Mutually regular measures have similar universality limits

D. S. Lubinsky

Abstract

We use a localization technique to compare universality limits for two different measures. Assume that μ and ν are mutually regular measures, and are mutually absolutely continuous in some closed neighborhood J of a given point x_{0} in their support (whether in the bulk or the edge). Assume that at x_{0}, the Radon-Nikodym derivative $\frac{d \mu}{d \nu}$ is positive and continuous. Then under further assumptions on one of the measures, the two measures share a similar universality law at x_{0}.

§1. Results

Let μ be a finite positive Borel measure with compact support E on the real line. Then we may define orthonormal polynomials

$$
p_{n}(x)=p_{n}^{\mu}(x)=\gamma_{n} x^{n}+\cdots, \quad \gamma_{n}>0
$$

$n=0,1,2, \ldots$ satisfying the orthonormality conditions

$$
\int_{E} p_{n} p_{m} d \mu=\delta_{m n}
$$

These orthonormal polynomials satisfy a recurrence relation of the form

$$
x p_{n}(x)=a_{n+1} p_{n+1}(x)+b_{n} p_{n}(x)+a_{n} p_{n-1}(x),
$$

where

$$
a_{n}=\frac{\gamma_{n-1}}{\gamma_{n}}>0 \text { and } b_{n} \in \mathbb{R}, \quad n \geq 0
$$

and we use the convention $p_{-1}=0$. Throughout $w=\frac{d \mu}{d x}$ denotes the absolutely continuous part of μ with respect to Lebesgue measure. The measure μ is said to be regular in the sense of Stahl and Totik [11], if

$$
\lim _{n \rightarrow \infty} \gamma_{n}^{1 / n}=\frac{1}{\operatorname{cap}(E)}
$$

where $\operatorname{cap}(E)$ denotes the logarithmic capacity of E. In particular, if $E=[-1,1]$, this requires that

$$
\lim _{n \rightarrow \infty} \gamma_{n}^{1 / n}=2
$$

One of the key limits in random matrix theory, the so-called universality limit [1], involves the reproducing kernel

$$
K_{n}^{\mu}(x, y)=\sum_{k=0}^{n-1} p_{k}(x) p_{k}(y)
$$

and its normalized cousin

$$
\widetilde{K}_{n}^{\mu}(x, y)=w(x)^{1 / 2} w(y)^{1 / 2} K_{n}^{\mu}(x, y) .
$$

In [6], we presented a new approach to this universality limit, proving:
Theorem 1. Let μ be a finite positive Borel measure on $(-1,1)$ that is regular. Let \mathcal{K} be a compact subset of $(-1,1)$ such that μ is absolutely continuous in an open interval containing I. Assume that w is positive and continuous at each point of \mathcal{K}. Then

$$
\lim _{n \rightarrow \infty} \frac{\widetilde{K}_{n}^{\mu}\left(x+\frac{a}{\widetilde{K}_{n}^{\mu}(x, x)}, x+\frac{b}{\widehat{K}_{n}^{\mu}(x, x)}\right)}{\widetilde{K}_{n}^{\mu}(x, x)}=\frac{\sin \pi(a-b)}{\pi(a-b)},
$$

uniformly for $x \in I$ and a, b in compact subsets of the real line.
We also established L_{p} analogues assuming less on w. Subsequently, Vili Totik [13] established a far reaching extension, replacing $[-1,1]$ by general compact sets, but also allowing Lebesgue points instead of points of continuity.

In [7], we showed how localization and smoothing can be applied at the edge 1 of the spectrum. For $\alpha>-1$, let

$$
\mathbb{J}_{\alpha}(u, v)=\frac{J_{\alpha}(\sqrt{u}) \sqrt{v} J_{\alpha}^{\prime}(\sqrt{v})-J_{\alpha}(\sqrt{v}) \sqrt{u} J_{\alpha}^{\prime}(\sqrt{u})}{2(u-v)}
$$

be the Bessel kernel of order α, where J_{α} is the usual Bessel function of the first kind and order α. Our result for the edge was:

Theorem 2. Let μ be a finite positive Borel measure on $(-1,1)$ that is regular. Assume that for some $\rho>0, \mu$ is absolutely continuous in $J=[1-\rho, 1]$, and in J, its absolutely continuous component has the form $w(x)=h(x)(1-x)^{\alpha}(1+x)^{\beta}$, where $\alpha, \beta>-1$. Assume that $h(1)>0$
and h is continuous at 1 . Then uniformly for a, b in compact subsets of $(0, \infty)$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{2 n^{2}} \widetilde{K}_{n}^{\mu}\left(1-\frac{a}{2 n^{2}}, 1-\frac{b}{2 n^{2}}\right)=\mathbb{J}_{\alpha}(a, b) \tag{1}
\end{equation*}
$$

If $\alpha \geq 0$, we may allow compact subsets of $[0, \infty)$.
The proof of Theorem 1 involved reducing the measure μ to a Legendre weight near \mathcal{K}, while the proof of Theorem 2 reduced μ to a Jacobi weight near 1.

