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Abstract. Universality limits are a central topic in the theory of ran-
dom matrices. We establish universality limits in the bulk of the spec-
trum for varying measures, using the theory of entire functions of expo-
nential type. In particular, we consider measures that are of the form
W 2n
n (x) dx in the region where universality is desired. Wn does not need

to be analytic, nor possess more than one derivative - and then only in
the region where universality is desired. We deduce universality in the
bulk for a large class of weights of the form W 2n (x) dx, for example,
when W = e�Q where Q is convex and Q0 satis�es a Lipschitz condition
of some positive order. We also deduce universality for a class of �xed
exponential weights on a real interval.

1. Introduction and Results1

LetM (n) denote the space of n by nHermitian matricesM = (mij)1�i;j�n.
Consider a probability distribution onM (n) ;

P (n) (M) = ce�Fn(M)dM

= ce�Fn(M)
�Yn

j=1
dmjj

��Y
j<k

d (Remjk) d (Immjk)
�
:

Here Fn (M) is a function de�ned onM (n), and c is a normalizing constant.
The most important case is

Fn (M) = 2n trQn (M) ;

for appropriate functions fQng de�ned onM (n). In particular, the choice

Fn (M) = 2n tr
�
M2
�
;

leads to the Gaussian unitary ensemble (apart from scaling) that was con-
sidered by Wigner. One may identify P (n) above with a probability density
on the eigenvalues x1 � x2 � ::: � xn of M;

P (n) (x1; x2;:::; xn) = ce�
Pn
j=1 2nQn(xj)

Y
i<j
(xi � xj)2 :

See [15, p. 102 ¤.]. Again, c is a normalizing constant.
It is at this stage that orthogonal polynomials with a respect to a sequence

of measures arise [15], [41]. For n � 1, let �n be a �nite positive Borel
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measure with support supp[�n] and in�nitely many points in the support.
If the support of �n is unbounded, we assume that at least the �rst 2n+ 1
power moments Z

xjd�n (x) , 0 � j � 2n;

are �nite. Then we may de�ne orthonormal polynomials

pn;m (x) = n;mx
m + :::; n;m > 0;

m = 0; 1; 2; :::n; satisfying the orthonormality conditionsZ
pn;jpn;kd�n = �jk:

Throughout we use �0n to denote the Radon-Nikodym derivative of �n. The
nth reproducing kernel for �n is

(1.1) Kn (x; y) =

n�1X
k=0

pn;k (x) pn;k (y)

and the normalized kernel is

(1.2) eKn (x; y) = �0n (x)
1=2 �0n (y)

1=2Kn (x; y) :

When

d�n (x) = e�2nQn(x)dx;

there is the basic formula for the probability distribution P (n) [15, p.112]:

P (n) (x1; x2; :::; xn) =
1

n!
det
�
~Kn (xi; xj)

�
1�i;j�n

:

One may use this to compute a host of statistical quantities - for example
the probability that a �xed number of eigenvalues of a random matrix lie
in a given interval. One particularly important quantity is the m�point
correlation function for M (n) [15, p. 112]:

Rm (x1; x2;:::; xm) =
n!

(n�m)!

Z
:::

Z
P (n) (x1; x2:::; xn) dxm+1 dxm+2 :::dxn

= det
�
~Kn (xi; xj)

�
1�i;j�m

:

The universality limit in the bulk asserts that for �xed m � 2, � in a
suitable subset of the (common) supports of f�ng, and real a1; a2; :::; am, we
have

lim
n!1

1
~Kn (�; �)

mRm

�
� +

a1
~Kn (�; �)

; � +
a2

~Kn (�; �)
; :::; � +

am
~Kn (�; �)

�
= det

�
sin� (ai � aj)
� (ai � aj)

�
1�i;j�m

:
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Of course, when ai = aj , we interpret
sin�(ai�aj)
�(ai�aj) as 1. Because m is �xed in

this limit, this reduces to the case m = 2, namely

(1.3) lim
n!1

~Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
~Kn (�; �)

=
sin� (a� b)
� (a� b) :

Typically, this is established uniformly for a; b in compact subsets of the
real line. Thus, an assertion about the distribution of eigenvalues of ran-
dom matrices has been reduced to a technical limit involving orthogonal
polynomials.
As suggested above, in many of the most important applications, Qn = Q,

and we consider measures of the form

d�n (x) = e�2nQ(x)dx:

In analyzing this case, Riemann-Hilbert methods have yielded spectacular
advances - asymptotics of orthogonal polynomials, with complete asymptotic
expansions for remainder terms, that can be substituted directly into the
Christo¤el-Darboux formula

(1.4) Kn (x; y) =
n;n�1
n;n

pn;n (x) pn;n�1 (y)� pn;n�1 (x) pn;n (y)
x� y :

For example, if Q is real analytic on the real axis, and Q (x) = log
�
1 + x2

�
has limit 1 at �1, then Deift et al [17] established (1.3), and they can
derive remainder terms in the limit as well. Subsequently, McLaughlin and
Miller [39], [40] used the �@ technique to replace analyticity by conditions
on the second derivative of Q. There is an extensive literature on random
matrices and Riemann-Hilbert methods. A (very!) partial list is [2], [3], [4],
[8], [9], [10], [11], [12], [13], [14], [16], [25], [27], [28], [29], [38], [57].
Another established approach that has yielded very useful results involves

classical analysis and operator theory, especially Toeplitz and Hankel opera-
tors [5], [6], [54], [55], [56], [58]. Further approaches, often with a mathemat-
ical physics origin, appear in [1], [18], [19], [20], [22], [43], [44]. Again, this
list is incomplete. The online book by Forrester [20] and the lecture notes
by Deift [15] may be used as an introduction to the subject. The recent
conference proceedings of the 60th birthday conference of Percy Deift will
contain up to date references [4].
In [36] and [37] two new approaches were presented for proving univer-

sality for �xed measures on a compact set. The �rst new approach [36]
involved a comparison inequality, and applied to regular measures (in the
sense of Stahl and Totik [48]) on [�1; 1]. It required only absolute continu-
ity of the measure � in a neighborhood of the point where universality is
desired, together with positivity and continuity of �0 at that point.
It was subsequently extended to regular measures on arbitrary compact

subsets of the real line using a host of other ideas by Barry Simon [47] and
Vili Totik [53]. Totik used polynomial pullbacks for the extension to general
sets, and showed that continuity of �0 may be weakened to a Lebesgue
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point type condition. Moreover, when log�0 is integrable in an interval,
then universality holds a.e. in that interval. Simon used the theory of Jost
functions for the extension to general sets. The approach of [36] has been
applied at the edge of the spectrum [35], on the unit circle [34], and to
spacing of zeros of orthogonal polynomials [33]. It has also been applied to
�xed exponential weights [32], together with other ideas. There new ways
were introduced to prove universality for exponential weights, showing that
�rst order asymptotics of orthogonal polynomials su¢ ce.
The second new approach [37] is more powerful, and direct, and uses the

theory of entire functions of exponential type. It avoids the assumption
of regularity of the measure, and shows that universality is equivalent to
universality along the diagonal - namely that (1.3) holds with a = b. In this
paper, we use that method to handle varying weights, and subsequently �xed
exponential weights. The hypotheses involve the nth Christo¤el function for
�n, namely,

(1.5) �n (x) = �n (�n; x) = 1=Kn (x; x) :

When �n is absolutely continuous, we shall use also the notation �n (�
0
n; x).

There is the well known extremal property

�n (x) = inf
deg(P )�n�1

R
P 2 (t) d�n (t)

P 2 (x)
:

In addition, we need some concepts from potential theory for external
�elds [45]. Let � be a closed set on the real line, and

W (x) = exp (�Q (x))
be a continuous function on �. If � is unbounded, we assume that

lim
jxj!1;x2�

W (x) jxj = 0:

Associated with � and Q, we may consider the extremal problem

inf
�

�Z Z
log

1

jx� tjd� (x) d� (t) + 2
Z
Q d�

�
;

where the inf is taken over all positive Borel measures � with support in �
and � (�) = 1. The inf is attained by a unique equilibrium measure �W ,
characterized by the following conditions: let

V �W (z) =

Z
log

1

jz � tjd�W (t)

denote the potential for �W . Then

V �W +Q � FW on �;

V �W +Q = FW in supp [�W ] :

Here the number FW is a constant. Usually �W is denoted �W , but we use
a di¤erent symbol to avoid confusion with our measures of orthogonality
f�ng.
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Our �rst result imposes similar hypotheses to those of Vili Totik [51], who
studied asymptotics for Christo¤el functions for varying weights.

