,0)
j−1 (1, 1)

K
(0,1)
j−1 (1, 1) K

(1,1)
j−1 (1, 1)

 . (26)

Proof. If we expand q(α,β)
j in terms of Jacobi polynomials,

q
(α,β)
j (t) =

j∑
i=0

b
(α,β)
j,i P

(α+2,β)
i (t),

and using standard techniques

b
(α,β)
j,i =

(q
(α,β)
j (t), P

(α+2,β)
i (t))[α+2,β]

h
(α+2,β)
i

=
(q

(α,β)
j (t), P

(α,β)
i (t) (1− t)2)S

h
(α+2,β)
i

.

Then, for i < n− 2, b(α,β)
j,i = 0, and so relation (24) holds. Moreover, the coeffi -

cient b(α,β)
j,j can be determined using the leading coeffi cients of the polynomials

q
(α,β)
j (t) and P (α+2,β)

j (t) both given by (3)

b
(α,β)
j,j =

k
(α,β)
j

k
(α+2,β)
j

=
(j + α+ β + 2)(j + α+ β + 1)

(2j + α+ β + 2)(2j + α+ β + 1)
.

We determine the other two coeffi cients using Proposition 2 in [? ],

q
(α,β)
j (t) = P

(α,β)
j (t)−P(α,β)

j (1) Λj−1K
α,β
j−1(t, 1), (27)

where

Kα,β
j−1(t, 1) =

 Kj−1(t, 1;α, β)

K
(0,1)
j−1 (t, 1;α, β)

 . (28)

13



If we apply equation (5) twice we obtain

P
(α,β)
j (t) =

(j + α+ β + 1)(j + α+ β + 2)

(2j + α+ β + 1)(2j + α+ β + 2)
P

(α+2,β)
j (t)

− 2(j + α+ β + 1)(j + β)

(2j + α+ β + 2)(2j + α+ β)
P

(α+2,β)
j−1 (t)

+
(j + β)(j + β − 1)

(2j + α+ β + 1)(2j + α+ β)
P

(α+2,β)
j−2 (t).

Substituting in (27), and using (9) and (10), the result follows.

�

For n > 0, we denote by

K̃n(t, u) =

n∑
j=0

q
(α,β)
j (t) q

(α,β)
j (u)

h̃
(α,β)
j

the reproducing kernels associated with the polynomials q(α,β)
j (t).145

We need to establish a relationship between these kernels and the kernels of

Jacobi polynomials defined in Section 2.1. To this end we need the following

lemmas.

Lemma 4. The matrix Λj = (I +MKj)−1
M is symmetric. Moreover,

Λj−1Pj(1)th−1
j Pj(1)Λj = Λj−1 − Λj ,

where hj = h
(α,β)
j is given in (2).

Proof. Using Sherman—Morrison—Woodbury identity (see [? ]), we get

(I +MKj)−1 = I −M(K−1
j +M)−1,

thus

(I +MKj)−1M = M −M(K−1
j +M)−1M,

14



and the symmetry of Λj follows from the symmetry of M and K−1
j . On the150

other hand,

Λj−1Pj(1)th−1
j Pj(1)Λj =

= (I +MKj−1)
−1

(MKj −MKj−1) (I +MKj)−1
M

= (I +MKj−1)
−1

((I +M Kj)− (I +MKj−1)) (I +MKj)−1
M

= (I +MKj−1)
−1

M − (I +MKj)−1
M.

�

Lemma 5. For j > 1,

(h̃
(α,β)
j )−1 = (h

(α,β)
j )−1 − (h

(α,β)
j )−2P

(α,β)
j (1)ΛjP

(α,β)
j (1)t.

Proof. First, we get the relation between the norms, using (27)

h̃
(α,β)
j = (qj , qj)

S = (qj , pj)
S = h

(α,β)
j + q

(α,β)
j (1)MP

(α,β)
j (1)t.

Taking into account that q(α,β)
j (1) = P

(α,β)
j (1) (I +MKj−1)

−1, we get

h̃
(α,β)
j = h

(α,β)
j +P

(α,β)
j (1) Λj−1P

(α,β)
j (1)t.

On the other hand, from

MP
(α,β)
j (1)th−2

j P
(α,β)
j (1) = h−1

j M(Kj−Kj−1) = h−1
j [(I+MKj)−(I+MKj−1)],

we get

P
(α,β)
j (1) (I +M Kj−1)

−1
M P

(α,β)
j (1)t h−2

j P
(α,β)
j (1) (I +MKj)−1

MP
(α,β)
j (1)t

= h−1
j P

(α,β)
j (1) (I +MKj−1)

−1
((I +M Kj)− (I +M Kj−1))

× (I +M Kj)−1
M P

(α,β)
j (1)t

= h−1
j P

(α,β)
j (1) (I +M Kj−1)

−1
M P

(α,β)
j (1)t

−h−1
j P

(α,β)
j (1) (I +M Kj)−1

M P
(α,β)
j (1)t.