In this paper, we show how the same localization principle offers a unified framework for universality limits in the bulk, or at the edge, of the spectrum. We need:

Definition 1. Let μ, ν be measures with compact support. We say they are mutually regular, if as $n \rightarrow \infty$,

$$
\sup _{\operatorname{deg}(P) \leq n}\left(\frac{\int P^{2} d \mu}{\int P^{2} d \nu}\right)^{1 / n} \rightarrow 1
$$

and

$$
\sup _{\operatorname{deg}(P) \leq n}\left(\frac{\int P^{2} d \nu}{\int P^{2} d \mu}\right)^{1 / n} \rightarrow 1
$$

Note that if μ is regular in the sense of Stahl and Totik, they show that it is mutually regular with the Legendre weight $\nu^{\prime}=1$ having the same support as μ. Indeed, this is a key tool in the proofs in [6] and [7].

Recall that the nth Christoffel function for μ is

$$
\lambda_{n}^{\mu}(x)=1 / K_{n}^{\mu}(x, x)=\min _{\operatorname{deg}(P) \leq n-1}\left(\int P^{2} d \mu\right) / P^{2}(x)
$$

When dealing with a positive measure ν, we shall denote its reproducing kernel by K_{n}^{ν} and its normalized reproducing kernel by \tilde{K}_{n}^{ν}. We shall also use the superscript ν to indicate other quantities associated with the measure μ. The result of this paper is:

Theorem 3. Let μ and ν be measures with compact support that are mutually regular. Let J be a compact subset of the support supp $[\mu]$ of μ. Assume that I is an open set containing J, such that in $I \cap \operatorname{supp}[\mu], \mu$ and ν are mutually absolutely continuous. Assume moreover, that at each point of J, the Radon-Nikodym derivative $\frac{d \mu}{d \nu}$ is positive and continuous. Let $g: J \rightarrow(0, \infty)$ be a function defined on J. Assume that for some positive numbers d and c,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{d} \lambda_{n}^{\nu}\left(x+a n^{-c}\right)=g(x) \tag{2}
\end{equation*}
$$

uniformly for $x \in J$ and a in compact subsets of the real line. Then uniformly for a, b in compact subsets of the real line, and $x \in J$, with $x+a n^{-c}, x+b n^{-c}$ restricted to supp $[\mu]$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left|\frac{d \mu}{d \nu}(x) K_{n}^{\mu}\left(x+a n^{-c}, x+b n^{-c}\right)-K_{n}^{\nu}\left(x+a n^{-c}, x+b n^{-c}\right)\right|}{K_{n}^{\mu}(x, x)}=0 \tag{3}
\end{equation*}
$$

Thus μ and ν share similar universality limits on J. Of course, J could consist of a single point at the edge of the spectrum, namely at points where the support of the measures meets its complement. An example would be the endpoint 1 of the interval $[-1,1]$, as in Theorem 2, where ν can be a Jacobi weight and $c=2$. In this case, d depends on the particular Jacobi weight. Or, J could also be a single point in the interior of the support, such as a point in $(-1,1)$, the situation in Theorem 1, where ν can be taken as the Legendre weight and $c=1$. We emphasize that our hypothesis on continuity of $\frac{d \mu}{d \nu}$ in J, involves approach to J from all points of the support of μ.

We may replace the sequence $\left\{n^{-c}\right\}$ by a more general sequence $\left\{\varepsilon_{n}\right\}$. Moreover, we may replace the hypothesis (2) by a more general one. In its formulation, we need more notation. For $x \in \mathbb{R}$ and $\delta>0$, we set

$$
I(x, \delta)=[x-\delta, x+\delta]
$$

The distance from a point x to a set J is denoted $\operatorname{dist}(x, J)$. For such a set J, we set

$$
I(J, \delta)=\{x: \operatorname{dist}(x, J) \leq \delta\}
$$

$[x]$ denotes the greatest integer $\leq x$.
Theorem 4. Let μ and ν be measures with compact support that are mutually regular. Let J be a compact subset of the support supp $[\mu]$ of μ. Assume that I is an open set containing J, such that in $I \cap \operatorname{supp}[\mu], \mu$ and ν are mutually absolutely continuous. Assume moreover, that at each point of J, the Radon-Nikodym derivative $\frac{d \mu}{d \nu}$ is positive and continuous. Assume that $\left\{\varepsilon_{n}\right\}$ is a sequence of positive numbers with limit 0 , such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lambda_{n}^{\nu}\left(x+a \varepsilon_{n}\right) / \lambda_{n}^{\nu}(x)=1 \tag{4}
\end{equation*}
$$

uniformly for $x \in J$ and a in compact subsets of the real line, with $x+a \varepsilon_{n}$ restricted to $\operatorname{supp}[\nu]$. Assume, moreover, that for each $A>0$,

$$
\begin{equation*}
\lim _{\eta \rightarrow 0+}\left[\limsup _{n \rightarrow \infty} \frac{\lambda_{n-[\eta n]}^{\nu}\left(x+a \varepsilon_{n}\right)}{\lambda_{n}^{\nu}\left(x+a \varepsilon_{n}\right)}\right]=1 \tag{5}
\end{equation*}
$$

uniformly for $x \in J$, and $|a| \leq A$. Then uniformly for a, b in compact subsets of the real line, and $x \in J$, with $x+a \varepsilon_{n}$ and $x+b \varepsilon_{n}$ restricted to $\operatorname{supp}[\mu]$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left|\frac{d \mu}{d \nu}(x) K_{n}^{\mu}\left(x+a \varepsilon_{n}, x+b \varepsilon_{n}\right)-K_{n}^{\nu}\left(x+a \varepsilon_{n}, x+b \varepsilon_{n}\right)\right|}{K_{n}^{\mu}(x, x)}=0 \tag{6}
\end{equation*}
$$

This paper is organised as follows. In the next section, we establish asymptotics for Christoffel functions. In section 3, we prove Theorem 4 and then deduce Theorem 3 .