Theorem 1.1
Let W = e�Q be a continuous non-negative function on the set �, which is
assumed to consist of at most �nitely many intervals. If � is unbounded,
we assume also

lim
jxj!1;x2�

W (x) jxj = 0:

Let h be a bounded positive continuous function on �, and for n � 1, let
(1.6) d�n (x) =

�
hW 2n

�
(x) dx:

Moreover, let ~Kn denote the normalized nth reproducing kernel for �n.

Let J be a closed interval lying in the interior of supp[�W ], where �W denotes
the equilibrium measure for W . Assume that �W is absolutely continuous in
a neighborhood of J , and that � 0W and Q0 are continuous in that neighbor-
hood, while � 0W > 0 there. Then uniformly for � 2 J , and a; b in compact
subsets of the real line, we have

(1.7) lim
n!1

eKn

�
� + aeKn(�;�)

; � + beKn(�;�)

�
eKn (�; �)

=
sin� (a� b)
� (a� b) :

In particular, when Q0 satis�es a Lipschitz condition of some positive
order in a neighborhood of J , then [45, p. 216] � 0W is continuous there, and
hence we obtain universality except near zeros of � 0W . Note too that when
Q is convex in �, or xQ0 (x) is increasing there, then the support of �W
consists of at most �nitely many intervals, with at most one interval per
component of � [45, p. 199]. More generally, if exp (Q) is convex in �, it is
still true that the support of �W consists of at most �nitely many intervals,
with at most one interval per component of � [7, Theorem 5].
The proof of Theorem 1 depends heavily on Totik�s asymptotics for Christof-

fel functions [51]. We note that prior to this result, the most general univer-
sality result for varying weights places global conditions on Q00 [40]. That
paper is based on the �@ Riemann Hilbert method. The original powerful
Riemann-Hilbert methods required Q to be real analytic [17]. Theorem 1.1
follows easily from the following general result:

Theorem 1.2
For n � 1, let �n be a positive Borel measure on the real line, with at least
the �rst 2n+ 1 power moments �nite. Let I be a compact interval in which
each �n is absolutely continuous. Assume moreover that in I,

(1.8) d�n (x) = h (x)W 2n
n (x) dx;

where

(1.9) Wn = e�Qn
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is continuous on I; and h is a bounded positive continuous function on I.
Let �Wn denote the equilibrium measure for the restriction of Wn to I. Let
J be a compact subinterval of Io. Assume that
(a)

�
� 0Wn

	1
n=1

are positive and uniformly bounded in some open interval
containing J ;
(b) fQ0ng

1
n=1 are equicontinuous and uniformly bounded in some open inter-

val containing J ;
(c) For some C1; C2 > 0, and for n � 1 and � 2 I, the Christo¤el functions
�n (�) = �n (�n; �) satisfy
(1.10) C1 � ��1n (�)W 2n

n (�) =n � C2:

(d) Uniformly for � 2 J and a in compact subsets of the real line,

(1.11) lim
n!1

�n
�
� + a

n

�
�n (�)

W 2n
n (�)

W 2n
n

�
� + a

n

� = 1:
Then uniformly for � 2 J , and a; b in compact subsets of the real line, we
have (1.7).
Remarks
(i) We note that we think ofWn as de�ned only on the interval I, and � 0Wn

is
the equilibrium density forWn de�ned only on I. In contrast, �n is typically
de�ned on a larger interval. In applications, Wn might also be de�ned on
a larger interval, and in this case the equilibrium measures �Wn should be
thought of as equilibrium measures for the restriction of Wn to I. This can
also be seen from our hypothesis (1.10), that the bounds for the Christo¤el
functions for �n hold on all of I, which in applications forces I to be a proper
subset of the support of �n:
(ii) We can weaken the equicontinuity assumption (b) on fQ0ng. We actually
need only that for some open interval J2 containing J , and each �xed a > 0;

(1.12) sup
t2J2;jhj�a

����Q0n (t)�Q0n�t+ h

n

�����! 0 as n!1:

In fact, we shall need this weaker hypothesis in Section 7, where we consider
�xed exponential weights.
(iii) Under mild additional conditions on fQ0ng, such as them satisfying a
uniform Lipschitz condition, of some positive order, on some open interval
containing J , one can establish (a) and (c) in Theorem 1.2, using methods in
[31] or [51]. Moreover, one can use the methods of [31], or perhaps in greater
generality, those of [50], [51], to establish (d). However, we omit these here,
as this would substantially lengthen the paper, and distract from the new
techniques that are used here.
(iv) Our proof actually establishes the following limit, uniformly for � 2 J
and a; b in compact subsets of the complex plane, not just the real line:
(1.13)

lim
n!1

Kn

�
� + aeKn(�;�)

; � + beKn(�;�)

�
Kn (�; �)

e
� neKn(�;�)Q0n(�)(a+b) = sin� (a� b)

� (a� b) :
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This paper is organised as follows. In Section 2, we present some of the
main ideas of proof. In Section 3, we present notation and background for
Sections 4 through 6. In Section 4, we use normality to establish some
elementary properties, and in Section 5, we prove Theorem 1.2. In Section
6, we deduce Theorem 1.1. In Section 7, we shall establish universality for
�xed exponential weights.

2. The Ideas of Proof

We start with the hypothesis (c) from Theorem 1.2. It may be reformu-
lated as

(2.1) C1 �
1

n
Kn (�; �)W

2n
n (�) � C2

for n � 1 and � 2 I. Using Cauchy-Schwarz�s inequality, we obtain
1

n
jKn (�; t)jWn

n (�)W
n
n (t) � C

for n � 1 and �; t 2 I. The elements of potential theory for external �elds
enable us to extend this bound into the complex plane. For this, we also
use the uniform boundedness of the equilibrium densities

�
� 0Wn

	
. Applying

these methods in each variable �; t above leads to the estimate

1

n

����Kn

�
� +

a

n
; � +

b

n

�����Wn
n

�
� +

Re a

n

�
Wn
n

�
� +

Re b

n

�
� C1e

C2(jIm aj+jIm bj):

Here a; b 2 C and C1 and C2 are independent of n; a; b; �. However, for a; b
in a given compact subset K of the plane, the estimate holds for n � n0 (K).
Using (2.1) again, and recalling our notation (1.2), we obtain������
Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
Kn (�; �)

������
Wn
n

�
� + Re a

~Kn(�;�)

�
Wn
n

�
� + Re b

~Kn(�;�)

�
W 2n
n (�)

� C1e
C2(jIm aj+jIm bj):

Of course, the constants C1 and C2 might be di¤erent. Our assumptions on
fQng ensure that

Wn
n

�
� + Re a

~Kn(�;�)

�
Wn
n

�
� + Re b

~Kn(�;�)

�
W 2n
n (�)

= e	(�;n)(Re a+Re b) (1 + o (1)) ;

where
	(�; n) = � n

~Kn (�; �)
Q0n (�) :

De�ne

fn (a; b) =
Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
Kn (�; �)

e	(�;n)(a+b);

an entire function of exponential type in each variable a; b. Given A > 0,
we obtain for n � n0 (A) and jaj ; jbj � A, that

(2.2) jfn (a; b)j � C1e
C2(jIm aj+jIm bj):
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Thus ffn (a; b)g1n=1 is a normal family for a; b in the complex plane.
Let f (a; b) be the limit of some subsequence ffn (�; �)gn2S of ffn (�; �)g

1
n=1.

It is an entire function in a; b, but (2.2) shows more: for all complex a; b;

(2.3) jf (a; b)j � C1e
C2(jIm aj+jIm bj):

So f is bounded for a; b 2 R, and is an entire function of exponential type
in each variable. Our goal is to show

f (a; b) =
sin� (a� b)
� (a� b) :

Our main tool is to scale up properties of the reproducing kernel Kn, and
after taking limits, to deduce that an analogous property is true for f . Let
us �x a. Since for each real �, Kn (�; t) has only real zeros, the same is true of
f (a; �). Moreover, f (a; �) has countably many such zeros. Using elementary
properties of the reproducing kernel Kn, we can show that for all a 2 C;Z 1

�1
jf (a; s)j2 ds � f (a; �a) :

If � is the exponential type of f (a; �), we can show that � is independent
of a, using interlacing properties of zeros of Kn. Using the fact that sin�s

�s
is a reproducing kernel for the entire functions of exponential type that are
also in L2 (R), we can establish the useful inequality

0 �
Z
R

�
f (a; s)

f (a; a)
� sin� (s� a)

� (s� a)

�2
ds

� 1

f (a; a)
� �

�
:(2.4)

From this we deduce

� � � sup
x2R

f (x; x) � �:

For the converse inequality, we use Markov-Stieltjes inequalities, and a for-
mula relating exponential type of entire functions and their zero distribution,
to obtain

� � � sup
x2R

f (x; x) :

Thus,

� = � sup
x2R

f (x; x) ;

and (2.4) becomes Z 1

�1

�
f (a; s)

f (a; a)
� sin� (a� s)

� (a� s)

�2
ds

� 1

f (a; a)
� 1

supx2R f (x; x)
:(2.5)
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Assuming the hypothesis (1.11) of Theorem 1.2, we immediately obtain

f (x; x) = lim
n!1;n2S

fn (x; x) = 1

for all x, and then � = �. Substituting this back into (2.5), completes the
proof of Theorem 1.2.

