
Mutually regular measures have similar

universality limits

D. S. Lubinsky

Abstract. We use a localization technique to compare universality
limits for two different measures. Assume that µ and ν are mutually
regular measures, and are mutually absolutely continuous in some
closed neighborhood J of a given point x0 in their support (whether
in the bulk or the edge). Assume that at x0, the Radon-Nikodym
derivative dµ

dν
is positive and continuous. Then under further as-

sumptions on one of the measures, the two measures share a similar
universality law at x0.

§1. Results

Let µ be a finite positive Borel measure with compact support E on
the real line. Then we may define orthonormal polynomials

pn (x) = pµ
n (x) = γnxn + · · · , γn > 0,

n = 0, 1, 2, . . . satisfying the orthonormality conditions
∫

E

pnpmdµ = δmn.

These orthonormal polynomials satisfy a recurrence relation of the form

xpn (x) = an+1pn+1 (x) + bnpn (x) + anpn−1 (x) ,

where
an =

γn−1

γn
> 0 and bn ∈ R, n ≥ 0,

and we use the convention p−1 = 0. Throughout w = dµ
dx denotes the

absolutely continuous part of µ with respect to Lebesgue measure. The
measure µ is said to be regular in the sense of Stahl and Totik [11], if

lim
n→∞

γ1/n
n =

1

cap (E)
,
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where cap (E) denotes the logarithmic capacity of E. In particular, if
E = [−1, 1], this requires that

lim
n→∞

γ1/n
n = 2.

One of the key limits in random matrix theory, the so-called univer-
sality limit [1], involves the reproducing kernel

Kµ
n (x, y) =

n−1∑

k=0

pk (x) pk (y)

and its normalized cousin

K̃µ
n (x, y) = w (x)

1/2
w (y)

1/2
Kµ

n (x, y) .

In [6], we presented a new approach to this universality limit, proving:

Theorem 1. Let µ be a finite positive Borel measure on (−1, 1) that is

regular. Let K be a compact subset of (−1, 1) such that µ is absolutely

continuous in an open interval containing I . Assume that w is positive

and continuous at each point of K. Then

lim
n→∞

K̃µ
n

(
x + a

eKµ
n(x,x)

, x + b
eKµ

n(x,x)

)

K̃µ
n (x, x)

=
sinπ (a − b)

π (a − b)
,

uniformly for x ∈ I and a, b in compact subsets of the real line.

We also established Lp analogues assuming less on w. Subsequently, Vili
Totik [13] established a far reaching extension, replacing [−1, 1] by gen-
eral compact sets, but also allowing Lebesgue points instead of points of
continuity.

In [7], we showed how localization and smoothing can be applied at
the edge 1 of the spectrum. For α > −1, let

Jα (u, v) =
Jα (

√
u)

√
vJ ′

α (
√

v) − Jα (
√

v)
√

uJ ′
α (

√
u)

2 (u − v)

be the Bessel kernel of order α, where Jα is the usual Bessel function of
the first kind and order α. Our result for the edge was:

Theorem 2. Let µ be a finite positive Borel measure on (−1, 1) that

is regular. Assume that for some ρ > 0, µ is absolutely continuous in

J = [1 − ρ, 1], and in J , its absolutely continuous component has the form

w (x) = h (x) (1 − x)
α

(1 + x)
β
, where α, β > −1. Assume that h (1) > 0
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and h is continuous at 1. Then uniformly for a, b in compact subsets of

(0,∞), we have

lim
n→∞

1

2n2
K̃µ

n

(
1 − a

2n2
, 1 − b

2n2

)
= Jα (a, b) . (1)

If α ≥ 0, we may allow compact subsets of [0,∞).

The proof of Theorem 1 involved reducing the measure µ to a Legendre
weight near K, while the proof of Theorem 2 reduced µ to a Jacobi weight
near 1.