In the sequel C, C_{1}, C_{2}, \ldots denote constants independent of n, x, θ. The same symbol does not necessarily denote the same constant in different occurrences. We shall write $C=C(\alpha)$ or $C \neq C(\alpha)$ to respectively denote dependence on, or independence of, the parameter α.

§2. Christoffel functions

The methods used to prove the following result are well known, coming primarily from a seminal paper of Máté, Nevai and Totik [8].

Theorem 5. Assume the hypotheses of Theorem 4. Let $A>0$. Then uniformly for $|a|<A$, and $x \in J$ with $x+a \varepsilon_{n} \in \operatorname{supp}[\mu]$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lambda_{n}^{\mu}\left(x+a \varepsilon_{n}\right) / \lambda_{n}^{\nu}(x)=\frac{d \mu}{d \nu}(x) \tag{7}
\end{equation*}
$$

Proof: We first prove that uniformly for $x \in J$ and $|a| \leq A$, with $x+a \varepsilon_{n}$ restricted to $\operatorname{supp}[\mu]$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\lambda_{n}^{\mu}\left(x+a \varepsilon_{n}\right)}{\lambda_{n}^{\nu}(x) \frac{d \mu}{d \nu}(x)} \leq 1 \tag{8}
\end{equation*}
$$

Let $\varepsilon>0$ and choose $\delta>0$ such that μ and ν are mutually absolutely continuous in $I(J, \delta) \cap \operatorname{supp}[\mu]$, and such that

$$
\begin{align*}
(1+\varepsilon)^{-1} & \leq \frac{d \mu}{d \nu}(x) / \frac{d \mu}{d \nu}(y) \\
& \leq 1+\varepsilon, \quad x, y \in I(J, \delta) \cap \operatorname{supp}[\mu] \text { with }|x-y| \leq \delta \tag{9}
\end{align*}
$$

This is possible because of compactness of J and continuity and positivity of $\frac{d \mu}{d \nu}$ at every point of J. Let us fix $x_{0} \in J$ and recall that $I\left(x_{0}, \delta\right)=$ $\left[x_{0}-\delta, x_{0}+\delta\right]$. Define a measure μ^{*} with

$$
\mu^{*}=\mu \operatorname{in} \operatorname{supp}[\mu] \backslash I\left(x_{0}, \delta\right)
$$

and in $I\left(x_{0}, \delta\right)$, let μ^{*} be absolutely continuous with respect to ν, with Radon-Nikodym derivative w.r.t. ν satisfying

$$
\begin{equation*}
\frac{d \mu^{*}}{d \nu}=\frac{d \mu}{d \nu}\left(x_{0}\right)(1+\varepsilon) \text { in } I\left(x_{0}, \delta\right) \tag{10}
\end{equation*}
$$

Because of (9), $\mu \leq \mu^{*}$, so that if $\lambda_{n}^{\mu^{*}}$ is the nth Christoffel function for μ^{*}, we have for all x,

$$
\begin{equation*}
\lambda_{n}^{\mu}(x) \leq \lambda_{n}^{\mu^{*}}(x) \tag{11}
\end{equation*}
$$

We now find an upper bound for $\lambda_{n}^{\mu^{*}}(x)$ for $x \in I\left(x_{0}, \delta / 2\right)$. Let d be the diameter of $\operatorname{supp}[\mu] \cup \operatorname{supp}[\nu]$. There exists $r \in(0,1)$ depending only on δ such that

$$
\begin{align*}
& 0 \leq 1-\left(\frac{t-x}{d}\right)^{2} \leq r \text { for } x \in I\left(x_{0}, \delta / 2\right) \cap \operatorname{supp}[\mu] \\
& \quad \text { and } t \in(\operatorname{supp}[\mu] \cup \operatorname{supp}[\nu]) \backslash I\left(x_{0}, \delta\right) . \tag{12}
\end{align*}
$$

Let $\eta \in\left(0, \frac{1}{2}\right)$ and choose $\sigma>1$ so close to 1 that

$$
\begin{equation*}
\sigma^{1-\eta}<r^{-\eta / 4} \tag{13}
\end{equation*}
$$

Let $m=m(n)=n-2[\eta n / 2]$. Fix $x \in I\left(x_{0}, \delta / 2\right) \cap \operatorname{supp}[\mu]$ and choose a polynomial P_{m} of degree $\leq m-1$ such that

$$
\lambda_{m}^{\nu}(x)=\int P_{m}^{2} d \nu \text { and } P_{m}^{2}(x)=1
$$

Thus P_{m} is the minimizing polynomial in the Christoffel function for the measure ν at x. Let

$$
S_{n}(t)=P_{m}(t)\left(1-\left(\frac{t-x}{d}\right)^{2}\right)^{[\eta n / 2]}
$$

a polynomial of degree $\leq m-1+2[\eta n / 2] \leq n-1$ with $S_{n}(x)=1$. Then using (10) and (12),

$$
\begin{aligned}
\lambda_{n}^{\mu^{*}}(x) & \leq \int S_{n}^{2} d \mu^{*} \\
& \leq \frac{d \mu}{d \nu}\left(x_{0}\right)(1+\varepsilon) \int_{I\left(x_{0}, \delta\right)} P_{m}^{2} d \nu+r^{2[\eta n / 2]} \int_{\operatorname{supp}[\mu] \backslash I\left(x_{0}, \delta\right)} P_{m}^{2} d \mu \\
& \leq \frac{d \mu}{d \nu}\left(x_{0}\right)(1+\varepsilon) \lambda_{m}^{\nu}(x)+r^{2[\eta n / 2]} \int_{\operatorname{supp}[\mu] \backslash I\left(x_{0}, \delta\right)} P_{m}^{2} d \mu
\end{aligned}
$$

