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1. Introduction and Results

Let G be a bounded simply connected domain in the complex plane,
bounded by a Jordan curve �. Let � be a �nite positive Borel measure on
G. We may de�ne, for n � 0; orthonormal polynomials

pn (z) = �nz
n + :::; �n > 0

satisfying Z
G
pnpmd� = �mn:

We shall usually assume that � is regular in the sense of Stahl and Totik
[27, p. 60], so that

(1.1) lim
n!1

�1=nn =
1

cap (G)
:

Here cap (G) denotes the logarithmic capacity of G. Moreover, we shall
also assume that � is absolutely continuous with respect to planar Lebesgue
measure dA near given points on @G. In this sense, the polynomials fpng
fall within the framework of Bergman polynomials. Throughout, we let

w (z) =
d�

dA
(z) , a.e. z 2 G:

Moreover, for u 2 @G, we de�ne
w (u) = lim

z!u;z2G
w (z) ;

whenever the limit is de�ned. We note that when w > 0 a.e. on G, then it
follows from Widom�s criterion for regularity, that � is regular in the sense
of Stahl and Totik [27, pp. 106-107].
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There is a well developed theory of Bergman polynomials - their basic
properties, and the asymptotic behavior, including that of their zeros [6],
[7], [8], [12], [18], [19], [23]. In describing these, the conformal map � of the
exterior of �, namely

D = Cn �G

onto the exterior of the unit ball plays a key role. We say that the curve � is
of class C (p; �) if the parametrization of the curve is p times continuously
di¤erentiable, with p�th derivative satisfying a Lipschitz condition of order
� 2 (0; 1).
Classical results of Suetin give asymptotics for pn when � is absolutely

continuous on G, with w = 1 there. We shall denote the corresponding
polynomials by

�
pCn
	
, where the C stands for Carleman. It is known [28,

Theorem 1.3, p. 21] that if � 2 C (1; �), where � > 1
2 , then uniformly for

z 2 @G; and even locally uniformly in �D;

(1.2) pCn (z) =

r
n+ 1

�
�0 (z)� (z)n

�
1 +O

�
1

n2��1

��
:

The n�th reproducing kernel for � is

(1.3) Kn (z; u) =

n�1X
j=0

pj (z) pj (u);

and its normalized cousin is

(1.4) ~Kn (z; u) = w (z)
1=2w (u)1=2Kn (z; u) :

Recall that w = d�
dA or its limit on the boundary @G:

In formulating our result, we need the notion of the convex hull Co (K)
of a set K, as well as its boundary @Co (K). If J � @G, a @G neighborhood
of J means a relatively open subset J1 of @G containing J . That is, J1 � J
and J1 = U \ @G for some open subset U of the plane. Our main result is:

Theorem 1.1
Let G be a bounded simply connected set, and assume that � = @G is of class
C (1; �), with � 2

�
1
2 ; 1
�
. Let J � @G be compact, and let some @G neigh-

borhood of J also lie in @Co (G). Let � be a �nite positive Borel measure on
G that is regular in the sense of Stahl and Totik. Assume that � is absolutely
continuous with respect to planar Lebesgue measure in an open subset of G
whose boundary contains a @G neighborhood of J: Assume moreover, that
w is positive and continuous at each point of J . Then uniformly for z 2 J
and a; b in compact subsets of the plane, we have

(1.5) lim
n!1

Kn
�
z + a

n ; z +
b
n

�
Kn (z; z)

= H
�
a�0 (z)� (z) + b�0 (z)� (z)

�
;
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where

(1.6) H (t) =

�
2 e

t(t�1)+1
t2

; t 6= 0
1; t = 0

:

Remarks
(a) Universality limits for measures with support on the real line take the
form

lim
n!1

Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
Kn (�; �)

=
sin� (a� b)
� (a� b) :

Here � is in the "bulk" of the support, that is, � lies in the interior of supp[�].
See [2], [3], [4], [5], [9], [11], [13], [14], [15], [17], [25], [26], [30]. For measures
supported on the unit circle, the analogous formulation is [10]

lim
n!1

1

n
~Kn

�
ei(�+

2�a
n ); ei(�+

2�b
n )
�
= ei�(a�b)

sin� (a� b)
� (a� b)

or

lim
n!1

Kn

�
z
�
1 + i2�a

n

�
; z
�
1 + i2��b

n

��
Kn (z; z)

= ei�(a�b)
sin� (a� b)
� (a� b) ;

uniformly for a; b in compact subsets of the complex plane and z = ei�; � 2 J .
(b) Note that the increment inside the reproducing kernel in (1.5) is an or

b
n .