15



Then, it is easy to show that

h̃
(α,β)
j

(
h−1
j − (h−1

j )2P
(α,β)
j (1) (I +M Kj)−1

M P
(α,β)
j (1)t

)
= 1,

and the result follows.

�155

Now we are ready to derive an explicit formula for the univariate kernels.

Proposition 1. For j > 0, we get

q
(α,β)
j (t) q

(α,β)
j (u) (h̃

(α,β)
j )−1 = P

(α,β)
j (t)P

(α,β)
j (u) (h

(α,β)
j )−1

− Kj(t, 1)t ΛjKj(u, 1) +Kj−1(t, 1)t Λj−1Kj−1(u, 1). (29)

As a consequence, for n > 0,

K̃n(t, u) = Kn(t, u)−Kn(t, 1)t ΛnKn(u, 1). (30)

Proof. Using (27) and Lemma 5, we get

qj(t) qj(u) h̃−1
j = (Pj(t)−Pj(1) Λj−1Kj−1(t, 1))

×(Pj(u)−Pj(1) Λj−1Kj−1(u, 1))

×(h−1
j − (h−1

j )2Pj(1) Λj Pj(1)t).

Taking into account Lemma 4 and Pj(1)h−1
j Pj(u) = Kj(u, 1)t −Kj−1(u, 1)t,

we obtain160

qj(t) qj(u) h̃−1
j = Pj(t)Pj(u)h−1

j − (Kj(t, 1)t −Kj−1(t, 1)t)Λj−1Kj−1(u, 1)

− (Kj(t, 1)t −Kj−1(t, 1)t)Λj(Kj(u, 1)−Kj−1(u, 1))

+ (Kj(t, 1)t −Kj−1(t, 1)t)(Λj−1 − Λj)Kj−1(u, 1)

− (Kj(u, 1)t −Kj−1(u, 1)t)Λj−1Kj−1(t, 1)

+ Kj−1(t, 1)tΛj−1Pj(1)tPj(1)ΛjKj(u, 1).

Therefore, we get (29) and a telescopic sum gives (30).

�
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5. Multivariate Sobolev orthogonal polynomials

In this section, we will express multivariate Sobolev orthogonal polynomials

in terms of classical ball polynomials. To this end, using the following lemmas165

we will simplify the matrix Λ
(µ,k+δ;Mk)
m = (I + MkKm)−1Mk defined in (25),

where Mk was introduced in (19), and Km = K(µ,k+δ)
m was given in (26).

Lemma 6. Let M and K be 2× 2 matrices with det (M) = 0. Then

(I +MK)
−1
M =

1

∆
M,

where

∆ = 1 + trace (MK)

is assumed non—zero.

Proof. This is a straightforward calculation. �

Lemma 7. Let k > 0, then

Λ(µ,k+δ;Mk)
m =

1

∆k,m
Mk,

where

∆k,m = 1 + 2kA0

{
k2Km (1, 1) + 8kK(1,0)

m (1, 1) + 16K(1,1)
m (1, 1)

}
. (31)

Proof. We see that det (Mk) = 0, and170

1 + trace (MkKm)

= 1 + 2kA0

{
k2Km (1, 1) + 4kK(1,0)

m (1, 1) + 4kK(0,1)
m (1, 1) + 16K(1,1)

m (1, 1)
}
.

Then Lemma 6 gives the result.

�
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If we replace t = 2 ‖x‖2 − 1 in equation (24), multiply the result times

Y n−2j
ν (x), and use (14) and (17), we can express Sobolev orthogonal polynomials

in terms of ball polynomials. This representation is given in next theorem.175

Theorem 2. Let n ∈ N0, 0 6 j 6 n/2, and 1 6 ν 6 adn−2j. Then,

Qnj,ν(x) = b
(µ,βnj )

j,j Pnj,ν(x;µ+2)+b
(µ,βnj )

j,j−1 Pn−2
j−1,ν(x;µ+2)+b

(µ,βnj )

j,j−2 Pn−4
j−2,ν(x;µ+2),

where Pnj,ν(x;µ + 2) are the polynomials in the ball orthogonal with respect to

Wµ+2(x), and

b
(µ,βnj )

j,j =
(n− j + µ+ δ + 2)(n− j + µ+ δ + 1)

(n+ µ+ δ + 2)(n+ µ+ δ + 1)
,

b
(µ,βnj )

j,j−1 =
n− j + µ+ δ + 1

n+ µ+ δ

(
− 2(n− j + δ)

n+ µ+ δ + 2
− dnj an−2

j−1

)
,

b
(µ,βnj )

j,j−2 =
n− j + δ − 1

n+ µ+ δ

( n− j + δ

n+ µ+ δ + 1
+ dnj a

n
j

)
,

with

dnj =
A0Γ(n− j + µ+ δ + 1) Γ(j + µ+ 1)

2µ+δ+2Γ(µ+ 1)Γ(µ+ 2)Γ(n− j + δ) j!