Now we use the key idea of regularity, probably first used in this context by Máté, Nevai and Totik [8, Lemma 9, p. 450]. By the mutual regularity defined in Definition 1, for $m \geq m_{0}(\sigma)$, we have

$$
\int_{\operatorname{supp}[\mu] \backslash I\left(x_{0}, \delta\right)} P_{m}^{2} d \mu \leq \sigma^{m} \int P_{m}^{2} d \nu=\sigma^{m} \lambda_{m}^{\nu}(x)
$$

Then from (13), uniformly for $x \in I\left(x_{0}, \delta / 2\right)$,

$$
\begin{aligned}
\lambda_{n}^{\mu^{*}}(x) & \leq \frac{d \mu}{d \nu}\left(x_{0}\right)(1+\varepsilon) \lambda_{m}^{\nu}(x)\left\{1+C\left[\sigma^{1-\eta} r^{\eta}\right]^{n}\right\} \\
& \leq \frac{d \mu}{d \nu}\left(x_{0}\right)(1+\varepsilon) \lambda_{m}^{\nu}(x)\{1+o(1)\}
\end{aligned}
$$

so as $\lambda_{n}^{\mu} \leq \lambda_{n}^{\mu^{*}}$, for all $x \in I\left(x_{0}, \delta / 2\right) \cap \operatorname{supp}[\mu]$,

$$
\begin{equation*}
\lambda_{n}^{\mu}(x) / \lambda_{n}^{\nu}(x) \leq \frac{d \mu}{d \nu}\left(x_{0}\right)(1+\varepsilon)\{1+o(1)\} \lambda_{m}^{\nu}(x) / \lambda_{n}^{\nu}(x) \tag{14}
\end{equation*}
$$

The $o(1)$ term is independent of x_{0}. Using (9) again, we obtain for $n \geq$ $n_{0}\left(x_{0}, \delta\right)$, and for all $x \in I\left(x_{0}, \delta / 2\right) \cap \operatorname{supp}[\mu]$, that

$$
\lambda_{n}^{\mu}(x) / \lambda_{n}^{\nu}(x) \leq \frac{d \mu}{d \nu}(x)(1+\varepsilon)^{2} \lambda_{m}^{\nu}(x) / \lambda_{n}^{\nu}(x)
$$

By covering J with finitely many such intervals $I\left(x_{0}, \delta / 2\right)$, we obtain for some maximal threshold n_{1}, that for $n \geq n_{1}=n_{1}(\varepsilon, \delta, J)$, that this last inequality holds for all $x \in I(J, \delta / 2) \cap \operatorname{supp}[\mu]$. Now let $A>0$ and $|a| \leq A$. There exists $n_{2}=n_{2}(A, J, \delta)$ such that for $n \geq n_{2}$ and all $|a| \leq A$ and all $x \in J$, we have $x+a \varepsilon_{n} \in I(J, \delta / 2)$. Recall too that $m=n-2[\eta n / 2]$. By our hypothesis (5), we can choose $\eta>0$ small enough and n_{3} such that for $|a| \leq A, x \in J$, and $n \geq n_{3}$,

$$
\lambda_{m}^{\nu}\left(x+a \varepsilon_{n}\right) / \lambda_{n}^{\nu}\left(x+a \varepsilon_{n}\right) \leq 1+\varepsilon
$$

We deduce that

$$
\limsup _{n \rightarrow \infty}\left(\sup _{\substack{a \in[-A, A], x \in J \\ x+a \varepsilon_{n} \in \operatorname{supp}[\mu]}} \frac{\lambda_{n}^{\mu}\left(x+a \varepsilon_{n}\right)}{\lambda_{n}^{\nu}\left(x+a \varepsilon_{n}\right) \frac{d \mu}{d \nu}\left(x+a \varepsilon_{n}\right)}\right) \leq(1+\varepsilon)^{3} .
$$

As the left-hand side is independent of the parameter ε, and $\frac{d \mu}{d \nu}$ is continuous on J, we deduce that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\sup _{\substack{a \in[-A, A], x \in J \\ x+a \varepsilon_{n} \in \operatorname{supp}[\mu]}} \frac{\lambda_{n}^{\mu}\left(x+a \varepsilon_{n}\right)}{\lambda_{n}^{\nu}\left(x+a \varepsilon_{n}\right) \frac{d \mu}{d \nu}(x)}\right) \leq 1 . \tag{15}
\end{equation*}
$$

Finally, our hypothesis (4) gives (8). In a similar way, we can establish the converse bound

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\lambda_{n}^{\nu}(x) \frac{d \mu}{d \nu}(x)}{\lambda_{n}^{\mu}\left(x+a \varepsilon_{n}\right)} \leq 1 \tag{16}
\end{equation*}
$$

uniformly for $x \in J,|a| \leq A$, and $x+a \varepsilon_{n}$ restricted to supp $[\mu]$. Indeed with m, x and η as above, let us choose a polynomial P of degree $\leq m-1$ such that

$$
\lambda_{m}^{\mu}(x)=\int P_{m}^{2}(t) d \mu(t) \text { and } P_{m}^{2}(x)=1
$$