3. Notation and Background

In the sequel C;C1; C2; ::: denote constants independent of n; x; y; s; t.
The same symbol does not necessarily denote the same constant in di¤erent
occurences. We shall write C = C (�) or C 6= C (�) to respectively denote
dependence on, or independence of, the parameter �. We use � in the
following sense: given real sequences fcng, fdng, we write

cn � dn

if there exist positive constants C1; C2 with

C1 � cn=dn � C2:

Similar notation is used for functions and sequences of functions.
Throughout, �n denotes a �nite positive Borel measure on the real line,

having at least the �rst 2n+ 1 power moments �nite. The Radon-Nikodym
derivative of �n is denoted �

0
n. The corresponding orthonormal polynomials

are denoted by fpn;kgnk=0, so thatZ
pn;kpn;jd�n = �jk.

We denote the zeros of pn;n by

(3.1) xnn < xn�1;n < ::: < x2n < x1n:

The nth reproducing kernel for �n is denoted by Kn (x; t), and is de�ned
by (1.1), while the normalized reproducing kernel is de�ned by (1.2). The
nth Christo¤el function for �n is

(3.2) �n (x) = �n (�n; x) = 1=Kn (x; x) = inf
deg(P )�n�1

R
P 2d�n
P 2 (x)

:

When �n is absolutely continuous, we shall often write �n (�
0
n; x). In par-

ticular, �n
�
hW 2n

n ; x
�
will denote the nth Christo¤el function for the weight

hW 2n
n .
The Gauss quadrature formula asserts that whenever P is a polynomial

of degree � 2n� 1;

(3.3)
nX
j=1

�n (xjn)P (xjn) =

Z
P d�n:
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In addition to this, we shall need another Gauss type of quadrature formula
[21, p. 19 ¤.]. Given a real number �, there are n or n�1 points tjn = tjn (�),
one of which is �, such that

(3.4)
X
j

�n (tjn)P (tjn) =

Z
P d�n;

whenever P is a polynomial of degree � 2n� 3. The ftjng are zeros of
(3.5)  n (�; t) = pn;n (�) pn;n�1 (t)� pn;n�1 (�) pn;n (t) ;
regarded as a function of t. Note that only the �niteness of the �rst 2n+ 1
moments is required for the existence of ftjng. This is well known, and
obvious from the proofs in Freud [21].
In order to prove that universality holds uniformly for � in J , we shall �x

a sequence f�ng of points in J , rather than a �xed �. At the nth stage, we
shall consider the quadrature that includes �n, so that

(3.6) tjn = tjn (�n) for all j:

Because we wish to focus on �n, we shall set t0n = �n, and order the ftjng
around �n, treated as the origin:

(3.7) ::: < t�2;n < t�1;n < t0n = �n < t1n < ::: .

The sequence of ftjng consists of either n � 1 or n points, so terminates,
and it is possible that all tjn lie to the left or right of �n. However in the
limiting situations we treat, where �n lies in the interior of the support, this
will not occur. It is known [21, p. 19, proof of Theorem 3.1] that when
(pn;npn;n�1) (�n) 6= 0, then one zero of  n (�n; t) lies in (xjn; xj�1;n) for each
j, and the remaining zero lies outside [xnn; x1n].
Throughout I and J will be the intervals in Theorem 1.2. Recall that

�0n = hW 2n
n in I:

We shall often abbreviate the equilibrium measure �Wn of Wn as �n. In
addition to I and J , we shall need compact intervals J1 and J2 such that

(3.8) Io � J2 and Jo2 � J1 and Jo1 � J:

We assume that our hypotheses (a) and (b) in Theorem 1.2 hold in the
following more detailed form:

(3.9) 0 < � 0n (x) � C1 for n � 1 and x 2 J2;

(3.10)
�
Q0n
	
are uniformly bounded in J2;

For each �xed a > 0;

(3.11) sup
t2J2;jhj�a

����Q0n (t)�Q0n�t+ h

n

�����! 0 as n!1:

Of course, this is the condition (1.12), which is weaker than the equiconti-
nuity assumed in Theorem 1.2(b), but is all we shall use in our proofs.
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For the given sequence f�ng in J , we shall de�ne for n � 1;

(3.12) fn (a; b) =
Kn

�
�n +

a
~Kn(�n;�n)

; �n +
b

~Kn(�n;�n)

�
Kn (�n; �n)

e	(�n;n)(a+b);

where

(3.13) 	(�n; n) = �
n

~Kn (�n; �n)
Q0n (�n) :

The zeros of

fn (0; t) =
Kn

�
�n; �n +

t
~Kn(�n;�n)

�
Kn (�n; �n)

e	(�n;n)t

will be denoted by
�
�jn
	
j 6=0. Thus, recalling (3.5) and (3.6), if tjn = tjn (�n),

we have

�jn = ~Kn (�n; �n) (tjn � �n) :
We also set, corresponding to t0n = �n,

�0n = 0:

For an appropriate subsequence S of integers, we shall let

(3.14) f (a; b) = lim
n!1;n2S

fn (a; b) :

The zeros of f (0; �) will be denoted by
�
�j
	
j 6=0, and we set �0 = 0. Our

ordering of zeros is

::: � ��2 � ��1 < �0 = 0 < �1 � �2 � ::: .

We shall denote the (exponential) type of f (a; �) by �a - it will be de�ned
shortly. We shall show that �a is independent of a, and then just use �
to denote the type. Initially, this type will be associated with the speci�c
subsequence S.
We next review some theory of entire functions of exponential type. Most

of this can be found in the elegant series of lectures of B. Ya. Levin [30].
Recall that if g is entire of order 1, then its exponential type � is

(3.15) � = lim sup
r!1

maxjzj=r log jg (z)j
r

:

We say that an entire function g belongs to the Cartwright class and write
g 2 C if it is of exponential type and

(3.16)
Z 1

�1

log+ jg (t)j
1 + t2

dt <1:

Here log+ s = max f0; log sg.
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We let n (g; r) denote the number of zeros of g in the ball center 0, radius
r, counting multiplicity. It is known [26, p. 66], [30, Theorem 1, p. 127]
that for g 2 C that is real along the real axis,

(3.17) lim
r!1

n (g; r)

2r
=
�

�
:

When f is entire of exponential type � � and bounded along the real
axis, we have [30, p. 38, Theorem 3]

(3.18) jf (z)j � e�jIm zj kfkL1(R) , z 2 C:
When g is entire of exponential type � and g 2 L2 (R), we write, as did B.
Ya. Levin, g 2 L2�. Here, we have instead of the last inequality, [30, p. 149]

(3.19) jg (z)j �
�
2

�

�1=2
e�(jIm zj+1) kgkL2(R) , z 2 C.

An important identity is the reproducing kernel identity [49, p. 95], [24,
(6.75), p. 58]

(3.20) g (x) =

Z 1

�1
g (t)

sin� (x� t)
� (x� t) dt; x 2 R;

when g 2 L2�. We shall also use [23, p. 414, no. 3.741.3]

(3.21)
Z 1

�1

�
sin�s

�s

�2
ds = 1:

Of course this integral may be deduced from (3.20) by choosing � = �;
g (t) = sin�t

�t and x = 0.

4. Normality

We start by bounding the growth of weighted polynomials in the complex
plane. Recall our assumption from Theorem 1.2 on the equilibrium measure
�Wn of Wn restricted to I, which we abbreviate as �n. For some C > 0, and
some J2 satisfying (3.8),

(4.1) 0 < � 0n (x) � C; n � 1, x 2 J2:
Also, by de�nition,

(4.2)
Z
I
d�n = 1, n � 1:

Inasmuch as �n is the equilibrium measure for the continuous function Wn

on I, we have then supp[�n] � I and [45, Lemma 2.2, p. 36]

(4.3) V �n (x) +Qn (x) = cn on supp [�n] :

Here cn is a characteristic constant, called the equilibrium constant. More-
over we have equality in (4.3) for all x 2 J2, since J2 �supp[�n], as (4.1)
shows.