× ((µ+ 1)(n− 2j) + 2j(n− j + µ+ δ + 1)),

anj = 2 ((n− 2j) + 2j(n− j + µ+ δ + 1)).

Let us define the kernels of the ball orthogonal polynomials and the kernels

of the Sobolev orthogonal polynomials in the usual way,180

Ln(x, y) =

n∑
m=0

[m/2]∑
j=0

adm−2j∑
ν=1

Pmj,ν(x)Pmj,ν(y) (Hm
j,ν)−1, (32)

L̃n(x, y) =

n∑
m=0

[m/2]∑
j=0

adm−2j∑
ν=1

Qmj,ν(x)Qmj,ν(y) (H̃m
j,ν)−1. (33)

Then, we can establish a relation between these kernels by means of the

kernels of univariate Jacobi polynomials. From now on, let Cδk denote the usual

ultraspherical polynomial ([? , (4.7.1) in p. 80]).

18



Proposition 2. For n > 0 and d > 3, we get

L̃n(x, y) = Ln(x, y)

−A0

λ

n∑
k=0

Kµ,k+δ

[n−k2 ]
(2r2 − 1, 1)t Λ

(µ,k+δ;Mk)

[n−k2 ]
Kµ,k+δ

[n−k2 ]
(2s2 − 1, 1)

× 2k (r s)k
k + δ

δ
Cδk(〈ξ, %〉),

where x = r ξ, y = s %, r = ‖x‖, s = ‖y‖, ξ, % ∈ Sd−1.185

Proof. Using (17), (20), and (29), we get

Qmj,ν(x)Qmj,ν(y)(H̃m
j,ν)−1

= q
(µ,βmj )

j (2 r2 − 1)Y m−2j
ν (x)q

(µ,βmj )

j (2 s2 − 1)Y m−2j
ν (y)

× 2β
m
j +µ+2 ωµ

σd
(h̃

(µ,βmj )

j )−1

=
(
P

(µ,βmj )

j (2 r2 − 1)P
(µ,βmj )

j (2 s2 − 1)
(
h

(µ,βmj )

j

)−1

−Kµ,βmj
j (2r2 − 1, 1)t Λ

(µ,βmj ;Mm−2j)

j K
µ,βmj
j (2s2 − 1, 1)

+K
µ,βmj
j−1 (2r2 − 1, 1)t Λ

(µ,βmj ;Mm−2j)

j−1 K
µ,βmj
j−1 (2s2 − 1, 1)

)
× 2m−2j A0

λ
Y m−2j
ν (x)Y m−2j

ν (y).

Then, summing above expressions for m, j, and ν we obtain

L̃n(x, y) = Ln(x, y)

−
n∑

m=0

[m/2]∑
j=0

adm−2j∑
ν=1

K
µ,βmj
j (2r2 − 1, 1)t Λ

(µ,βmj ;Mm−2j)

j K
µ,βmj
j (2s2 − 1, 1)

× 2m−2jA0

λ
(r s)m−2j Y m−2j

ν (ξ)Y m−2j
ν (%)

+

n∑
m=2

[m/2]∑
j=1

adm−2j∑
ν=1

K
µ,βmj
j−1 (2r2 − 1, 1)t Λ

(µ,βmj ;Mm−2j)

j−1 K
µ,βmj
j−1 (2s2 − 1, 1)

× 2m−2jA0

λ
(r s)m−2j Y m−2j

ν (ξ)Y m−2j
ν (%),

where we have used thatK
µ,βmj
−1 (2r2−1, 1) = 0. Taking into account the addition

19



formula of spherical harmonics for d > 3 (see [? , p. 9])

adk∑
ν=1

Y kν (ξ)Y kν (%) =
k + δ

δ
Cδk(〈ξ, %〉),

we deduce

L̃n(x, y) = Ln(x, y)

−
n∑

m=0

[m/2]∑
j=0

K
µ,βmj
j (2r2 − 1, 1)t Λ

(µ,βmj ;Mm−2j)

j K
µ,βmj
j (2s2 − 1, 1)

× 2m−2jA0

λ
(r s)m−2j m− 2j + δ

δ
Cδm−2j(〈ξ, %〉)

+

n∑
m=2

[m/2]∑
j=1

K
µ,βmj
j−1 (2r2 − 1, 1)t Λ

(µ,βmj ;Mm−2j)

j−1 K
µ,βmj
j−1 (2s2 − 1, 1)

× 2m−2jA0

λ
(r s)m−2j m− 2j + δ

δ
Cδm−2j(〈ξ, %〉).