Then with S_{n} as above, and proceeding as above,

$$
\begin{gathered}
\lambda_{n}^{\nu}(x) \leq \int S_{n}^{2} d \nu \\
\leq\left[\frac{d \mu}{d \nu}\left(x_{0}\right)^{-1}(1+\varepsilon)\right] \int_{I\left(x_{0}, \delta\right)} P_{m}^{2} d \mu+r^{2[\eta n / 2]} \int_{\operatorname{supp}[\mu] \backslash I\left(x_{0}, \delta\right)} P_{m}^{2} d \nu \\
\leq\left[\frac{d \mu}{d \nu}\left(x_{0}\right)^{-1}(1+\varepsilon)\right] \lambda_{m}^{\mu}(x)\left\{1+C\left[\sigma^{1-\eta} r^{\eta}\right]^{n}\right\}
\end{gathered}
$$

and so as above,

$$
\begin{aligned}
& \sup _{x \in I\left(x_{0}, \delta / 2\right) \cap \operatorname{supp}[\mu]} \lambda_{m}^{\nu}(x) / \lambda_{m}^{\mu}(x) \\
& \leq\left[\frac{d \mu}{d \nu}\left(x_{0}\right)^{-1}(1+\varepsilon)(1+o(1))\right] \sup _{x \in I\left(x_{0}, \delta / 2\right)} \lambda_{m}^{\nu}(x) / \lambda_{n}^{\nu}(x) \\
& \leq\left[\frac{d \mu}{d \nu}\left(x_{0}\right)^{-1}(1+\varepsilon)^{3}\right] .
\end{aligned}
$$

As n runs through all the positive integers, so does $m=n-2[\eta / 2]$. (Indeed, the difference between successive such m is at most 1.) Then (16) follows using monotonicity of λ_{n} in n, much as above. Together (16) and (8) give (7).

§3. Localization

Theorem 6. Assume that μ satisfies the hypotheses of Theorem 4. Assume moreover, that μ^{*} is a measure with compact support that satisfies the same hypotheses in Theorem 4 as does μ. Assume that

$$
\frac{d \mu}{d \mu^{*}}=1 \text { in } J
$$

Let $A>0$. Then as $n \rightarrow \infty$,

$$
\begin{equation*}
\sup _{a, b \in[-A, A], x \in J}\left|\left(K_{n}^{\mu}-K_{n}^{\mu^{*}}\right)\left(x+a \varepsilon_{n}, x+b \varepsilon_{n}\right)\right| / K_{n}^{\mu}(x, x)=o(1) . \tag{17}
\end{equation*}
$$

Proof: We initially assume that globally

$$
\begin{equation*}
\mu \leq \mu^{*} \tag{18}
\end{equation*}
$$

Now

$$
\begin{aligned}
\int & \left(K_{n}^{\mu}(x, t)-K_{n}^{\mu^{*}}(x, t)\right)^{2} d \mu(t) \\
= & \int K_{n}^{\mu 2}(x, t) d \mu(t)-2 \int K_{n}^{\mu}(x, t) K_{n}^{\mu^{*}}(x, t) d \mu(t) \\
& +\int K_{n}^{\mu^{*} 2}(x, t) d \mu(t) \\
= & K_{n}^{\mu}(x, x)-2 K_{n}^{\mu^{*}}(x, x)+\int K_{n}^{\mu^{*} 2}(x, t) d \mu(t)
\end{aligned}
$$

by the reproducing kernel property. As $\mu \leq \mu^{*}$, we also have

$$
\int K_{n}^{\mu^{*} 2}(x, t) d \mu(t) \leq \int K_{n}^{\mu^{*} 2}(x, t) d \mu^{*}(t)=K_{n}^{\mu^{*}}(x, x)
$$

So

$$
\begin{equation*}
\int\left(K_{n}^{\mu}(x, t)-K_{n}^{\mu^{*}}(x, t)\right)^{2} d \mu(t) \leq K_{n}^{\mu}(x, x)-K_{n}^{\mu^{*}}(x, x) \tag{19}
\end{equation*}
$$

Next for any polynomial P of degree $\leq n-1$, we have the Christoffel function estimate

$$
\begin{equation*}
|P(y)| \leq K_{n}^{\mu}(y, y)^{1 / 2}\left(\int P^{2} d \mu\right)^{1 / 2} \tag{20}
\end{equation*}
$$

Applying this to $P(t)=K_{n}^{\mu}(x, t)-K_{n}^{\mu^{*}}(x, t)$ and using (19) gives, for all $x, y \in \mathbb{R}$,

$$
\left|K_{n}^{\mu}(x, y)-K_{n}^{\mu^{*}}(x, y)\right| \leq K_{n}^{\mu}(y, y)^{1 / 2}\left[K_{n}^{\mu}(x, x)-K_{n}^{\mu^{*}}(x, x)\right]^{1 / 2}
$$

so

$$
\begin{align*}
& \left|K_{n}^{\mu}(x, y)-K_{n}^{\mu^{*}}(x, y)\right| / K_{n}^{\mu}(x, x) \\
& \quad \leq\left(\frac{K_{n}^{\mu}(y, y)}{K_{n}^{\mu}(x, x)}\right)^{1 / 2}\left[1-\frac{K_{n}^{\mu^{*}}(x, x)}{K_{n}^{\mu}(x, x)}\right]^{1 / 2} . \tag{21}
\end{align*}
$$