In this paper, we show how the same localization principle offers a
unified framework for universality limits in the bulk, or at the edge, of the
spectrum. We need:

Definition 1. Let µ, ν be measures with compact support. We say they
are mutually regular, if as n → ∞,

sup
deg(P )≤n

(∫
P 2dµ∫
P 2dν

)1/n

→ 1,

and

sup
deg(P )≤n

(∫
P 2dν∫
P 2dµ

)1/n

→ 1.

Note that if µ is regular in the sense of Stahl and Totik, they show that
it is mutually regular with the Legendre weight ν ′ = 1 having the same
support as µ. Indeed, this is a key tool in the proofs in [6] and [7].

Recall that the nth Christoffel function for µ is

λµ
n (x) = 1/Kµ

n (x, x) = min
deg(P )≤n−1

(∫
P 2dµ

)
/P 2 (x) .

When dealing with a positive measure ν, we shall denote its reproducing
kernel by Kν

n and its normalized reproducing kernel by K̃ν
n. We shall

also use the superscript ν to indicate other quantities associated with the
measure µ. The result of this paper is:

Theorem 3. Let µ and ν be measures with compact support that are

mutually regular. Let J be a compact subset of the support supp [µ] of

µ. Assume that I is an open set containing J , such that in I ∩ supp [µ], µ
and ν are mutually absolutely continuous. Assume moreover, that at each

point of J , the Radon-Nikodym derivative dµ
dν is positive and continuous.

Let g : J → (0,∞) be a function defined on J . Assume that for some

positive numbers d and c,

lim
n→∞

ndλν
n

(
x + an−c

)
= g (x) , (2)
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uniformly for x ∈ J and a in compact subsets of the real line. Then

uniformly for a, b in compact subsets of the real line, and x ∈ J , with

x + an−c, x + bn−c restricted to supp[µ],

lim
n→∞

∣∣∣dµ
dν (x) Kµ

n (x + an−c, x + bn−c) − Kν
n (x + an−c, x + bn−c)

∣∣∣
Kµ

n (x, x)
= 0.

(3)

Thus µ and ν share similar universality limits on J . Of course, J could
consist of a single point at the edge of the spectrum, namely at points
where the support of the measures meets its complement. An example
would be the endpoint 1 of the interval [−1, 1], as in Theorem 2, where
ν can be a Jacobi weight and c = 2. In this case, d depends on the
particular Jacobi weight. Or, J could also be a single point in the interior
of the support, such as a point in (−1, 1), the situation in Theorem 1,
where ν can be taken as the Legendre weight and c = 1. We emphasize
that our hypothesis on continuity of dµ

dν in J , involves approach to J from
all points of the support of µ.

We may replace the sequence {n−c} by a more general sequence {εn}.
Moreover, we may replace the hypothesis (2) by a more general one. In
its formulation, we need more notation. For x ∈ R and δ > 0, we set

I (x, δ) = [x − δ, x + δ] .

The distance from a point x to a set J is denoted dist (x, J). For such a
set J , we set

I (J, δ) = {x : dist (x, J) ≤ δ} .

[x] denotes the greatest integer ≤ x.

Theorem 4. Let µ and ν be measures with compact support that are

mutually regular. Let J be a compact subset of the support supp [µ] of

µ. Assume that I is an open set containing J , such that in I ∩ supp [µ], µ
and ν are mutually absolutely continuous. Assume moreover, that at each

point of J , the Radon-Nikodym derivative dµ
dν is positive and continuous.

Assume that {εn} is a sequence of positive numbers with limit 0, such

that

lim
n→∞

λν
n (x + aεn) /λν

n (x) = 1, (4)

uniformly for x ∈ J and a in compact subsets of the real line, with x+aεn

restricted to supp[ν]. Assume, moreover, that for each A > 0,

lim
η→0+

[
lim sup

n→∞

λν
n−[ηn] (x + aεn)

λν
n (x + aεn)

]
= 1, (5)



Universality Limits 5

uniformly for x ∈ J , and |a| ≤ A. Then uniformly for a, b in compact

subsets of the real line, and x ∈ J , with x + aεn and x + bεn restricted to

supp[µ],

lim
n→∞

∣∣∣dµ
dν (x) Kµ

n (x + aεn, x + bεn) − Kν
n (x + aεn, x + bεn)

∣∣∣
Kµ

n (x, x)
= 0. (6)

This paper is organised as follows. In the next section, we establish
asymptotics for Christoffel functions. In section 3, we prove Theorem 4
and then deduce Theorem 3.