By contrast, under the hypotheses of Theorem 1.1, Kn (z; z) grows like n2,
and

lim
n!1

Kn

�
z + a

Kn(z;z)
; z + b

Kn(z;z)

�
Kn (z; z)

= 1:

(c) The restriction that J � @G \ @Co (G) is a severe geometric restriction
- basically requiring that G is "locally convex" in some neighborhood of J .
It is likely that there is some payo¤ between the generality of the measure �
and the geometry of the domain G. In particular, for Carleman polynomials,
there is no need for a geometric restriction, as shown in Section 2. We use
the convexity in constructing, for each z 2 J , a polynomial Rz, such that
Rz (z) = 1 and jRzj < 1 in �Gn fzg. To allow for more general sets J , we
need a de�nition:

De�nition 1.2 Let S � C be bounded.
(a) We say that a 2 S is a peak polynomial point for S if there exists a
polynomial Ra such that

(1.7) Ra (a) = 1

and
jRaj < 1 in Sn fag :

(b) Let J � S. We say that J is a uniform peak polynomial set for
S if each point a 2 J is a peak polynomial point for S, and moreover, the
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degree of Ra is bounded above independent of a 2 J , and in addition, for
any � > 0, there exists r < 1 independent of a, such that

(1.8) jRa (z)j < r for a 2 J and z 2 G with jz � aj � �:

Remark
Peak polynomial points have been investigated (without using that name)
by Nagy and Totik [20]. Uniform peak polynomial sets have been discussed
by Andrievskii and Pritsker [1]. In particular, they derived a necessary and
su¢ cient condition involving circles that lie in CnG touching @G at only one
point. This overlaps with results of Totik [20], [31].

Theorem 1.3
Assume the hypotheses of Theorem 1.1, except the restriction that some @G
neighborhood of J also lies in @Co (G). Assume instead that some @G neigh-
borhood of J is a uniform peak polynomial set for �G. Then the conclusion
of Theorem 1.1 remains valid.

Remark
Totik [31] has recently established asymptotics for Christo¤el functions asso-
ciated with Bergman polynomials over a region that consists of �nitely many
domains. Totik does not require a geometric condition on the boundary, but
does require a locally C2 boundary. This should lead to a version of Theo-
rem 1.3 without geometric conditions, but with a locally smoother boundary.

Corollary 1.4
Assume the hypotheses of Theorem 1.1 or 1.3. Let r; s be non-negative in-
tegers and

(1.9) K(r;s)
n (z; z) =

n�1X
k=0

p
(r)
k (z) p

(s)
k (z):

Then uniformly for z 2 J;

(1.10) lim
n!1

K
(r;s)
n (z; z)

nr+sKn (z; z)
=
2
�
�0 (z)� (z)

�r �
�0 (z)� (z)

�s
r + s+ 2

:

In the sequel C;C1; C2; ::: denote constants independent of n; z; u; v; s; t.
The same symbol does not necessarily denote the same constant in di¤erent
occurences. We shall write C = C (�) or C 6= C (�) to respectively denote
dependence on, or independence of, the parameter �. Given measures ��,
�#, we use K�

n;K
#
n and p�n; p

#
n to denote respectively their reproducing

kernels and orthonormal polynomials. Similarly superscripts �;# are used
to distinguish other quantities associated with them. The superscript C (for
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Carleman) denotes quantities associated with the Legendre weight 1 on G.
For z 2 C and � > 0, we set

B (z; �) = ft : jt� zj < �g :

The distance from a point z to a set of complex numbers J is denoted
dist (z; J). For such a set J , we set

J (�) = fz 2 C : dist (z; J) � �g :

For n � 1 and M > 0, we also let

Gn (M) =

�
z 2 �D : dist (z; @G) � M

n

�
In particular, Gn (M) contains @G: [x] denotes the greatest integer � x. We
denote the nth Christo¤el function for the measure � by

(1.11) �n (z) = 1=Kn (z; z) = min
deg(P )�n�1

Z
G
jP j2 d�= jP (z)j2 :

As in [13], the main idea in this paper is a localization principle based on a
comparison inequality (Lemma 4.1 below). Suppose that �; �� are measures
with � � �� in G, and let the superscript � indicate quantities associated
with the measure ��. Then for z; t 2 C;

jKn (z; t)�K�
n (z; t)j =Kn (z; z)

�
�
Kn (t; t)

Kn (z; z)

�1=2 �
1� K

�
n (z; z)

Kn (z; z)

�1=2
=

�
�n (z)

�n (t)

�1=2 �
1� �n (z)

��n (z)

�1=2
:

The paper is organised as follows. In Section 2, we prove some of the
results for the weight 1 on G, that is for Carleman polynomials. In Section
3, we present some asymptotics for Christo¤el functions. In Section 4, we
prove our localization principle, and hence Theorems 1.1, 1.3 and Corollary
1.4.