Now we set $x=x_{0}+a \varepsilon_{n}$ and $y=x_{0}+b \varepsilon_{n}$, where $a, b \in[-A, A]$ and $x_{0} \in J$. By Theorem 5, uniformly for such $x, \frac{K_{n}^{\mu^{*}}(x, x)}{K_{n}^{\mu}(x, x)}=1+o(1)$, for $\frac{d \mu}{d \nu}(x)=\frac{d \mu^{*}}{d \nu}(x)$. Moreover, Theorem 5 shows that

$$
K_{n}^{\mu}\left(x_{0}+a \varepsilon_{n}, x_{0}+a \varepsilon_{n}\right) / K_{n}^{\mu}\left(x_{0}, x_{0}\right)=1+o(1)
$$

So

$$
\sup _{a, b \in[-A, A], x_{0} \in J}\left|\left(K_{n}^{\mu}-K_{n}^{\mu^{*}}\right)\left(x_{0}+a \varepsilon_{n}, x_{0}+b \varepsilon_{n}\right)\right| / K_{n}^{\mu}\left(x_{0}, x_{0}\right)=o(1) .
$$

Now we drop the extra hypothesis (18). Define a measure ν by $\nu=\mu=\mu^{*}$ in J; and elsewhere, let $\nu=\mu+\mu^{*}$. Then $d \mu \leq d \nu$ and $d \mu^{*} \leq d \nu$, while for any polynomial P, we have

$$
\int P^{2} d \mu \leq \int P^{2} d \nu \leq \int P^{2} d \mu+\int P^{2} d \mu^{*}
$$

so the mutual regularity of μ and μ^{*} imply the mutual regularity of any two of μ, μ^{*}, ν. The case above shows that the reproducing kernels for μ and μ^{*} have the same asymptotics as that for ν, in the sense of (17), and hence the same asymptotics as each other.

§4. Proof of the Theorems

In this section, we approximate μ of Theorem 4 by a scaled copy $\nu^{\#}$ of ν and then prove Theorem 4.

Theorem 7. Let μ and ν be as in Theorem 4. Let $A>0, \varepsilon \in\left(0, \frac{1}{2}\right)$ and choose $\delta>0$ such that (9) holds. Let $x_{0} \in J$. Then there exists C and n_{0} such that for $n \geq n_{0}, a, b \in[-A, A], x \in I\left(x_{0}, \delta / 2\right) \cap J$ with $x+a \varepsilon_{n}$ restricted to $\operatorname{supp}[\mu]$,

$$
\begin{equation*}
\frac{\left|\frac{d \mu}{d \nu}(x) K_{n}^{\mu}\left(x+a \varepsilon_{n}, x+b \varepsilon_{n}\right)-K_{n}^{\nu}\left(x+a \varepsilon_{n}, x+b \varepsilon_{n}\right)\right|}{K_{n}^{\nu}(x, x)} \leq C \varepsilon^{1 / 2} \tag{22}
\end{equation*}
$$

where C is independent of $\varepsilon, \delta, n, x$, and x_{0}.
Proof: Fix $x_{0} \in J$ and let $\nu^{\#}$ be the scaled Legendre weight

$$
\nu^{\#}=\frac{d \mu}{d \nu}\left(x_{0}\right) \nu
$$

Note that

$$
\begin{equation*}
K_{n}^{\nu^{\#}}(x, y)=\left(\frac{d \mu}{d \nu}\left(x_{0}\right)\right)^{-1} K_{n}^{\nu}(x, y) \tag{23}
\end{equation*}
$$

Let

$$
\mu^{*}=\mu \operatorname{in} I\left(x_{0}, \delta\right)
$$

and

$$
\mu^{*}=\frac{d \mu}{d \nu}\left(x_{0}\right) \nu \text { outside } I\left(x_{0}, \delta\right)
$$

Observe that μ^{*} and ν are mutually absolutely continuous, since $\frac{d \mu^{*}}{d \nu}$ is positive and constant outside $I\left(x_{0}, \delta\right)$, and positive and continuous in the interior of $I\left(x_{0}, \delta\right)$. Because of our localization result Theorem 6 , we may replace μ by μ^{*}, without affecting the asymptotics for $K_{n}^{\mu}\left(x+a \varepsilon_{n}, x+b \varepsilon_{n}\right)$ in the interval $I\left(x_{0}, \frac{\delta}{2}\right)$. So in the sequel, we assume that $\mu=\frac{d \mu}{d \nu}\left(x_{0}\right) \nu=$ $\nu^{\#}$ outside $I\left(x_{0}, \delta\right)$, while not changing μ in $I\left(x_{0}, \delta\right)$. Observe that (9) implies that

$$
\begin{equation*}
(1+\varepsilon)^{-1} \nu^{\#} \leq \mu \leq(1+\varepsilon) \nu^{\#}, \text { everywhere. } \tag{24}
\end{equation*}
$$