Lemma 4.1
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There exists C2 such that for n � 1, for polynomials Pn of degree � n, for
x 2 J1 and a real, we have

(4.4)
���Pn �x+ i a

n

����Wn
n (x) � eC2jaj kPWn

n kL1(I) :

Proof
It is an easy consequence of the maximum principle for subharmonic func-
tions [45, Theorem 2.1, p. 153] that for z 2 CnI;

jPn (z)j en[V
�n (z)�cn] �

Pnen[V �n�cn]
L1(I)

= kPWn
n kL1(I) :

Then, using (4.3),

(4.5)
���Pn �x+ i a

n

����Wn
n (x) � en[V

�n (x)�V �n(x+i an)] kPWn
n kL1(I) :

Here, for x 2 J1;

V �n (x)� V �n
�
x+ i

a

n

�
=

1

2

Z
I
log

 
1 +

�
a

n (x� t)

�2!
d�n (t)

� C1

Z
J2

log

 
1 +

�
jaj

n (x� t)

�2!
dt

+ log

 
1 +

�
jaj

ndist (J1; InJ2)

�2!Z
InJ2

d�n (t)

� C1
jaj
n

Z 1

�1
log

�
1 +

1

s2

�
ds+ C3

�
jaj

n dist (J1; InJ2)

�
� C2

jaj
n
:

Here we used (4.1) and (4.2), and made the substitution x � t = sjaj
n . We

also used the inequality log
�
1 + x2

�
� C jxj. Now the result follows from

(4.5). �

Next, we prove

Lemma 4.2
(a) Uniformly for a in compact subsets of the real line, and � 2 J2;
(4.6)

�0n

�
� + a

~Kn(�;�)

�
�0n (�)

=

�
hW 2n

n

� �
� + a

~Kn(�;�)

�
(hW 2n

n ) (�)
= exp (2	 (�; n) a+ o (1)) ;
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where, as in (3.13), 	(�; n) = � n
~Kn(�;�)

Q0n (�).

(b)

(4.7) sup
�2J2;n�1

j	(�; n)j <1:

Proof
Since h is positive and continuous in compact I, we have, uniformly for a in
compact subsets of the real line,

h
�
� + a

~Kn(�;�)

�
h (�)

= 1 + o (1) :

We have for some � between � and � + a
~Kn(�;�)

;

W 2n
n

�
� + a

~Kn(�;�)

�
W 2n
n (�)

= exp

�
�2nQ0n (�)

a
~Kn (�; �)

�
= exp ([2	 (�; n) + �] a) ;

where

� =
2n

~Kn (�; �)

�
Q0n (�)�Q0n (�)

�
:

Recalling that ~Kn is de�ned by (1.2), and that d�n is de�ned by (1.8), while
h � 1 in I, we may reformulate (1.10) as
(4.8) ~Kn (�; �) � n uniformly in n and � 2 I:
As j� � �j � C

n ; our hypothesis (3.11) gives, uniformly in �,

� =
2n

~Kn (�; �)

�
Q0n (�)�Q0n (�)

�
= o (1) :

Finally (4.8) and the boundedness of fQ0ng give (4.7). �
Next, for the given sequence f�ng in J; we let

(4.9) fn (a; b) =
Kn

�
�n +

a
~Kn(�n;�n)

; �n +
b

~Kn(�n;�n)

�
Kn (�n; �n)

e	(�n;n)(a+b);

for all complex a and b. Note that fn (a; b) is actually an entire function of
exponential type in each variable a and b. Moreover, by Lemma 4.2, and
(4.8), uniformly for a; b in compact subsets of the real line,

(4.10) fn (a; b) =

~Kn

�
�n +

a
~Kn(�n;�n)

; �n +
b

~Kn(�n;�n)

�
~Kn (�n; �n)

+ o (1) :
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Lemma 4.3
(a) ffn (u; v)g1n=1 is uniformly bounded for u; v in compact subsets of the
plane.
(b) If f (u; v) is the locally uniform limit of some subsequence ffn (u; v)gn2S
of ffn (u; v)g1n=1, then for each �xed real number u; f (u; �) is entire of ex-
ponential type. Moreover, for some C1 and C2 independent of u; v 2 C;
(4.11) jf (u; v)j � C1e

C2(jImuj+jIm vj):

(c) For each �xed real number u; f (u; �) has only real zeros.
Proof
(a) By our bound (4.8) and by Cauchy-Schwarz, we have

1

n
jKn (�; t)jWn

n (�)W
n
n (t)

�
�
1

n
Kn (�; �)W

2n
n (�)

�1=2� 1
n
Kn (t; t)W

2n
n (t)

�1=2
� C

for �; t 2 I and n � 1: By Lemma 4.1, applied separately in each variable,
we then have for �; t 2 J1; and real a; b,

(4.12)
1

n

����Kn

�
� + i

a

n
; t+ i

b

n

�����Wn
n (�)W

n
n (t) � CeC2(jaj+jbj):

Because (3.8) is the only restriction on J1 and J2, we may relabel, and
assume that (4.12) holds for �; t 2 J2; and real a; b. Let A > 0. Note that
for n � n0 (A), for � 2 J1; and complex u; v with juj ; jvj � A, we may then
also recast (4.12) in the form

1

n

���Kn

�
� +

u

n
; � +

v

n

����Wn
n

�
� +

Reu

n

�
Wn
n

�
� +

Re v

n

�
� CeC2(jImuj+jIm vj):

(4.13)

Here C1 and C2 do not depend on A. The threshhold n0 is designed to
ensure that � + Reu

n ; � + Re v
n 2 J2. Next, recall that

~Kn (�; �) � n;

and by Lemma 4.2(a), uniformly for � 2 J2;

Wn
n

�
� + Reu

~Kn(�;�)

�
Wn
n (�)

= e	(�;n)Reu+o(1)

=
���e	(�;n)u+o(1)��� :

Thus (4.13) implies

jfn (u; v)j � C1e
C2(jImuj+jIm vj);

for n � n0 (A) and juj ; jvj � A, where C1; C2 are independent of n; u; v; A
(and of �).
(b) Now ffn (u; v)g1n=1 is a normal family of two variables u; v. If f (u; v) is
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the locally uniform limit through the subsequence S of integers, we see that
f (u; v) is an entire function in u; v satisfying for all complex u; v;

jf (u; v)j � CeC2(jImuj+jIm vj):

In particular, f (u; v) is bounded for u; v 2 R, and is an entire function of
exponential type in each variable.
(c) It is shown in [21, p. 19, proof of Theorem 3.1], that for each real �n,
Kn (�n; t) has only real simple zeros. Hence for real u, fn (u; v) has only real
zeros as a function of v. Hurwitz�s theorem shows that the same is true of
f (u; v). �

Lemma 4.4
(a) Uniformly for u 2 R;

(4.14) f (u; u) � 1.

(b) For all a 2 C;

(4.15)
Z 1

�1
jf (a; s)j2 ds � f (a; �a) :

(c) For each a 2 R, f (a; �) has in�nitely many real zeros.
Proof
(a) We have uniformly for a in compact subsets of the real line,

Kn

�
�n +

a
~Kn(�;�)

; �n +
a

~Kn(�;�)

�
Kn (�n; �n)

e	(�n;n)(2a)

=

~Kn

�
�n +

a
~Kn(�;�)

; �n +
a

~Kn(�;�)

�
~Kn (�n; �n)

(1 + o (1))

� C1 (1 + o (1)) ;

where C1 is independent of the compact set in which a lies, and comes only
from the upper and lower bounds on the Christo¤el functions implicit in
(4.8). From this we deduce that for all real a;

f (a; a) � C1:

The corresponding upper bound is similar.
(b) We use the identity

Kn (s; �s) =

Z
jKn (s; t)j2 d�n (t) ,

valid for all complex s. Let a 2 C; and

s = �n +
a

~Kn (�n; �n)
:
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Let r > 0. We drop most of the integral and make the substitution t =
�n +

y
~Kn(�n;�n)

:

1 �
Z �n+

r
~Kn(�n;�n)

�n� r
~Kn(�n;�n)

jKn (s; t)j2

Kn (s; �s)
�0n (t) dt

=

Z r

�r

������
Kn

�
s; �n +

y
~Kn(�n;�n)

�
Kn (�n; �n)

������
2

Kn (�n; �n)

Kn (s; �s)

�0n

�
�n +

y
~Kn(�n;�n)

�
�0n (�n)

dy

=

Z r

�r

jfn (a; y)j2

fn (a; �a)

���e�	(�n;n)(2a+2y�a��a)��� �0n
�
�n +

y
~Kn(�n;�n)

�
�0n (�n)

dy

=

Z r

�r

jfn (a; y)j2

fn (a; �a)
(1 + o (1))dy:

Here we have used Lemma 4.2(a). As n ! 1 through a subsequence, the
last right-hand side has lim inf at leastZ r

�r

jf (a; y)j2

f (a; �a)
dy;

by Fatou�s Lemma. Finally, let r !1.
(c) We note �rst that f (a; �) is non-constant, and moreover, is not a poly-
nomial. Indeed, it belongs to L2 (R) and satis�es f (a; a) 6= 0. It also lies in
the Cartwright class, because of (a), and is real along the real axis. We can
then write [30, p. 130]

f (a; z + a) = f (a; a) lim
R!1

Y
b:jbj<R and f(a;b+a)=0

�
1� z

b

�
:

�

5. Proof of Theorem 1.2

It follows from Lemma 4.3(b) that for each real a, f (a; �) is entire of ex-
ponential type �a, say. We �rst show that �a is independent of a. We note
that �a does possibly depend on f�ng and the subsequence S.