In the sequel C, C1, C2, . . . denote constants independent of n, x, θ.
The same symbol does not necessarily denote the same constant in differ-
ent occurrences. We shall write C = C (α) or C 6= C (α) to respectively
denote dependence on, or independence of, the parameter α.

§2. Christoffel functions

The methods used to prove the following result are well known, coming
primarily from a seminal paper of Máté, Nevai and Totik [8].

Theorem 5. Assume the hypotheses of Theorem 4. Let A > 0. Then

uniformly for |a| < A, and x ∈ J with x + aεn ∈ supp [µ], we have

lim
n→∞

λµ
n (x + aεn) /λν

n (x) =
dµ

dν
(x) . (7)

Proof: We first prove that uniformly for x ∈ J and |a| ≤ A, with x+aεn

restricted to supp[µ],

lim sup
n→∞

λµ
n (x + aεn)

λν
n (x) dµ

dν (x)
≤ 1. (8)

Let ε > 0 and choose δ > 0 such that µ and ν are mutually absolutely
continuous in I (J, δ) ∩ supp [µ], and such that

(1 + ε)
−1 ≤ dµ

dν
(x) /

dµ

dν
(y)

≤ 1 + ε, x, y ∈ I (J, δ) ∩ supp [µ] with |x − y| ≤ δ. (9)

This is possible because of compactness of J and continuity and positivity
of dµ

dν at every point of J . Let us fix x0 ∈ J and recall that I (x0, δ) =
[x0 − δ, x0 + δ]. Define a measure µ∗ with

µ∗ = µ in supp [µ] \I (x0, δ)



6 D. S. Lubinsky

and in I (x0, δ), let µ∗ be absolutely continuous with respect to ν, with
Radon-Nikodym derivative w.r.t. ν satisfying

dµ

dν

∗

=
dµ

dν
(x0) (1 + ε) in I (x0, δ) . (10)

Because of (9), µ ≤ µ∗, so that if λµ∗

n is the nth Christoffel function for
µ∗, we have for all x,

λµ
n (x) ≤ λµ∗

n (x) . (11)

We now find an upper bound for λµ∗

n (x) for x ∈ I (x0, δ/2). Let d be the
diameter of supp[µ] ∪ supp [ν]. There exists r ∈ (0, 1) depending only on
δ such that

0 ≤ 1 −
(

t − x

d

)2

≤ r for x ∈ I (x0, δ/2) ∩ supp [µ]

and t ∈ (supp [µ] ∪ supp [ν]) \I (x0, δ) . (12)

Let η ∈
(
0, 1

2

)
and choose σ > 1 so close to 1 that

σ1−η < r−η/4. (13)

Let m = m (n) = n− 2 [ηn/2]. Fix x ∈ I (x0, δ/2)∩ supp [µ] and choose a
polynomial Pm of degree ≤ m − 1 such that

λν
m (x) =

∫
P 2

mdν and P 2
m (x) = 1.

Thus Pm is the minimizing polynomial in the Christoffel function for
the measure ν at x. Let

Sn (t) = Pm (t)

(
1 −

(
t − x

d

)2
)[ηn/2]

,

a polynomial of degree ≤ m− 1 + 2 [ηn/2] ≤ n− 1 with Sn (x) = 1. Then
using (10) and (12),

λµ∗

n (x) ≤
∫

S2
ndµ∗

≤ dµ

dν
(x0) (1 + ε)

∫

I(x0,δ)

P 2
mdν + r2[ηn/2]

∫

supp[µ]\I(x0,δ)

P 2
mdµ

≤ dµ

dν
(x0) (1 + ε)λν

m (x) + r2[ηn/2]

∫

supp[µ]\I(x0,δ)

P 2
mdµ.