Then, much as in the previous section,

$$
\begin{aligned}
\int & \left(K_{n}^{\mu}(x, t)-K_{n}^{\nu^{\#}}(x, t)\right)^{2} d \nu^{\#}(t) \\
= & \int K_{n}^{\mu 2}(x, t) d \nu^{\#}(t)-2 \int K_{n}^{\mu}(x, t) K_{n}^{\nu^{\#}}(x, t) d \nu^{\#}(t) \\
& +\int K_{n}^{\nu^{\#}} 2(x, t) d \nu^{\#}(t) \\
= & \int K_{n}^{\mu 2}(x, t) d \mu(t)+\int_{I\left(x_{0}, \delta\right)} K_{n}^{\mu 2}(x, t) d\left(\nu^{\#}-\mu\right)(t) d t \\
& -2 K_{n}^{\mu}(x, x)+K_{n}^{\nu^{\#}}(x, x) \\
= & K_{n}^{\nu^{\#}}(x, x)-K_{n}^{\mu}(x, x)+\int_{I\left(x_{0}, \delta\right)} K_{n}^{2}(x, t) d\left(\nu^{\#}-\mu\right)(t) d t
\end{aligned}
$$

recall that $\mu=\nu^{\#}$ outside $I\left(x_{0}, \delta\right)$. By (24),

$$
\begin{aligned}
\int_{I\left(x_{0}, \delta\right)} K_{n}^{\mu 2}(x, t) d\left(\nu^{\#}-\mu\right)(t) d t & \leq \varepsilon \int_{I\left(x_{0}, \delta\right)} K_{n}^{\mu 2}(x, t) d \mu(t) \\
& \leq \varepsilon K_{n}^{\mu}(x, x)
\end{aligned}
$$

So

$$
\begin{equation*}
\int\left(K_{n}^{\mu}(x, t)-K_{n}^{\nu^{\#}}(x, t)\right)^{2} d \nu^{\#}(t) \leq K_{n}^{\nu^{\#}}(x, x)-(1-\varepsilon) K_{n}^{\mu}(x, x) \tag{25}
\end{equation*}
$$

Applying an obvious analogue of (20) to $P(t)=K_{n}(x, t)-K_{n}^{\#}(x, t)$ and using (25) gives for all x, y,

$$
\begin{aligned}
& \left|K_{n}^{\mu}(x, y)-K_{n}^{\nu^{\#}}(x, y)\right| \\
& \quad \leq K_{n}^{\nu^{\#}}(y, y)^{1 / 2}\left[K_{n}^{\nu^{\#}}(x, x)-(1-\varepsilon) K_{n}^{\mu}(x, x)\right]^{1 / 2}
\end{aligned}
$$

so

$$
\begin{aligned}
& \left|K_{n}^{\mu}(x, y)-K_{n}^{\nu^{\#}}(x, y)\right| / K_{n}^{\nu^{\#}}(x, x) \\
& \quad \leq\left(\frac{K_{n}^{\nu^{\#}}(y, y)}{K_{n}^{\nu^{\#}}(x, x)}\right)^{1 / 2}\left[1-(1-\varepsilon) \frac{K_{n}^{\mu}(x, x)}{K_{n}^{\nu^{\#}}(x, x)}\right]^{1 / 2} .
\end{aligned}
$$

In view of (24), we also have

$$
\frac{K_{n}^{\mu}(x, x)}{K_{n}^{\nu^{\#}}(x, x)}=\frac{\lambda_{n}^{\nu^{\#}}(x)}{\lambda_{n}^{\mu}(x)} \geq \frac{1}{1+\varepsilon}
$$

so for all x, y,

$$
\begin{aligned}
& \left|K_{n}^{\mu}(x, y)-K_{n}^{\nu^{\#}}(x, y)\right| / K_{n}^{\nu^{\#}}(x, x) \\
& \quad \leq\left(\frac{K_{n}^{\nu^{\#}}(y, y)}{K_{n}^{\nu^{\#}}(x, x)}\right)^{1 / 2}\left[1-\frac{1-\varepsilon}{1+\varepsilon}\right]^{1 / 2} \\
& \quad \leq \sqrt{2 \varepsilon}\left(\frac{K_{n}^{\nu^{\#}}(y, y)}{K_{n}^{\nu^{\#}}(x, x)}\right)^{1 / 2} \\
& \quad=\sqrt{2 \varepsilon}\left(\frac{K_{n}^{\nu}(y, y)}{K_{n}^{\nu}(x, x)}\right)^{1 / 2}=\sqrt{2 \varepsilon}\left(\frac{\lambda_{n}^{\nu}(x)}{\lambda_{n}^{\nu}(y)}\right)^{1 / 2} .
\end{aligned}
$$

Here we have used (23). Now we set $x=x_{1}+a \varepsilon_{n}$ and $y=x_{1}+b \varepsilon_{n}$, where $x_{1} \in I\left(x_{0}, \frac{\delta}{2}\right)$ and $a, b \in[-A, A]$. By our hypothesis (4), uniformly for $a, b \in[-A, A]$, and $x_{1} \in J$,

$$
\frac{\lambda_{n}^{\nu}(x)}{\lambda_{n}^{\nu}(y)} \sim 1
$$

and also the constants implicit in \sim are independent of ε, δ and x_{1} (this is crucial!). Thus for some C and n_{0} depending only on A and J, we have for $n \geq n_{0}, a, b \in[-A, A]$, and $x_{1} \in I\left(x_{0}, \frac{\delta}{2}\right) \cap J$,

$$
\sup _{a, b \in[-A, A], x_{1} \in I\left(x_{0}, \frac{\delta}{2}\right) \cap J} \frac{\left|\left(K_{n}^{\mu}-K_{n}^{\nu^{\#}}\right)\left(x_{1}+a \varepsilon_{n}, x_{1}+b \varepsilon_{n}\right)\right|}{K_{n}^{\nu^{\#}}\left(x_{1}+a \varepsilon_{n}, x_{1}+a \varepsilon_{n}\right)} \leq C \sqrt{\varepsilon}
$$