Therefore, since βm+2
j+1 = βmj , a change in the indexes in the last term gives

L̃n(x, y) = Ln(x, y)− F (n)− F (n− 1),

where

F (n) =
A0

λ

[n2 ]∑
j=0

K
µ,βnj
j (2r2 − 1, 1)t Λ

(µ,βnj ;Mm−2j)

j K
µ,βnj
j (2s2 − 1, 1)

× 2n−2j ωµ
σd

(r s)n−2j n− 2j + δ

δ
Cδn−2j(〈ξ, %〉),

for n > 0, and F (−1) = 0.190

Finally, taking the change of indexes n − 2j = k in both expressions F (n)

and F (n− 1), and summing, we get

F (n) + F (n− 1)

=
A0

λ

n∑
k=0

Kµ,k+δ

[n−k2 ]
(2r2 − 1, 1)t Λ

(µ,k+δ;Mk)

[n−k2 ]
Kµ,k+δ

[n−k2 ]
(2s2 − 1, 1)

× 2k (r s)k
k + δ

δ
Cδk(〈ξ, %〉),

and the result follows.

�
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6. Asymptotics for Christoffel functions195

For the boundary of the ball, we shall prove:

Theorem 3. Assume that µ > − 1
2 . For ‖x‖ = 1,

lim
n→∞

Ln(x, x)− L̃n(x, x)

n2µ+d+1
=

2

Γ (2µ+ d+ 2)

(µ+ 1)(µ+ 3)

(µ+ 2)2
. (34)

Moreover,

lim
n→∞

L̃n(x, x)

n2µ+d+1
=

2

Γ(2µ+ d+ 2)(µ+ 2)2
.

We note that the restriction µ > − 1
2 arises because existing asymptotics for

Christoffel functions in the non—Sobolev case have only been established for this

range of µ. Asymptotics for the interior of the ball have been obtained as well.

Theorem 4. For r = ‖x‖ < 1, we have200

0 < Ln(x, x)− L̃n(x, x)

6 Cnd−1 log n
(

2(1− r2) +
4

n2

)−µ− 1
2
(

2r2 +
4

n2

)−δ− 1
2

.

Here C is independent of n and x. Consequently if µ > − 1
2 , uniformly for x in

compact subsets of {x : 0 < ‖x‖ < 1},

lim
n→∞

L̃n(x, x)/

(
n+ d

d

)
=

1√
π

Γ(µ+ 1)Γ(d+1
2 )

Γ(µ+ d
2 + 1)

(
1− ‖x‖2

)− 1
2−µ

. (35)

This last limit also holds for x = 0.

In this section, we shall use the abbreviation that for m = [n−k2 ],

Km(x, y) = Km(x, y;µ, k + δ).

Thus k,m and n are linked. We now turn to the Christoffel function.

Lemma 8. For d > 3 and n > 0, we get

L̃n(x, x) = Ln(x, x)−Ψn(x),
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where

Ψn(x) =
A2

0

λ δ

n∑
k=0

22k(k + δ)

(
k + d− 3

k

)
r2kFk,m(t). (36)

Here x = rξ, r = ‖x‖ , m = [n−k2 ], t = 2r2 − 1, and

Fk,m(t) =
k2Km(t, 1)2 + 8kKm(t, 1)K

(0,1)
m (t, 1) + 16K

(0,1)
m (t, 1)2

1 + 2kA0

{
k2Km(1, 1) + 8kK

(1,0)
m (1, 1) + 16K

(1,1)
m (1, 1)

} . (37)

Proof. From Proposition 2,

Ψn(x) =
A0

λ

n∑
k=0

Kµ,k+δ

[n−k2 ]
(2r2 − 1, 1)tΛ

(µ,k+δ;Mk)

[n−k2 ]
Kµ,k+δ

[n−k2 ]
(2r2 − 1, 1)

×2kr2k k + δ

δ
Cδk(1). (38)

Here Cδk is an ultraspherical polynomial, so that [? , p. 80, (4.7.3)]

Cδk (1) =

(
k + 2δ − 1

k

)
=

(
k + d− 3

k

)
. (39)

Using Lemma 7 and (28), a straightforward computation shows that

Kµ,k+δ

[n−k2 ]
(2r2 − 1, 1)tΛ

(µ,k+δ;Mk)

[n−k2 ]
Kµ,k+δ

[n−k2 ]
(2r2 − 1, 1)

=
2kA0

∆k,m

{
k2Km(t, 1)2 + 8kKm(t, 1)K(0,1)

m (t, 1) + 16K(0,1)
m (t, 1)2

}
.