Now we use the key idea of regularity, probably first used in this context
by Máté, Nevai and Totik [8, Lemma 9, p. 450]. By the mutual regularity
defined in Definition 1, for m ≥ m0 (σ), we have

∫

supp[µ]\I(x0,δ)

P 2
mdµ ≤ σm

∫
P 2

mdν = σmλν
m (x) .
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Then from (13), uniformly for x ∈ I (x0, δ/2),

λµ∗

n (x) ≤ dµ

dν
(x0) (1 + ε)λν

m (x)
{
1 + C

[
σ1−ηrη

]n}

≤ dµ

dν
(x0) (1 + ε)λν

m (x) {1 + o (1)} ,

so as λµ
n ≤ λµ∗

n , for all x ∈ I (x0, δ/2) ∩ supp [µ],

λµ
n (x) /λν

n (x) ≤ dµ

dν
(x0) (1 + ε) {1 + o (1)}λν

m (x) /λν
n (x) . (14)

The o (1) term is independent of x0. Using (9) again, we obtain for n ≥
n0 (x0, δ), and for all x ∈ I (x0, δ/2) ∩ supp [µ], that

λµ
n (x) /λν

n (x) ≤ dµ

dν
(x) (1 + ε)2λν

m (x) /λν
n (x) .

By covering J with finitely many such intervals I (x0, δ/2), we obtain for
some maximal threshold n1, that for n ≥ n1 = n1 (ε, δ, J), that this last
inequality holds for all x ∈ I (J, δ/2)∩supp [µ]. Now let A > 0 and |a| ≤ A.
There exists n2 = n2 (A, J, δ) such that for n ≥ n2 and all |a| ≤ A and all
x ∈ J , we have x + aεn ∈ I (J, δ/2). Recall too that m = n− 2 [ηn/2]. By
our hypothesis (5), we can choose η > 0 small enough and n3 such that
for |a| ≤ A, x ∈ J , and n ≥ n3,

λν
m (x + aεn) /λν

n (x + aεn) ≤ 1 + ε.

We deduce that

lim sup
n→∞


 sup

a∈[−A,A],x∈J
x+aεn∈ supp[µ]

λµ
n (x + aεn)

λν
n (x + aεn) dµ

dν (x + aεn)


 ≤ (1 + ε)3.

As the left-hand side is independent of the parameter ε, and dµ
dν is contin-

uous on J , we deduce that

lim sup
n→∞


 sup

a∈[−A,A],x∈J
x+aεn∈ supp[µ]

λµ
n (x + aεn)

λν
n (x + aεn) dµ

dν (x)


 ≤ 1. (15)

Finally, our hypothesis (4) gives (8). In a similar way, we can establish
the converse bound

lim sup
n→∞

λν
n (x) dµ

dν (x)

λµ
n (x + aεn)

≤ 1, (16)
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uniformly for x ∈ J , |a| ≤ A, and x + aεn restricted to supp[µ]. Indeed
with m, x and η as above, let us choose a polynomial P of degree ≤ m−1
such that

λµ
m (x) =

∫
P 2

m (t) dµ (t) and P 2
m (x) = 1.

Then with Sn as above, and proceeding as above,

λν
n (x) ≤

∫
S2

ndν

≤
[
dµ

dν
(x0)

−1
(1 + ε)

] ∫

I(x0,δ)

P 2
mdµ + r2[ηn/2]

∫

supp[µ]\I(x0,δ)

P 2
mdν

≤
[
dµ

dν
(x0)

−1 (1 + ε)

]
λµ

m (x)
{
1 + C

[
σ1−ηrη

]n}
,

and so as above,

sup
x∈I(x0,δ/2)∩ supp[µ]

λν
m (x) /λµ

m (x)

≤
[
dµ

dν
(x0)

−1
(1 + ε)(1 + o (1))

]
sup

x∈I(x0,δ/2)

λν
m (x) /λν

n (x)

≤
[
dµ

dν
(x0)

−1
(1 + ε)3

]
.