Then also, from (23), for the same range of parameters,

$$
\begin{aligned}
& \frac{\left|\frac{d \mu}{d \nu}\left(x_{0}\right) K_{n}^{\mu}\left(x_{1}+a \varepsilon_{n}, x_{1}+b \varepsilon_{n}\right)-K_{n}^{\nu}\left(x_{1}+a \varepsilon_{n}, x_{1}+b \varepsilon_{n}\right)\right|}{K_{n}^{\nu}\left(x_{1}+a \varepsilon_{n}, x_{1}+a \varepsilon_{n}\right)} \\
& \leq C \sqrt{\varepsilon} .
\end{aligned}
$$

Because of our hypothesis (4), we may replace $K_{n}^{\nu}\left(x_{1}+a \varepsilon_{n}, x_{1}+a \varepsilon_{n}\right)$ in the last denominator by $K_{n}^{\nu}\left(x_{1}, x_{1}\right)$. Moreover, by (9), continuity of $\frac{d \mu}{d \nu}$ in J, and this last relation,

$$
\left|\frac{d \mu}{d \nu}\left(x_{1}\right)-\frac{d \mu}{d \nu}\left(x_{0}\right)\right|\left|K_{n}^{\mu}\left(x_{1}+a \varepsilon_{n}, x_{1}+b \varepsilon_{n}\right)\right| / K_{n}^{\nu}\left(x_{1}, x_{1}\right) \leq C \varepsilon
$$

Combining the last two inequalities gives the result.
Proof of Theorem 4: Let $A, \varepsilon_{1}>0$. Choose $\varepsilon>0$ so small that the right-hand side $C \varepsilon^{1 / 2}$ of (22) is less than ε_{1}. Choose $\delta>0$ such that (9) holds. Now cover J by, say M intervals $I\left(x_{j}, \frac{\delta}{2}\right), 1 \leq j \leq M$, each of length δ. For each j, there exists a threshold $n_{0}=n_{0}(j)$ for which (22) holds for $n \geq n_{0}(j)$ with $I\left(x_{0}, \frac{\delta}{2}\right)$ replaced by $I\left(x_{j}, \frac{\delta}{2}\right)$. Let n_{1} denote the largest of these. Then we obtain, for $n \geq n_{1}, a, b \in[-A, A]$, and $x_{0} \in J$

$$
\frac{\left|\frac{d \mu}{d \nu}\left(x_{1}\right) K_{n}^{\mu}\left(x_{1}+a \varepsilon_{n}, x_{1}+b \varepsilon_{n}\right)-K_{n}^{\nu}\left(x_{1}+a \varepsilon_{n}, x_{1}+b \varepsilon_{n}\right)\right|}{K_{n}^{\nu}\left(x_{1}, x_{1}\right)} \leq \varepsilon_{1}
$$

It follows that uniformly for $a, b \in[-A, A]$ and $x_{1} \in J$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left|\frac{d \mu}{d \nu}\left(x_{1}\right) K_{n}^{\mu}\left(x_{1}+a \varepsilon_{n}, x_{1}+b \varepsilon_{n}\right)-K_{n}^{\nu}\left(x_{1}+a \varepsilon_{n}, x_{1}+b \varepsilon_{n}\right)\right|}{K_{n}^{\nu}\left(x_{1}, x_{1}\right)}=0 . \tag{26}
\end{equation*}
$$

Proof of Theorem 3: Note first, that as the uniform limit of continuous functions, the function g is continuous. We choose $\varepsilon_{n}=n^{-c}$ in Theorem 4. The limit (4) follows from (2) and the continuity of g. The limit (5) follows easily from (2).

Acknowledgments. Research supported by NSF grant DMS0400446 and US-Israel BSF grant 2004353.

References

1. P. Deift, Orthogonal Polynomials and Random Matrices: A RiemannHilbert Approach, Courant Institute Lecture Notes, Vol. 3, New York University Pres, New York, 1999.
2. A. B. Kuijlaars and M. Vanlessen, Universality for eigenvalue correlations from the modified Jacobi unitary ensemble, International Maths. Research Notices 30 (2002), 1575-1600.
3. Eli Levin and D. S. Lubinsky, Universality limits for exponential weights, submitted.
4. Eli Levin and D. S. Lubinsky, Applications of universality limits to zeros and reproducing kernels of orthogonal polynomials, to appear in Journal of Approximation Theory.
5. Eli Levin and D. S. Lubinsky, Universality Limits involving orthogonal polynomials on the unit circle, submitted.
6. D. S. Lubinsky, A new approach to universality limits involving orthogonal polynomials, to appear in Annals of Mathematics.
7. D. S. Lubinsky, A new approach to universality at the edge of the spectrum, to appear in Contemporary Mathematics.
8. A. Máté, P. Nevai, V. Totik, Szegö's Extremum Problem on the Unit Circle, Annals of Math. 134 (1991), 433-453.
9. P. Nevai, Orthogonal polynomials, Memoirs of the AMS no. 213, (1979).
10. B. Simon, Orthogonal Polynomials on the Unit Circle, Parts 1 and 2, American Mathematical Society, Providence, 2005.
11. H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge University Press, Cambridge, 1992.
12. V. Totik, Asymptotics for Christoffel Functions for General Measures on the Real Line, J. d'Analyse Math. 81 (2000), 283-303.
13. V. Totik, Universality and Fine Zero Spacing on General Sets, manuscript.
D. S. Lubinsky

School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332-0160 USA
lubinsky@math.gatech.edu