Lemma 5.1
For a 2 R, let n (f (a; �) ; r) denote the the number of zeros of f (a; �) in the
ball center 0, radius r, counting multiplicity. Then for any real a, we have
as r !1;
(5.1) n (f (a; �) ; r)� n (f (0; �) ; r) = O (1) :

Consequently,

(5.2) �a = �0 = �, say :

Moreover, for all a 2 R; f (a; �) 2 L2�.
Proof
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Let Kn denote the reproducing kernel for �n. We use the following basic
property of

 n (�; t) =

�
n;n�1
n;n

��1
Kn (�; t) (� � t) = pn;n (�) pn;n�1 (t)�pn;n�1 (�) pn;n (t) :

For real �, with pn;n�1 (�) pn;n (�) 6= 0,  n (�; t) has, as a function of t, simple
zeros in each of the intervals

(xnn; xn�1;n) ; (xn�1;n; xn�2;n) ; :::; (x2n; x1n) :

There is a single remaining zero, and this lies outside [xnn; x1n]. When
pn;n�1 (�) pn;n (�) = 0,  n (�; t) is a multiple of pn;n or pn;n�1. As the zeros
of the latter polynomials interlace, we see that in this case, there is a simple
zero in each of the intervals

[xnn; xn�1;n); [xn�1;n; xn�2;n); :::; [x2n; x1n):

For all this, see [21, proof of Theorem 3.1, p. 19]. It follows that whatever
� is, the number j of zeros of Kn (�; t) in [xmn; xkn] satis�es

jj � (m� k)j � 1:

Consider nowKn

�
�n +

a
~Kn(�n;�n)

; �n +
t

~Kn(�n;�n)

�
andKn

�
�n; �n +

t
~Kn(�n;�n)

�
as a function of t. In any �xed interval [�r; r], it follows that the di¤erence
between the number of zeros of these two functions is at most 2. Hence the
same is true of fn (a; �) and fn (0; �). Letting n!1 through S, we see that
(5.1) holds. Then (5.2) follows from (3.17). Finally, f (a; �) 2 L2 (R), by
(4.15), so also f (a; �) 2 L2�. �
In the sequel, � denotes the type of f (a; �) for all real a:

Lemma 5.2
(a) For all a 2 R; Z 1

�1

�
f (a; s)

f (a; a)
� sin� (a� s)

� (a� s)

�2
ds

� 1

f (a; a)
� �

�
:(5.3)

(b)

(5.4) � � � sup
a2R

f (a; a) � �:

Proof
(a) The left-hand side in (5.3) equals

1

f (a; a)2

Z 1

�1
f (a; s)2 ds� 2

f (a; a)

Z 1

�1
f (a; s)

sin� (a� s)
� (a� s) ds+

Z 1

�1

�
sin� (a� s)
� (a� s)

�2
ds

� 1

f (a; a)
� 2�

�
+
�

�
;
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by Lemma 4.4(b), and the identities (3.20) and (3.21). Recall that f (a; �) 2
L2�, so (3.20) is applicable.
(b) Since the left-hand side of (5.3) is nonnegative, we obtain for all real a,

� � �f (a; a) :

As f (0; 0) = 1, we then obtain (5.4). �
Recall from Section 3, the Gauss type quadrature formula, with nodes

ftjng = ftjn (�n)g including the point �n:X
j

�n (tjn)P (tjn) =

Z
P (t) d� (t) ;

for all polynomials P of degree � 2n� 3. Recall that we order the nodes as

::: < t�2;n < t�1;n < t0;n = �n < t1;n < t2;n < ::: :

and write

(5.5) tjn = �n +
�jn

~Kn (�n; �n)
:

We need a Markov-Stieltjes inequality:

Lemma 5.3
Let 1 � k < ` � n. Let B 2 R. Then

(5.6)
`�1X
j=k+1

�n (tjn) e
�Btjn �

Z t`n

tkn

e�Btd�n (t) �
X̀
j=k

�n (tjn) e
�Btjn :

Proof
We begin by assuming that

(5.7)
Z
eAtd�n (t)

is �nite for all real A. Now let B � 0. By the classical Posse-Markov-Stieltjes
inequality [21, (5.10), p. 33],X

j:tjn<t`n

�n (tjn) e
Btjn �

Z t`n

�1
eBtd�n (t) �

X
j:tjn�t`n

�n (tjn) e
Btjn :

A similar inequality holds if B < 0. Indeed, consider the re�ected measure
d��n (t) = d�n (�t). The quadrature points for d��n including ��n will be
f�tjng. Let us assume that there are n quadrature points ftjng (the case
of n � 1 points requires trivial changes). Applying the inequality above to
��n , making a substitution, and then taking account of our ordering, gives,
with B > 0;X
j:tjn>tn+1�`;n

�n (tjn) e
�Btjn �

Z 1

tn+1�`;n

e�Btd�n (t) �
X

j:tjn�tn+1�`;n

�n (tjn) e
�Btjn :



20 ELI LEVIN1 AND DORON S. LUBINSKY2

Setting k = n+ 1� ` givesX
j:tjn>tkn

�n (tjn) e
�Btjn �

Z 1

tkn

e�Btd�n (t) �
X

j:tjn�tkn

�n (tjn) e
�Btjn :

Now let ` > k and subtract this last inequality for k and `: for B > 0;

`�1X
j=k+1

�n (tjn) e
�Btjn �

Z t`n

tkn

e�Btd�n (t) �
X̀
j=k

�n (tjn) e
�Btjn :

For B � 0, the same inequality follows from the �rst Markov-Stieltjes in-
equality above. Thus (5.6) is valid for all real B, provided we assume the
convergence of all the integrals in (5.7). We now drop that condition by a
limiting argument. Throughout this argument, n; k; ` are �xed. Let " > 0
and

d!" (t) = e�"t
2
d�n (t) :

Then the analogue of (5.7) holds for !" and so the analogue of (5.6) holds
for !". Let us denote the quadrature points and Christo¤el numbers for !"
respectively by ftjn"g and f�n" (tjn")g : We must show that as "! 0+,

tjn" ! tjn and �n" (tjn")! �n (tjn) :

To see that this is indeed the case, we note that for each 0 � j � 2n;

lim
"!0+

Z
tjd!" (t) =

Z
tjd�n (t) :

Hence from the well known determinantal representation for orthogonal
polynomials involving power moments [21, (1.6), p. 57], [46, p. 15], the
orthogonal polynomials for !" of degree k, 0 � k � n, converge to those of
�n as "! 0+. �

Lemma 5.4
(a) f (0; z) has zeros

�
�j
	
j 6=0, with

(5.8) ::: � ��2 � ��1 < 0 < �1 � �2 � :::

and for j = �1;�2;�3; :::
�j = lim

n!1;n2S
�jn:

There are no other zeros of f . We also set �0 = 0.
(b) Given ` > k, we have

(5.9)
`�1X
j=k+1

1

f
�
�j ; �j

� � �` � �k �
X̀
j=k

1

f
�
�j ; �j

� :
(c) The zeros

�
�j
	
are at most double zeros of f (0; z), and there exist

C1; C2 such that for all j;

(5.10) C1 � �j � �j�2 � C2:
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The constants are independent of j. Moreover, zeros are repeated in the
sequence

�
�j
	
according to their multiplicity.