As n runs through all the positive integers, so does m = n − 2 [η/2].
(Indeed, the difference between successive such m is at most 1.) Then
(16) follows using monotonicity of λn in n, much as above. Together (16)
and (8) give (7).

§3. Localization

Theorem 6. Assume that µ satisfies the hypotheses of Theorem 4. As-

sume moreover, that µ∗ is a measure with compact support that satisfies

the same hypotheses in Theorem 4 as does µ. Assume that

dµ

dµ∗
= 1 in J.

Let A > 0. Then as n → ∞,

sup
a,b∈[−A,A],x∈J

∣∣∣
(
Kµ

n − Kµ∗

n

)
(x + aεn, x + bεn)

∣∣∣ /Kµ
n (x, x) = o (1) . (17)
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Proof: We initially assume that globally

µ ≤ µ∗. (18)

Now
∫ (

Kµ
n (x, t) − Kµ∗

n (x, t)
)2

dµ (t)

=

∫
Kµ2

n (x, t) dµ (t) − 2

∫
Kµ

n (x, t) Kµ∗

n (x, t) dµ (t)

+

∫
Kµ∗2

n (x, t) dµ (t)

= Kµ
n (x, x) − 2Kµ∗

n (x, x) +

∫
Kµ∗2

n (x, t) dµ (t) ,

by the reproducing kernel property. As µ ≤ µ∗, we also have
∫

Kµ∗2
n (x, t) dµ (t) ≤

∫
Kµ∗2

n (x, t) dµ∗ (t) = Kµ∗

n (x, x) .

So
∫ (

Kµ
n (x, t) − Kµ∗

n (x, t)
)2

dµ (t) ≤ Kµ
n (x, x) − Kµ∗

n (x, x) . (19)

Next for any polynomial P of degree ≤ n − 1, we have the Christoffel
function estimate

|P (y)| ≤ Kµ
n (y, y)1/2

(∫
P 2dµ

)1/2

. (20)

Applying this to P (t) = Kµ
n (x, t)−Kµ∗

n (x, t) and using (19) gives, for all
x, y ∈ R,

∣∣∣Kµ
n (x, y) − Kµ∗

n (x, y)
∣∣∣ ≤ Kµ

n (y, y)
1/2
[
Kµ

n (x, x) − Kµ∗

n (x, x)
]1/2

so
∣∣∣Kµ

n (x, y) − Kµ∗

n (x, y)
∣∣∣ /Kµ

n (x, x)

≤
(

Kµ
n (y, y)

Kµ
n (x, x)

)1/2 [
1− Kµ∗

n (x, x)

Kµ
n (x, x)

]1/2

. (21)

Now we set x = x0 + aεn and y = x0 + bεn, where a, b ∈ [−A, A] and

x0 ∈ J . By Theorem 5, uniformly for such x,
Kµ∗

n (x,x)
Kµ

n(x,x)
= 1 + o (1), for

dµ
dν (x) = dµ∗

dν (x). Moreover, Theorem 5 shows that

Kµ
n (x0 + aεn, x0 + aεn) /Kµ

n (x0, x0) = 1 + o (1) .
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So

sup
a,b∈[−A,A],x0∈J

∣∣∣
(
Kµ

n − Kµ∗

n

)
(x0 + aεn, x0 + bεn)

∣∣∣ /Kµ
n (x0, x0) = o (1) .

Now we drop the extra hypothesis (18). Define a measure ν by ν = µ = µ∗

in J ; and elsewhere, let ν = µ + µ∗. Then dµ ≤ dν and dµ∗ ≤ dν, while
for any polynomial P , we have

∫
P 2dµ ≤

∫
P 2dν ≤

∫
P 2dµ +

∫
P 2dµ∗,

so the mutual regularity of µ and µ∗ imply the mutual regularity of any
two of µ, µ∗, ν. The case above shows that the reproducing kernels for µ
and µ∗ have the same asymptotics as that for ν, in the sense of (17), and
hence the same asymptotics as each other.