Substituting this, (31) and (39) into (38), gives the result.205

�

In particular, for r = ‖x‖ = 1, we see that t = 1 and

Ψn(x) =
A2

0

λ δ

n∑
k=0

22k(k + δ)

(
k + d− 3

k

)
Fk,m (1) ,

where

Fk,m(1) =
k2Km(1, 1)2 + 8kKm(1, 1)K

(0,1)
m (1, 1) + 16K

(0,1)
m (1, 1)2

1 + 2kA0

{
k2Km(1, 1) + 8kK

(1,0)
m (1, 1) + 16K

(1,1)
m (1, 1)

} . (40)

Next, we obtain asymptotics involving the reproducing kernel as m→∞ :
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Lemma 9. As m→∞, uniformly for k > 0, the following asymptotics hold

(i)

Km(1, 1) = 2−k(m+ k)µ+1mµ+1B0(1 + o(1)), (41)

where

B0 =
2−µ−δ−1

Γ(µ+ 1)Γ(µ+ 2)
. (42)

(ii)

K
(0,1)
m (1, 1)

Km(1, 1)
=

(m+ µ+ k + δ + 2)m

2(µ+ 2)
=

(m+ k)m

2(µ+ 2)
(1 + o(1)). (43)

(iii)

K
(1,1)
m (1, 1)

Km(1, 1)
=

(m+ µ+ k + δ + 2)m

4(µ+ 1)(µ+ 2)(µ+ 3)

× ((µ+ 2)m(m+ µ+ k + δ + 2) + k + δ)

=
(m+ k)2m2

4(µ+ 1)(µ+ 3)
(1 + o(1)). (44)

Proof. From Lemma 1 with α = µ and β = k + δ, the formulas follow using

Γ(x+ 1) = xΓ(x) and the following consequence of Stirling’s formula: for fixed

a, b, as x→∞,
Γ(x+ b)

Γ(x+ a)
= xb−a(1 + o(1)).

�

Lemma 10. (i) Let

D0 = B0
(µ+ 1)(µ+ 3)

A0(µ+ 2)2
. (45)

Then as m→∞, uniformly in k > 0,

22kFk,m(1) = D0(m+ k)µ+1mµ+1(1 + o(1)).

(ii) For ‖x‖ = 1, let

Ψn,1(x) =
A2

0

λ δ

n−[logn]∑
k=0

22k(k + δ)

(
k + d− 3

k

)
Fk,m(1).
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Then

lim
n→∞

Ψn,1(x)

n2µ+d+1
= E0, (46)

where

E0 =
2

Γ(2µ+ d+ 2)

(µ+ 1)(µ+ 3)

(µ+ 2)2
. (47)

Proof. (i) Assuming n−k →∞, so that m = [n−k2 ]→∞, the previous lemma210

gives for the term in the numerator in (40),

k2Km(1, 1)2 + 8kKm(1, 1)K(0,1)
m (1, 1) + 16K(0,1)

m (1, 1)2

= Km(1, 1)2

×
{
k2 + 8k

(m+ k)m

2(µ+ 2)
(1 + o(1)) + 4

(m+ k)2m2

(µ+ 2)2
(1 + o(1))

}
= Km(1, 1)24

(m+ k)2m2

(µ+ 2)2
(1 + o(1)).

Also the term in the denominator in (40) has the form

1 + 2kA0

{
k2Km(1, 1) + 8kK(1,0)

m (1, 1) + 16K(1,1)
m (1, 1)

}
= 1 + 2kA0Km(1, 1)

{
k2 + 4k

(m+ k)m

(µ+ 2)
(1 + o(1))

+4
(m+ k)2m2

(µ+ 1)(µ+ 3)
(1 + o(1))

}
= 1 + 2k+2A0Km(1, 1)

(m+ k)2m2

(µ+ 1)(µ+ 3)
(1 + o(1)).

Thus

Fk,m(1) =
Km(1, 1)24 (m+k)2m2

(µ+2)2 (1 + o(1))

1 + 2k+2A0Km(1, 1) (m+k)2m2

(µ+1)(µ+3) (1 + o(1))
.

Here

2kKm(1, 1) = (m+ k)µ+1mµ+1B0(1 + o(1))→∞ as m→∞,

so

22kFk,m(1) = 2kKm(1, 1)
(µ+ 1)(µ+ 3)

A0(µ+ 2)2
(1 + o(1))

= D0(m+ k)µ+1mµ+1(1 + o(1)).

24



(ii) From (i), and as mn = 1
2 (1− k

n ) +O( 1
n ),

Ψn,1(x)

n2µ+2
=
A2

0D0

λ δ

×
n−[logn]∑
k=0

(k + δ)

(
k + d− 3

k

)(m+ k

n

)µ+1(m
n

)µ+1

(1 + o(1))

=
A2

0D0n
d−2

λ δ22µ+2(d− 3)!
(1 + o(1))

×
n−[logn]∑
k=0

((k
n

)d−2(
1−

(k
n

)2)µ+1

+O
( 1

n

))
=

A2
0D0n

d−1

λ δ22µ+2 (d− 3)!
(1 + o(1))

(∫ 1

0

xd−2
(
1− x2

)µ+1
dx+ o (1)

)
.

Here, setting x = s1/2,∫ 1

0

xd−2
(
1− x2

)µ+1
dx =

1

2

∫ 1

0

sd/2−3/2 (1− s)µ+1
ds =

Γ(d−1
2 )Γ(µ+ 2)

2Γ(d+2µ+3
2 )

.

Then
Ψn,1(x)

n2µ+d+1
=

A2
0D0

λ δ 22µ+2(d− 3)!