2. Carleman Polynomials

For the Legendre weight (or normalized Lebesgue measure) on G, recall
that we use the superscript C to distinguish the orthonormal polynomials
and related quantities. We shall use the asymptotics (1.2):

Theorem 2.1
Let G be a bounded simply connected set, and assume that � = @G is of
class C (1; �), with � 2

�
1
2 ; 1
�
. Let M > 0:
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(a) Uniformly for z; t 2 Gn (M) ; with z 6= t;
(2.1)

KC
n (z; t) =

�0 (z)�0 (t)

�

8><>:� (n+ 1)
h
� (z)� (t)

in
1� � (z)� (t)

+
1�

h
� (z)� (t)

in+1
h
1� � (z)� (t)

i2
9>=>;+O �n3�2�� :

(b) Uniformly for z 2 @G;

(2.2) KC
n (z; z) =

���0 (z)��2
�

n (n+ 1)

2
+O

�
n3�2�

�
:

Moreover, uniformly for z 2 Gn (M) ;
(2.3) KC

n (z; z) = O
�
n2
�
:

(c) Uniformly for z 2 @G and a; b in compact subsets of the plane,

(2.4) lim
n!1

KC
n

�
z + a

n ; z +
b
n

�
KC
n (z; z)

= H
�
a�0 (z)� (z) + b�0 (z)� (z)

�
:

Proof
Let v 2 Gn (M). We can write v = z+ a

n , where z 2 @G and jaj �M . Then

� (v)� � (z) = O (jv � zj) = O
�
1

n

�
;

for n � n0 (M). Here we have used the fact that � = @G is of class C (1; �),
while �0 is continuous and non-zero on @G, so that every point v in Gn (M)
may be joined to a point z in @G, by a path of length O (jv � zj). As
j� (z)j = 1, we obtain

j� (v)j � 1 + C
n
;

and hence

(2.5) sup
v2Gn(M)

sup
1�k�n

����k (v)��� � C:
We also note that then if P is a polynomial of degree � n, the Walsh-
Bernstein inequality, namely

jP (z)j � j� (z)jn sup
@G
jP j

gives

(2.6) sup
Gn(M)

jP j � C sup
@G
jP j :

(a) From (1.2), uniformly for z; t 2 Gn (M) ;

KC
n (z; t) =

�0 (z)�0 (t)

�

n�1X
k=0

(k + 1)
h
� (z)� (t)

ik �
1 +O

�
1

k2��1

��

=
�0 (z)�0 (t)

�

n�1X
k=0

(k + 1)
h
� (z)� (t)

ik
+O

 
n�1X
k=0

k2�2�

!
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recall (2.5). Using the identity

n�1X
k=0

(k + 1)uk = � (n+ 1) un

1� u +
1� un+1

(1� u)2
; u 6= 1;

(this is easily obtained by di¤erentiating the identity for a �nite geometric
series), and the fact that � > 1

2 ; we obtain (2.1).
(b) This is similar to (a), but easier.
(c) Suppose �rst that z+ a

n and z+
b
n 2 �D, so that �

�
z + a

n

�
and �

�
z + b

n

�
are well de�ned. We have for some path  in �D from z to z + a

n ;

�
�
z +

a

n

�
� � (z)� a

n
�0 (z) =

Z


�
�0 (t)� �0 (z)

�
dt = o

�
1

n

�
;

uniformly for z 2 @G, and a in compact subsets of the complex plane,
because of the continuity of �0. Let

� = a�0 (z)� (z) + b�0 (z)� (z) :

Then, as j� (z)j = 1;

�
�
z +

a

n

�
�

�
z +

b

n

�
= 1 +

�

n
+ o

�
1

n

�
;

"
�
�
z +

a

n

�
�

�
z +

b

n

�#n
= e�+o(1):

Substituting into (2.1) gives, as long as � 6= 0, and n is so large that
z + a

n ; z +
b
n 2 Gn (M) ;

KC
n

�
z +

a

n
; z +

b

n

�
=

�0
�
z + a

n

�
�0
�
z + b

n

�
�

(
(n+ 1)ne�+o(1)