Proof
(a) We know that fn (0; s) =

h
Kn

�
�n; �n +

s
~Kn(�n;�n)

�
=K (�n; �n)

i
es	(�n;n)

has simple zeros at s = �jn, j 6= 0, and no other zeros. Moreover as n!1
through S, this sequence converges to f (0; z) ; uniformly for z in compact
sets. As f (0; 0) = 1, the function f (0; z) is not identically zero. In par-
ticular, as n ! 1 through our subsequence S, we obtain that necessarily
�jn ! �j , the jth (possibly multiple) zero of f (0; z). There can be no other
zeros because of Hurwitz�Theorem.
(b) We use the Markov-Stieltjes inequality (5.6) above, with

B = ~Kn (�n; �n) 2	 (�n; n)

Recall that 	(�n; n) is de�ned by (3.13). From (5.5), we deduce that for all
j,

Btjn = B�n + �jn2	 (�n; n) :

We multiply (5.6) by Kn (�n; �n) and cancel e
�B�n from both sides. We also

make the substitution t = �n +
y

~Kn(�n;�n)
) Bt = B�n + 2	 (�n; n) y in the

integral. We deduce that

`�1X
j=k+1

1

fn
�
�jn; �jn

� �
Z �`;n

�kn

e�2	(�n;n)y
�0n

�
�n +

y
~Kn(�n;�n)

�
�0n (�n)

dy

�
X̀
j=k

1

fn
�
�jn; �jn

� :(5.11)

Here by Lemma 4.2, and (a) of this lemma, for �xed ` and k;Z �`n

�kn

e�2	(�;n)y
�0n

�
�n +

y
~Kn(�n;�n)

�
�0n (�n)

dy

= �` � �k + o (1) ;
as n!1 through S. Thus letting n!1 through S in (5.11), and taking
account of the uniform convergence of fn (�; �) to f (�; �), gives (5.9).
(c) From (b),

1

f
�
�k+1; �k+1

� � �k+2 � �k �
k+2X
j=k

1

f
�
�j ; �j

� :
Since f (t; t) is bounded above and below by positive constants for real t,
(5.10) follows. Of course, we also deduce �j+2 6= �j , so there are at most
double zeros. Since the

�
�jn
	
are simple zeros of fn, it follows that �k can

only be a double zero of f (0; �) if it appears twice in the
�
�j
	
. �

Next, we deduce:
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Lemma 5.5
Let

(5.12) � = sup
x2R

f (x; x) :

For each real a, f (a; �) is entire of exponential type � = ��:
Proof
Because of Lemma 5.1, it su¢ ces to show that f (0; �) is entire of exponential
type � = ��. To do this, we use (b) of the previous lemma. We have for
each ` > k;

(5.13)
`�1X
j=k+1

1

f
�
�j ; �j

� � �` � �k:

Since f
�
�j ; �j

�
� � for each j, we obtain

(5.14) `� k � 1 � � (�` � �k) :
Next, recall that

�
�j
	
j 6=0 are all the zeros of f . Moreover, each zero is at

most a double zero, and is repeated in the sequence
�
�j
	
if it is a double

zero. Thus the total number of zeros of f (0; �) in [�k; �`] is ` � k + 1 or
` � k + 2 or ` � k + 3 if 0 does not belong to [k; `] ; and ` � k or ` � k + 1
or ` � k + 2 if it does. Thus the total number of zeros of f (0; �) in [�k; �`],
is at most

(`� k � 1) + 4 � � (�` � �k) + 4:
Recall that n (f (0; �) ; r) denotes the number of zeros of f (0; �) in [�r; r]
(or equivalently in the ball center 0, radius r). In view of (5.10), we can
choose �k a bounded distance from r, and �` a bounded distance from �r.
We obtain that n (f (0; �) ; r) is at most the number of zeros in [�k; �`] plus
O (1), and hence at most � (�` � �k) +O (1). So

n (f (0; �) ; r) � 2�r +O (1) :
Then by (3.17),

�

�
= lim
r!1

n (f (0; �) ; r)
2r

� �:

Together with our lower bound � � �� from Lemma 5.2(b), we obtain the
result. �
Proof of Theorem 1.2

Since ~Kn (�n; �n) � n, our hypothesis (1.11), with its uniformity in a, implies
also that for all real a;

lim
n!1

~Kn

�
�n +

a
~Kn(�n;�n)

; �n +
a

~Kn(�n;�n)

�
~Kn (�n; �n)

= 1;

and hence (cf. (4.10)), for all real a;

lim
n!1

fn (a; a) = 1:
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So
f (a; a) = 1 for all real a.

Hence
� = sup

x2R
f (x; x) = 1:

By Lemma 5.5, for each �xed a, f (a; �) is entire of exponential type � = �.
By Lemma 5.2(a), we then obtain, for each real a;Z 1

�1

�
f (a; s)� sin� (s� a)

� (s� a)

�2
ds

=

Z 1

�1

�
f (a; s)

f (a; a)
� sin� (s� a)

� (s� a)

�2
ds = 0:

So for real a and s;

lim
n!1;n2S

fn (a; s) = f (a; s) =
sin� (s� a)
� (s� a) :

By analytic continuation,

lim
n!1;n2S

fn (a; b) =
sin� (a� b)
� (a� b) ;

uniformly for a; b in compact subsets of the plane. (Recall that the left-
hand side is uniformly bounded for a; b in such sets). As the limit function
is independent of the subsequence S, we obtain

lim
n!1

fn (a; b) =
sin� (a� b)
� (a� b) ;

again with the appropriate uniformity in a; b. Finally, using (4.10) again,
and as f�ng can be any sequence in J , we obtain the conclusion (1.7) of
Theorem 1.2, uniformly for � 2 J , as well as the limit (1.13). �

6. Proof of Theorem 1.1

In this section, we show that the hypotheses of Theorem 1.1 imply those
of Theorem 1.2.

Proof of Theorem 1.1
Let I be an open interval containing J in which �W is absolutely continuous
while � 0W and Q0 are continuous and � 0W > 0. In particular, this implies
that I lies in supp[�W ]. For n � 1, we let

Wn =Wj�I :

It is known [45, Theorem 1.6(e), p. 196] that the equilibrium measure �n
for Wn satis�es

�n = �̂W ,
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where �̂W is the balayage measure of �W onto I. This balayage measure is
obtained by sweeping out (�W )jRnI onto I, and adding it to (�W )jI . Thus

�̂W = (�W )jI +
\��W jRnI

�
:

Moreover, \��W jRnI
�
is absolutely continuous and its density is in�nitely dif-

ferentiable in the interior of I [45, (4.47), p. 122], [52, p. 9, (2.28)]. Hence
�n = �̂W is absolutely continuous in I, and its density � 0n is bounded in J ,
and of course this holds uniformly in n. Since Q0n = Q0, our hypothesis that
Q0 is continuous in J shows that fQ0ng are equicontinuous in J . Totik [50,
Theorem 1.2, p. 326] proved that

(6.1) lim
n!1

n�1��1n
�
hW 2n; x

�
hW 2n (x) = � 0W (x) ;

uniformly in a neighborhood of J , say in I: It follows that uniformly in n
and x 2 I;

C1 � ��1n (x)W 2n (x) =n � C2:

Finally, the asymptotic (6.1), and the continuity of � 0W also give

lim
n!1

�n
�
hW 2n; � + a

n

�
�n (hW 2n; �)

�
hW 2n

�
(�)

(hW 2n)
�
� + a

n

� = 1;
uniformly for a in compact subsets of the real line, and � in a neighborhood
of J . As h is continuous (and uniformly so in the region desired), (1.11)
follows. So we have veri�ed all the hypotheses of Theorem 1.2, and that
theorem gives the result. �

7. Fixed Exponential Weights

In [32], the authors substituted �rst order asymptotics for orthogonal
polynomials for �xed exponential weights into the Christo¤el-Darboux for-
mula, and used a Markov-Bernstein inequality to control the tail. This led
to universality in the bulk for a class of exponential weights considered in
[31].
In this section, we show how universality for �xed exponential weights

can be deduced from Theorem 1.2. One de�nite advantage over the method
of [32] is that one does not need pointwise asymptotics for orthogonal poly-
nomials, so one may treat a more general class of weights. We begin by
recalling the result of [32].