Γ(d−1
2 )Γ(µ+ 2)

2Γ(d+2µ+3
2 )

(1 + o(1)).

Now we simplify the constant. Using (11), (13), (18), (42), and (45),215

A2
0D0

λ δ(d− 3)! 22µ+2

Γ(d−1
2 )Γ(µ+ 2)

2Γ(d+2µ+3
2 )

=
1

λ (d− 2)! 22µ+1
A0B0

(µ+ 1)(µ+ 3)

(µ+ 2)2

Γ(d−1
2 )Γ(µ+ 2)

2Γ(d+2µ+3
2 )

=
1

(d− 2)! 22µ+2

Γ(d2 )

Γ(µ+ d
2 + 1)

(µ+ 1)(µ+ 3)

(µ+ 2)2

Γ(d−1
2 )

Γ(d+2µ+3
2 )

= E0,

say. Using Legendre’s duplication formula

Γ(2a) =
22a−1

√
π

Γ(a)Γ
(
a+

1

2

)
,

with a = µ+ d
2 + 1, we see that

Γ
(
µ+

d

2
+ 1
)

Γ
(
µ+

d

2
+

3

2

)
= 2−2µ−d−1

√
π Γ(2µ+ d+ 2),

and with a = d−1
2 ,

Γ
(d− 1

2

)
Γ
(d

2

)
= 2−d+2

√
π Γ(d− 1).
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So, finally we obtain

E0 =
2

Γ(2µ+ d+ 2)

(µ+ 1)(µ+ 3)

(µ+ 2)2
.

�

We shall need an estimate on the reproducing kernels that is uniform in k:

Lemma 11. Fix µ > −1, δ > 0. For m =
[
n−k

2

]
> 1, k > 0, and t ∈ [−1, 1] ,

Km(t, t) = Km(t, t;µ, k + δ)

6 C(1 + t)−k
(
m+

[k
2

]
+ 1
)

×
(

1− t+
1

(m+ [k2 ] + 1)2

)−µ− 1
2
(

1 + t+
1

(m+ [k2 ] + 1)2

)−δ− 1
2

.

Here C depends on µ and δ but not on k, n, t.

Proof. Suppose first k is even, say k = 2`. Then from the extremal properties220

for Christoffel functions,

Km(t, t;µ, k + δ) = sup
deg(P )6m

P 2(t)∫ 1

−1
P 2(s) (1− s)µ (1 + s)

k+δ
ds

= (1 + t)−k sup
deg(P )6m

(
P (t) (1 + t)

`
)2

∫ 1

−1

(
P (s) (1 + s)

`
)2

(1− s)µ (1 + s)
δ
ds

6 (1 + t)−k sup
deg(R)6m+`

R(t)2∫ 1

−1
R(s)2 (1− s)µ (1 + s)

δ
ds

= (1 + t)−kKm+[ k2 ](t, t;µ, δ).

We now use a result from Nevai’s 1979 Memoir [? , p. 108, Lemma 5], that for

m+ [k2 ] > 1 and t ∈ [−1, 1],

Km+[ k2 ](t, t;µ, δ) 6 C
(
m+

[
k

2

]
+ 1
)

×
(

1− t+
1

(m+ [k2 ] + 1)2

)−µ− 1
2
(

1 + t+
1

(m+ [k2 ] + 1)2

)−δ− 1
2

.

The case k = 2`+ 1 is similar.

�225
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Now, we have the necessary tools in order to prove the main theorems of

this section.

Proof of Theorem 3. We already have a limit for Ψn,1, and must now esti-

mate the remaining part of Ψn, namely, for ‖x‖ = 1,

Ψn,2(x) =
A2

0

λ δ

n∑
k=n−[logn]+1

22k(k + δ)

(
k + d− 3

k

)
Fk,m(1).

We shall show that Ψn,2(x) = o(n2µ+d+1) which, together with (46), will give

the result. Now if m > 1,

2kA0Fk,m(1) = 2kA0
k2Km(1, 1)2 + 8kKm(1, 1)K

(0,1)
m (1, 1) + 16K

(0,1)
m (1, 1)2

1 + 2kA0

{
k2Km(1, 1) + 8kK

(1,0)
m (1, 1) + 16K

(1,1)
m (1, 1)

}
6 Km(1, 1) +Km(1, 1) +

K
(0,1)
m (1, 1)2

K
(1,1)
m (1, 1)

.

Here as k is close to n, and m = O(log n), (43) and (44) give

(K(0,1)
m (1, 1)

Km(1, 1)

)2

6 C(nm)2,

while if m > 1,
Km(1, 1)

K
(1,1)
m (1, 1)

6 C(n2m2)−1.

When m = 0, the estimation is simpler as K(0,1)
m = 0 = K

(1,1)
m . Thus

2kA0Fk,m(1) 6 CKm(1, 1),

where C is a constant independent of m and n, so for some possibly different

C,

Ψn,2 (x) 6 C
n∑

k=n−[logn]+1

2k(k + δ)

(
k + d− 3

k

)
Km(1, 1).