§4. Proof of the Theorems

In this section, we approximate µ of Theorem 4 by a scaled copy ν#

of ν and then prove Theorem 4.

Theorem 7. Let µ and ν be as in Theorem 4. Let A > 0, ε ∈
(
0, 1

2

)
and

choose δ > 0 such that (9) holds. Let x0 ∈ J . Then there exists C and

n0 such that for n ≥ n0 , a, b ∈ [−A, A], x ∈ I (x0, δ/2) ∩ J with x + aεn

restricted to supp[µ],

∣∣∣dµ
dν (x) Kµ

n (x + aεn, x + bεn) − Kν
n (x + aεn, x + bεn)

∣∣∣
Kν

n (x, x)
≤ Cε1/2, (22)

where C is independent of ε, δ, n, x, and x0.

Proof: Fix x0 ∈ J and let ν# be the scaled Legendre weight

ν# =
dµ

dν
(x0) ν.

Note that

Kν#

n (x, y) =

(
dµ

dν
(x0)

)−1

Kν
n (x, y) . (23)

Let
µ∗ = µ in I (x0, δ)

and

µ∗ =
dµ

dν
(x0) ν outside I (x0, δ) .
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Observe that µ∗ and ν are mutually absolutely continuous, since dµ∗

dν is
positive and constant outside I (x0, δ), and positive and continuous in the
interior of I (x0, δ). Because of our localization result Theorem 6, we may
replace µ by µ∗, without affecting the asymptotics for Kµ

n(x+aεn, x+bεn)
in the interval I

(
x0,

δ
2

)
. So in the sequel, we assume that µ = dµ

dν (x0) ν =
ν# outside I (x0, δ), while not changing µ in I (x0, δ). Observe that (9)
implies that

(1 + ε)
−1

ν# ≤ µ ≤ (1 + ε) ν#, everywhere. (24)

Then, much as in the previous section,

∫ (
Kµ

n (x, t) − Kν#

n (x, t)
)2

dν# (t)

=

∫
Kµ2

n (x, t) dν# (t) − 2

∫
Kµ

n (x, t) Kν#

n (x, t) dν# (t)

+

∫
Kν#2

n (x, t) dν# (t)

=

∫
Kµ2

n (x, t) dµ (t) +

∫

I(x0,δ)

Kµ2
n (x, t) d

(
ν# − µ

)
(t) dt

− 2Kµ
n (x, x) + Kν#

n (x, x)

= Kν#

n (x, x) − Kµ
n (x, x) +

∫

I(x0,δ)

K2
n (x, t) d

(
ν# − µ

)
(t) dt,

recall that µ = ν# outside I (x0, δ). By (24),

∫

I(x0,δ)

Kµ2
n (x, t) d

(
ν# − µ

)
(t) dt ≤ ε

∫

I(x0,δ)

Kµ2
n (x, t) dµ (t)

≤ εKµ
n (x, x) .

So

∫ (
Kµ

n (x, t) − Kν#

n (x, t)
)2

dν# (t) ≤ Kν#

n (x, x) − (1 − ε) Kµ
n (x, x) .

(25)
Applying an obvious analogue of (20) to P (t) = Kn (x, t)−K#

n (x, t) and
using (25) gives for all x, y,

∣∣∣Kµ
n (x, y) − Kν#

n (x, y)
∣∣∣

≤ Kν#

n (y, y)
1/2
[
Kν#

n (x, x) − (1 − ε) Kµ
n (x, x)

]1/2
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so
∣∣∣Kµ

n (x, y) − Kν#

n (x, y)
∣∣∣ /Kν#

n (x, x)

≤
(

Kν#

n (y, y)

Kν#

n (x, x)

)1/2 [
1 − (1 − ε)

Kµ
n (x, x)

Kν#

n (x, x)

]1/2

.