De�nition 7.1
Let W = e�Q, where Q : R! [0;1) satis�es the following conditions:
(a) Q0 is continuous in R and Q (0) = 0:
(b) Q00 exists and is positive in Rn f0g;
(c)

lim
jtj!1

Q (t) =1:
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(d) The function

T (t) =
tQ0 (t)

Q (t)
; t 6= 0;

is quasi-increasing in (0;1), in the sense that for some C > 0;

0 < x < y ) T (x) � CT (y) :

We assume, with an analogous de�nition, that T is quasi-decreasing in
(�1; 0). In addition, we assume that for some � > 1;

T (t) � � in Rn f0g :

(e) There exists C1 > 0 such that

Q00 (x)

jQ0 (x)j � C1
Q0 (x)

Q (x)
a.e. x 2 Rn f0g :

Then we write W 2 F
�
C2
�
:

Examples of weights in this class are W = exp (�Q), where

Q (x) =

�
Ax�; x 2 [0;1)
B jxj� ; x 2 (�1; 0) ;

where �; � > 1 and A;B > 0. More generally, if expk = exp (exp (::: exp ()))
denotes the kth iterated exponential, we may take

Q (x) =

(
expk (Ax

�)� expk (0) ; x 2 [0;1)
exp`

�
B jxj�

�
� exp` (0) ; x 2 (�1; 0)

where k; ` � 1; �; � > 1.
A key descriptive role is played by the Mhaskar-Rakhmanov-Sa¤ numbers

a�n < 0 < an;

de�ned for n � 1 by the equations

n =
1

�

Z an

a�n

xQ0 (x)p
(x� a�n) (an � x)

dx;(7.1)

0 =
1

�

Z an

a�n

Q0 (x)p
(x� a�n) (an � x)

dx:(7.2)

In the case where Q is even, a�n = �an. The existence and uniqueness
of these numbers is established in the monographs [31], [42], [45], but goes
back to earlier work of Mhaskar, Rakhmanov, and Sa¤. On [a�n; an], the
orthonormal polynomials pn

�
W 2; x

�
behave much like Szeg½o polynomials on

[�1; 1].
We also de�ne,

(7.3) �n =
1

2
(an + a�n) and �n =

1

2
(an + ja�nj) ;
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which are respectively the center, and half-length of the Mhaskar-Rakhmanov-
Sa¤ interval

(7.4) �n = [a�n; an] :

The linear transformation

(7.5) Ln (x) =
x� �n
�n

maps �n onto [�1; 1]. Its inverse

L[�1]n (u) = �n + u�n

maps [�1; 1] onto �n. For 0 < " < 1, we let

(7.6) Jn (") = L[�1]n [�1 + "; 1� "] = [a�n + "�n; an � "�n] :
We let pn

�
W 2; x

�
denote the nth orthonormal polynomial for W 2, so thatZ
pn
�
W 2; x

�
pm
�
W 2; x

�
W 2 (x) dx = �mn:

Moreover, we let

Kn

�
W 2; x; t

�
=
n�1X
j=0

pj
�
W 2; x

�
pj
�
W 2; t

�
and

~Kn

�
W 2; x; t

�
=W (x)W (t)Kn

�
W 2; x; t

�
:

Thus, in this section, the parameter W 2 inside pn or Kn is used to distin-
gush these �xed weight quantities from the corresponding quantities for the
varying weights W 2n

n .
The �rst result of [32] was:

Theorem 7.2
Let W = exp (�Q) 2 F

�
C2
�
. Let 0 < " < 1. Then uniformly for a; b in

compact subsets of the real line, and x 2 Jn ("), we have as n!1;

(7.7) lim
n!1

~Kn

�
W 2; x+ a

~Kn(W 2;x;x)
; x+ b

~Kn(W 2;x;x)

�
~Kn (W 2; x; x)

=
sin� (b� a)
� (b� a) :

In particular, if W is even, this holds uniformly for jxj � (1� ") an.
In [32], we also established universality for weights of the form hW 2, when

h does not grow or decay too rapidly at �1.
In this section, we shall deduce universality for a more general class of

weights than in Theorem 7.2. Our class is [31, pp. 10-11]:

De�nition 7.3
Let I = (c; d) be an open interval containing 0 in its interior. Let W =
exp (�Q), where Q : I ! [0;1) satis�es the following properties:
(a) Q0 is continuous in I and Q (0) = 0:
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(b) Q0 is non-decreasing in I;
(c)

(7.8) lim
t!c+

Q (t) = lim
t!d�

Q (t) =1:

(d) The function

T (t) =
tQ0 (t)

Q (t)
; t 6= 0;

is quasi-increasing in (0; d), and quasi-decreasing in (c; 0). In addition, we
assume that for some � > 1;

T (t) � � in In f0g :
(e) There exists "0 2 (0; 1) such that for y 2 In f0g ;

T (y) � T

�
y

�
1� "0

T (y)

��
:

(f) For every " > 0, there exists � > 0 such that for all x 2 In f0g ;

(7.9)
Z x+

�jxj
T (x)

x� �jxj
T (x)

Q0 (s)�Q0 (x)
s� x ds � "

��Q0 (x)�� :
Then we write W 2 F (dini) :
Note that [32, p. 13] F

�
C2
�
� F (dini). The term dini refers to the Dini

type condition in (7.9). In particular, De�nition 7.3 does not assume point-
wise estimates for Q00. We shall deduce the following result from Theorem
1.2:

Theorem 7.4
Let W = exp (�Q) 2 F (dini). Let 0 < " < 1. Then uniformly for a; b in
compact subsets of the real line, and x 2 Jn ("), we have as n!1;

(7.10) lim
n!1

~Kn

�
W 2; x+ a

~Kn(W 2;x;x)
; x+ b

~Kn(W 2;x;x)

�
~Kn (W 2; x; x)

=
sin� (b� a)
� (b� a) :

In particular, if W is even, this holds uniformly for jxj � (1� ") an.

Remarks
(a) Using the techniques of [32, Theorem 1.3], one can extend this to weights
of the form hW 2, where h does not grow or decay too rapidly.
(b) Theorem 7.4 implies asymptotics for spacing of zeros of orthogonal poly-
nomials as in [33].
We shall apply Theorem 1.2 with

(7.11) Qn (x) =
1

n
Q
�
L[�1]n (x)

�
; x 2 Ln (I) ;

(7.12) Wn (x) = exp (�Qn (x)) ; x 2 Ln (I) ;
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(7.13) d�n (x) =W 2n
n (x) dx:

Observe that with the notation (7.5),

(7.14) W 2n
n =W 2 � L[�1]n :

We emphasize that I in this section is used in a di¤erent sense to that in
Theorem 1.2. There I was the interval in which all f�ng are absolutely con-
tinuous, and in which the Christo¤el functions admitted a uniform bound.
Here, to accord with [31], I is the (possibly unbounded) interval of orthog-
onality of W 2. We shall �x

0 < "0 < " < 1

and let

(7.15) I 0 =
�
�1 + "0; 1� "0

�
and J 0 = [�1 + "; 1� "] :

These intervals will play respectively the roles of I and J of Theorem 1.2.
We shall verify the hypotheses of Theorem 1.2 in a series of lemmas:

Lemma 7.5
Let �n denote the equilibrium measure of WnjI0 for n � 1. Let J2 � (I 0)o.
Then f� 0ng are positive and uniformly bounded in J2.
Proof
We use estimates for equilibrium densities from [31] together with properties
of balayage measures. The equilibrium measure �n (t) dt for Wn is a mea-
sure of total mass n, with support on the Mhaskar-Rakhmanov-Sa¤ interval
�n = [a�n; an], such that

V �n (x) +Q (x) = Cn, x 2 �n:

Here Cn is an equilibrium constant. The contracted density

��n (x) =
�n
n
�
�
L[�1]n (x)

�
has support on [�1; 1] and total mass 1, and has the property that

V �
�
n (x) +Qn (x) = C�n, x 2 [�1; 1] .

Again, C�n is an equilibrium constant. For further orientation, see [31, pp.
16-17]. To obtain the equilibrium measure �n for (Wn)jI0 , we use Theorem
1.6(e) in [45, p. 196]. We have

d�n (t) = �̂�n (t) dt,

where �̂�n (t) dt denotes the balayage measure of �
�
n (t) dt onto I

0. Moreover,
this balayage measure is obtained by sweeping out (��n(t)dt) j[�1;1]nI0 onto I

0,
and adding it to (��n (t) dt)jI0 . Thus

(7.16) �̂�n = (�
�
n)jI0 +

\�
��nj[�1;1]nI0

�
:
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Now we apply estimates for ��n from [31, (6.11), Theorem 6.1, p. 146]:

(7.17) C1
p
1� t2 < ��n (t) �

C2p
1� t2

; t 2 (�1; 1) , n � 1:

There the upper and lower bounds in (7.17) were proved in stronger forms,
and for the slightly larger class of weights F (Dini), which satisfy a less
restrictive Dini condition than (7.9). In particular, then,

0 < (��n)jI0 (t) � C, t 2 J2, n � 1:

Next, we need the formula [45, (4.47), p. 122], [52, (2.28), p. 9], valid for
t 2 I 0 :

\�
��nj[�1;1]nI0

�
(t)

=
1

�
q
(1� "0)2 � t2

Z
[�1;1]nI0

q
s2 � (1� "0)2

jt� sj ��n (s) ds:

Since the interval [�1; 1] nI 0 is independent of n, our upper bound (7.17)
shows also that