Here, using Lemma 9,

2kKm(1, 1) 6 Cn2µ+2,

while

(k + δ)

(
k + d− 3

k

)
6 Cnd−2.
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Thus

Ψn,2(x) 6 C n2µ+d log n = o(n2µ+d+1).

Then (34) follows from Lemma 10. Finally, we note that if µ > − 1
2 , (1.10)

of Theorem 1.1 in [? , p. 120] gives

lim
n→∞

Ln(x, x)/n2µ+d+1 =
2

Γ(2µ+ d+ 2)
.

Take there ρ = µ+ 1
2 , and note that the normalization constant ωρ is incorpo-230

rated in [? , p. 119] in a different way to that here. Then

lim
n→∞

L̃n(x, x)/n2µ+d+1 =
2

Γ(2µ+ d+ 2)
− 2

Γ(2µ+ d+ 2)

(µ+ 1)(µ+ 3)

(µ+ 2)2

=
2

Γ(2µ+ d+ 2)

{
1− (µ+ 1)(µ+ 3)

(µ+ 2)2

}
=

2

Γ(2µ+ d+ 2)(µ+ 2)2
.

�

Next we deal with ‖x‖ < 1.

Proof of Theorem 4. We must estimate Fk,m(t) defined in (37), with t =

2r2 − 1 and r = ‖x‖.235

Let us assume that t 6 1 − η for some η > 0. Then, with the convention

pj = p
(µ,k+δ)
j for orthonormal Jacobi polynomials, j = m,m+ 1,

|Km(t, 1)| =
γm
γm+1

∣∣∣∣pm+1(t)pm(1)− pm(t)pm+1(1)

t− 1

∣∣∣∣
6 C

2

√
p2
m(t) + p2

m+1(t)
√
p2
m(1) + p2

m+1(1)

η

6 C

2η
Km+1(t, t)1/2

√
p2
m(1) + p2

m+1(1), (48)

where γm = km/
√
hm is the leading coeffi cient of pm.
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Also,∣∣∣K(0,1)
m (t, 1)

∣∣∣ =
γm
γm+1

×
∣∣∣∣ (pm+1(t)p′m(1)− pm(t)p′m+1(1))(t− 1) + pm+1(t)pm(1)− pm(t)pm+1(1)

(t− 1)2

∣∣∣∣
6 C

2η2

√
p2
m(t) + p2

m+1(t)

{
2
√

(p′m(1))2 + (p′m+1(1))2 +
√
p2
m(1) + p2

m+1(1)

}
6 C

2η2
Km+1(t, t)1/2

{
2
√

(p′m(1))2 + (p′m+1(1))2 +
√
p2
m(1) + p2

m+1(1)

}
. (49)

Next, we note that given any real number a, there exists Ca > 1 such that for

all x with min(x, x+ a) > 1,

C−1
a xa 6 Γ(x+ a)

Γ(x)
6 Caxa.

This follows from Stirling’s formula and the positivity and continuity of Γ(x+a)
Γ(x)

for this range of x. Then from (7), if m > 1, α = µ, β = k + δ,

|p′m(1)| 6 C (m+ k)3/2+µ/2m1+µ/2

2k/2
, (50)

and from (6),

|pm(1)| 6 C (m+ k)1/2+µ/2mµ/2

2k/2
.

Substituting these into (48) and (49) gives for m > 1,

|Km(t, 1)| 6 C
(Km+1(t, t)

2k

)1/2

(m+ k)1/2+µ/2mµ/2 (51)

and ∣∣∣K(0,1)
m (t, 1)

∣∣∣ 6 C(Km+1(t, t)

2k

)1/2

(m+ k)3/2+µ/2m1+µ/2. (52)

Next, by (41) and (44),

2kK(1,1)
m (1, 1) > C(m+ k)µ+3mµ+3, (53)

so, inserting (51), (52) and (53) into (37),240

2kFk,m(t) 6 CKm+1(t, t)

×
{
k2 (m+ k)1+µmµ + k (m+ k)2+µm1+µ + (m+ k)3+µm2+µ

(m+ k)µ+3mµ+3

}
6 CKm+1 (t, t) / (m+ 1) .
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This bound holds also for m = 0, thought it is obtained in a simpler way

since K0 is a constant,

Fk,0(t) =
k2K0(t, 1)2

1 + 2kA0k2K0(1, 1)
6 CK0(t, t)

2k
6 CK1(t, t)

2k
.

Then,

Ψn(x) 6 C
n∑
k=0

2k(k + δ)

(
k + d− 3

k

)
r2kKm+1(t, t)

m+ 1
.