In view of (24), we also have

Kµ
n (x, x)

Kν#

n (x, x)
=

λν#

n (x)

λµ
n (x)

≥ 1

1 + ε
,

so for all x, y,
∣∣∣Kµ

n (x, y) − Kν#

n (x, y)
∣∣∣ /Kν#

n (x, x)

≤
(

Kν#

n (y, y)

Kν#

n (x, x)

)1/2 [
1 − 1− ε

1 + ε

]1/2

≤
√

2ε

(
Kν#

n (y, y)

Kν#

n (x, x)

)1/2

=
√

2ε

(
Kν

n (y, y)

Kν
n (x, x)

)1/2

=
√

2ε

(
λν

n (x)

λν
n (y)

)1/2

.

Here we have used (23). Now we set x = x1 +aεn and y = x1 +bεn, where
x1 ∈ I

(
x0,

δ
2

)
and a, b ∈ [−A, A]. By our hypothesis (4), uniformly for

a, b ∈ [−A, A], and x1 ∈ J ,

λν
n (x)

λν
n (y)

∼ 1,

and also the constants implicit in ∼ are independent of ε, δ and x1 (this
is crucial!). Thus for some C and n0 depending only on A and J , we have
for n ≥ n0, a, b ∈ [−A, A], and x1 ∈ I

(
x0,

δ
2

)
∩ J ,

sup
a,b∈[−A,A],x1∈I(x0,

δ
2 )∩J

∣∣∣
(
Kµ

n − Kν#

n

)
(x1 + aεn, x1 + bεn)

∣∣∣
Kν#

n (x1 + aεn, x1 + aεn)
≤ C

√
ε.

Then also, from (23), for the same range of parameters,
∣∣∣dµ

dν (x0) Kµ
n (x1 + aεn, x1 + bεn) − Kν

n (x1 + aεn, x1 + bεn)
∣∣∣

Kν
n (x1 + aεn, x1 + aεn)

≤ C
√

ε.
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Because of our hypothesis (4), we may replace Kν
n (x1 + aεn, x1 + aεn) in

the last denominator by Kν
n (x1, x1). Moreover, by (9), continuity of dµ

dν
in J , and this last relation,

∣∣∣∣
dµ

dν
(x1) −

dµ

dν
(x0)

∣∣∣∣ |K
µ
n (x1 + aεn, x1 + bεn)| /Kν

n (x1, x1) ≤ Cε.

Combining the last two inequalities gives the result.

Proof of Theorem 4: Let A, ε1 > 0. Choose ε > 0 so small that the
right-hand side Cε1/2 of (22) is less than ε1. Choose δ > 0 such that (9)
holds. Now cover J by, say M intervals I

(
xj ,

δ
2

)
, 1 ≤ j ≤ M , each of

length δ. For each j, there exists a threshold n0 = n0 (j) for which (22)
holds for n ≥ n0 (j) with I

(
x0,

δ
2

)
replaced by I

(
xj ,

δ
2

)
. Let n1 denote the

largest of these. Then we obtain, for n ≥ n1, a, b ∈ [−A, A], and x0 ∈ J
∣∣∣dµ

dν (x1) Kµ
n (x1 + aεn, x1 + bεn) − Kν

n (x1 + aεn, x1 + bεn)
∣∣∣

Kν
n (x1, x1)

≤ ε1.

It follows that uniformly for a, b ∈ [−A, A] and x1 ∈ J ,

lim
n→∞

∣∣∣dµ
dν (x1) Kµ

n (x1 + aεn, x1 + bεn) − Kν
n (x1 + aεn, x1 + bεn)

∣∣∣
Kν

n (x1, x1)
= 0.

(26)
Proof of Theorem 3: Note first, that as the uniform limit of continuous
functions, the function g is continuous. We choose εn = n−c in Theorem 4.
The limit (4) follows from (2) and the continuity of g. The limit (5) follows
easily from (2).
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