\�
��nj[�1;1]nI0

�
(t) � C, t 2 J2, n � 1:

Now (7.16) gives the result. �

Lemma 7.6
Let J2 � (I 0)o.
(a) fQ0ng

1
n=1 are uniformly bounded in I

0:
(b) For each �xed a > 0;

(7.18) sup
t2J2;jhj�a

����Q0n (t)�Q0n�t+ h

n

�����! 0 as n!1:

Proof
(a) We use the bound [31, (3.40), Lemma 3.8, p.77]��Q0 (x)�� � Cnp

�n (an � x)
, x 2 [0; an):

This readily yields��Q0 (x)�� � C
�
"0
� n
�n
, x 2

�
0;max

�
an � "0�n; 0

	�
:

A similar bound holds for negative x, and we deduce that
(7.19)��Q0 (x)�� � C

n

�n
, x 2 L[�1]n

�
�1 + "0; 1� "0

�
=
�
a�n + "

0�n; an � "0�n
�
:

Then, recalling (7.11),��Q0n (t)�� = �n
n

���Q0 �L[�1]n (t)
���� � C; t 2

�
�1 + "0; 1� "0

�
= I 0:
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(b) This is the most technical estimate in this section. We �rst establish the
estimate

(7.20)
T (t)

jtj =
jQ0 (t)j
Q (t)

= o

�
n

�n

�
, t 2 [a�n + "�n; an � "�n] n [��; �] :

Here � > 0 is any �xed positive number. Indeed for t 2 [a�n + "�n; an � "�n] n [a� logn; alogn],
we have by (7.19) and the monotonicity of Q that

T (t)

jtj � C
n

�nQ (a� logn)
= o

�
n

�n

�
;

since Q (a� logn) ! 1 as n ! 1. This latter limit follows from (7.8) and
the fact that alogn ! d, a� logn ! c as n!1 [31, Theorem 2.4(iii), p. 41].
Next, for t 2 [a� logn; alogn] n [��; �], we have that Q is bounded below, so

T (t)

jtj � C
��Q0 (a� logn)�� � C (log n)2 = o

�
n

�n

�
:

Here we used (3.17) in [31, p. 69] and (3.38) in [31, p. 76] for the upper
estimate on jQ0 (a� logn)j. Also, if � > 1 is as in De�nition 7.3, we used the
fact that �n increases with n and that [31, (3.30), Lemma 3.5(c), p. 72]

�n = O
�
n1=�

�
:

So (7.20) is established.

Let us now �x small � > 0. By (7.9) of De�nition 7.3, we can choose
� > 0 so small that for all X 2 In f0g ;

(7.21)
Z X+

2�jXj
T (X)

X� 2�jXj
T (X)

Q0 (s)�Q0 (X)
s�X ds � �

��Q0 (X)�� :
Suppose that a > 0; n � 1 and x; y 2 I 0 with x < y � x+ a

n . Let

X = L[�1]n (x) and Y = L[�1]n (y) .

Then

0 � Y �X = �n (y � x) � a
�n
n
:

Consequently for n � n0 (a; �), we have, by (7.20), as long asX;Y =2 [��; �] ;

(7.22) Y �X � �
jXj
T (X)

:

The threshold n0 does not depend on n; x; or y. We use the fact Q0 is
monotone increasing, and the integralZ Y+ 1

2
(Y�X)

Y

ds

s�X = log
3

2
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to deduce that

Q0n (y)�Q0n (x) =
�n
n

�
Q0 (Y )�Q0 (X)

�
=

�n

n log 32

Z Y+ 1
2
(Y�X)

Y

Q0 (Y )�Q0 (X)
s�X ds

� �n

n log 32

Z X+2�
jXj
T (X)

X

Q0 (s)�Q0 (X)
s�X ds

� �n

n log 32
�
��Q0 (X)�� :

In the next to last line, we used (7.22) and the monotonicity of Q0, and in
the last line, we used (7.21). Finally our bound on Q0 from (7.19) gives for
n � n0 and x; y 2 I 0 with x < y � x+ a

n

0 < Q0n (y)�Q0n (x) � C�;

as long as also X;Y =2 [��; �]. It is crucial here that C is independent of
n; x; y; �, so we may choose � as small as we please provided n � n0 (�) :
Finally, if X;Y 2 [��; �], we can use the boundedness of Q0 in [��; �] to
deduce that

Q0n (y)�Q0n (x) =
�n
n

�
Q0 (Y )�Q0 (X)

�
� C

�n
n
= o (1) :

The case where one of X;Y belongs to [��; �], and the other does not, may
be handled by considering X; � and Y; �. Thus uniformly for x; y 2 I 0, with
x < y � x+ a

n , we have

Q0n (y)�Q0n (x) = o (1) :

The range x� a
n � y � x is similar. So we have (7.18). �

Lemma 7.7
(a) For some C1; C2 > 0, and for n � 1 and � 2 I 0, we have
(7.23) C1 � ��1n (�)W 2n

n (�) =n � C2:

(b) Uniformly for a in compact subsets of the real line, and � 2 I 0;

(7.24) lim
n!1

�n
�
� + a

n

�
�n (�)

W 2n
n (�)

W 2n
n

�
� + a

n

� = 1:
Proof
(a) Let 0 < � < 1. By Corollary 1.14 in [31, p. 20], we have uniformly for
n � 1 and x 2 [a��n; a�n] ;

�n
�
W 2; x

�
� 'n (x)W

2 (x) :

Here

'n (x) =
jx� a�2nj ja2n � xj

n
q�
jx� a�nj+ ja�nj ��n

�
[jx� anj+ an�n]

;
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and

��n =

24nT (a�n)
s
ja�nj
�n

35�2=3 = o (�n) :

If � is close enough to 1, it follows from [31, (3.50), Lemma 3.11, page 81]
that

(7.25) L[�1]n

�
I 0
�
= L[�1]n

��
�1 + "0; 1� "

��
� [a��n; a�n] :

Moreover, for n � 1 and x 2 [a�n + "0�n; an � "0�n] = L
[�1]
n (I 0), we have

'n (x) �
�n
n
:

Thus for n � 1 and x 2 L[�1]n (I 0),

(7.26) �n
�
W 2; x

�
� �n

n
W 2 (x) :

Next,

�n (�) = �n
�
W 2n
n ; �

�
= inf

deg(P )�n�1

R �
P 2W 2n

n

�
(t) dt

P 2 (�)

= inf
deg(P )�n�1

R
P 2 (t) exp

�
�2Q � L[�1]n (t)

�
dt

P 2 (�)

= inf
deg(R)�n�1

R
R2 (s) exp (�2Q (s)) ��1n ds

R2
�
L
[�1]
n (�)

�
= ��1n �n

�
W 2; L[�1]n (�)

�
:(7.27)

Then (7.23) follows from (7.26).
(b) Let 0 < � < 1. By Theorem 1.25 in [31, p. 26], we have as n!1

�n
�
W 2; x

�
=W 2 (x) = ��1n (x) (1 + o (1)) ;

uniformly for x 2 [a��n; a�n]. Then (7.27) and (7.14) show that uniformly
for � 2 I 0;

�n (�) =W
2n
n (�) = ��1n ��1n

�
L[�1]n (�)

�
(1 + o (1))

= n�1���1n (�) (1 + o (1)) :(7.28)

It is shown in Theorem 6.2 in [31, p. 147] that f��ng are equicontinuous in
each compact subset of (�1; 1). Then the desired conclusion (7.24) follows
from (7.28). To deal with the possibility that � + a

n lies outside I
0, we use

the arbitrariness of " 2 (0; 1) in (7.15). �

Proof of Theorem 7.4
By Theorem 1.2, we have universality for the varying weights

�
W 2n
n

	
at each
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� 2 J 0, uniformly with respect to �. Indeed, the four hypotheses of Theorem
1.2 were established in Lemmas 7.5, 7.6, and 7.7 (except that we established
(7.18) rather than equicontinuity of fQ0ng. As noted after Theorem 1.2, this
is what we used in the proof of Theorem 1.2. The orthogonal polynomials
pn (x) = pn

�
W 2n
n ; x

�
are related to those for W 2 by the identity

pn (x) = pn
�
W 2n
n ; x

�
= �1=2n pn

�
W 2; L[�1]n (x)

�
:

This is easily established by a substitution in the orthonormality relation for
fpn (x)g. Hence the reproducing kernel Kn (x; t) = Kn

�
W 2n
n ; x; t

�
for W 2n

n

is related to the reproducing kernel Kn

�
W 2; x; t

�
for W 2 by the identity

Kn (x; t) = �nKn

�
W 2; Ln (x) ; Ln (t)

�
:

Then the result follows from Theorem 1.2. �
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