Using Lemma 11, and that 1 + t = 2r2 and m =
[
n−k

2

]
, we continue this as

Ψn(x)

6 C

n∑
k=0

(k + 1)d−2
(m+ [k2 ] + 2

[n−k2 ] + 1

)
×
(

1− t+
1

(m+ [k2 ] + 2)2

)−µ− 1
2
(

1 + t+
1

(n+ [k2 ] + 2)2

)−δ− 1
2

6 Cnd−1
(

1− t+
4

n2

)−µ− 1
2
(

1 + t+
4

n2

)−δ− 1
2

n∑
k=0

1

[n−k2 ] + 1

6 Cnd−1 log n
(

2(1− r2) +
4

n2

)−µ− 1
2
(

2r2 +
4

n2

)−δ− 1
2

.

Finally, [? , Theorem 1.3] gives

lim
n→∞

Ln (x, x) /

(
n+ d

d

)
=

ωµW0(x)(
1− ‖x‖2

)µ
=

1√
π

Γ(µ+ 1)Γ(d+1
2 )

Γ(µ+ d
2 + 1)

(
1− ‖x‖2

)− 1
2−µ

,

uniformly for x in compact subsets of the unit ball. Thus Ln(x, x) grows like

nd >> nd−1 log n, so (35) follows.

It remains to deal with the case x = 0, that is r = 0. In this case all terms

in Ψn(x) in (36) vanish except for k = 0. We see that

Ψn(0) = A2
0F0,[n2 ](−1) =

A2
016K

(0,1)
[n2 ] (−1, 1)2

1 + 16A0K
(1,1)
[n2 ] (1, 1)

. (54)

With m = [n2 ], k = 0, we see as above that245 ∣∣∣K(0,1)
m (−1, 1)

∣∣∣ 6 C
(
|pm+1(−1)| |p′m(1)|+ |pm(−1)|

∣∣p′m+1(1)
∣∣

+ |pm+1(−1)| |pm(1)|+ |pm(−1)| |pm+1(1)|
)
. (55)
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We shall need the classic bound [? , p. 36, eqn. (20—21)]

|pm(t)| 6 C
(

1− t+
1

m2

)−µ2− 1
4
(

1 + t+
1

m2

)− δ2− 1
4

, t ∈ [−1, 1].

Here C depends only on µ and δ. Then

|pm(−1)| 6 Cmδ+ 1
2 , |pm(1)| 6 Cmµ+ 1

2 .

Moreover, (50) gives (recall k = 0),

|p′m(1)| 6 Cmµ+ 5
2 .

Substituting all these bounds in (55) yields∣∣∣K(0,1)
m (−1, 1)

∣∣∣ 6 Cmδ+µ+3.

In addition, (53) leads to ∣∣∣K(1,1)
m (1, 1)

∣∣∣ > Cm2µ+6.

Substituting the last two bounds in (54) gives

|Ψn (0)| 6 Cn2δ = Cnd−2.

Then (35) follows also for this case.

�

7. The two dimensional case

In the case d = 2 results are somewhat different, but Theorems 3 and 4 also

hold. In this case δ = 0, ωµ = π, σd = 2π, then ωµ/σd = 1/2 and A0 = λ 2µ+1.250

Moreover the reproducing kernel of spherical harmonics is obtained in a different

way.

Proposition 3. For n > 0 and d = 2, we get

L̃n(x, y) = Ln(x, y)

−A0

λ

n∑
k=0

Kµ,k

[n−k2 ]
(2r2 − 1, 1)t Λ

(µ,k;Mk)

[n−k2 ]
Kµ,k

[n−k2 ]
(2s2 − 1, 1)

× 2k (r s)k cos(n(θ − θ̂)),
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where x = r (cos θ, sin θ), y = s (cos θ̂, sin θ̂), r = ‖x‖, s = ‖y‖, θ, θ̂ ∈ [0, 2π].

Proof. The proof is the same as in Proposition 2 taking into account that in

this case adk = 2, for k > 0, and the addition formula of spherical harmonics

for d = 2 reduces to the addition formula for the cosines (see [? , p. 20]), then

adk∑
ν=1

Y kν (cos θ, sin θ)Y kν (cos θ̂, sin θ̂) = cos(n(θ − θ̂)).

�255

Lemma 8 can be rewritten for the case d = 2 as

Lemma 12. For d = 2 and n > 0, we get

L̃n(x, x) = Ln(x, x)−Ψn(x),

where

Ψn(x) =
A2

0

λ

n∑
k=0

22kr2kFk,m(t).

Here r = ‖x‖, m = [n−k2 ], t = 2r2 − 1, and Fk,m(t) is given as in (37).

Lemma 9 and part (i) of Lemma 10 are true for d = 2, with δ = 0, and part

(ii) of Lemma 10 turns out

Lemma 13. For ‖x‖ = 1, let

Ψn,1(x) =
A2

0

λ

n−[logn]∑
k=0

22k Fk,m(1).

Then

lim
n→∞

Ψn,1(x)

n2µ+3
= E0,

where E0 is given in (47) with d = 2.260

Moreover, Lemma 11 works for d = 2, so finally Theorem 3 and Theorem 4

also hold in this case.
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