�+ o (1)
+
n2
�
1� e�+o(1)

�
�2 + o (1)

)
and so using continuity of �0, and (2.2),

KC
n

�
z + a

n ; z +
b
n

�
KC
n (z; z)

= 2

�
e�

�
+
1� e�
�2

�
+ o (1)

= H (�) + o (1) :

We still have to show the convergence when � = 0, or when at least one
of z + a

n and z +
b
n =2 �D, that is at least one is in G: For this we use

convergence continuation theorems, and uniform boundedness. In view of
Cauchy-Schwarz, (2.6) and (2.2), we have for all z 2 @G;

sup
u;v2Gn(M)

��KC
n (u; v)

�� � sup
u2Gn(M)

��KC
n (u; u)

�� � Cn2 � CKC
n (z; z) :
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The maximum modulus principle then gives

sup
u;v2G[Gn(M)

��KC
n (u; v)

�� � CKC
n (z; z) :

Thus
�
KC
n (z+ a

n
;z+ b

n)
KC
n (z;z)

�
n

is uniformly bounded for a; b in compact subsets of

the plane, and for z 2 @G. It is hence a normal family in the complex vari-
ables a; b. Inasmuch as for� 6= 0, it has the limitH

�
a�0 (z)� (z) + b�0 (z)� (z)

�
,

which is entire in a; b, convergence continuation theorems give the result,
even when � = 0. �
Recall the notation (1.9).

Corollary 2.2
Let r; s be non-negative integers. Then uniformly for z 2 @G;

(2.7) lim
n!1

K
C(r;s)
n (z; z)

nr+sKn (z; z)
=
2
�
�0 (z)� (z)

�r �
�0 (z)� (z)

�s
r + s+ 2

:

Proof
Taylor series expansion shows that

(2.8)
KC
n

�
z + a

n ; z +
b
n

�
KC
n (z; z)

=

1X
r;s=0

ar�bs

r!s!

K
C(r;s)
n (z; z)

nr+sKC
n (z; z)

:

Next, the Maclaurin series for H is

H (t) =

1X
k=0

2tk

(k + 2) k!

so if w = �0 (z)� (z);

H
�
a�0 (z)� (z) + b�0 (z)� (z)

�
=

1X
k=0

2

(k + 2) k!

kX
r=0

�
k

r

�
(aw)r

�
bw
�k�r

= 2

1X
r=0

(aw)r

r!

1X
k=r

�
bw
�k�r

(k + 2) (k � r)!

= 2

1X
r;s=0

(aw)r

r!

�
bw
�s

s! (r + s+ 2)
:(2.9)

The uniform convergence in a; b in (2.4) as n ! 1, implies that corre-
sponding Taylor series coe¢ cients also converge. Then (2.8) and (2.9) give
(2.7). The uniformity in z follows from Cauchy�s estimates and the uniform
convergence in z 2 @G: �
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3. Christoffel functions

The methods used to prove the following result for Christo¤el functions
are well known for orthogonal polyonomials over intervals and curves [16],
[21], [22], [29]. For Bergman polynomials, there are far fewer results [7], [8].
One di¢ culty in its formulation is that if z 2 @G, and a 2 C, we cannot be
sure that z + a

n 2 @G for large enough n. So instead we consider sequences
fzng � @G. Recall that �n and �Cn denote respectively the Christo¤el func-
tions for the measure � and for the measure with derivative 1 on G (the
Carleman case).

Theorem 3.1
Let G; J and � be as in Theorem 1.1 or 1.3. Let M > 0.
(a) Uniformly for z0 2 J and sequences fzng � @G with jzn � z0j < M

n , n �
1;

(3.1) lim
n!1

n2�n (zn) =

���0 (z0)��2
�

w (z0) :

(b) There exists � > 0 and n0 such that uniformly for n � n0 and z 2
J (�) \ @G,

(3.2) �n (z) �
1

n2
:

Remarks
(a) The notation � means that the ratio of the two quantities is bounded
above and below by positive constants independent of n, z and a:
(b) We emphasize that we are assuming that w is continuous in J when
regarded as a function de�ned on G.
(c) Totik [31, Theorem 1.4] has recently proved a generalization of Theorem
3.1, where the region G may consist of �nitely many components, and more-
over, there is no geometric condition on the boundary. The decription of the
limit involves a Green�s function rather than a conformal map. However,
instead it is assumed that J is contained in a C2 arc, so the curve is assumed
to be locally smoother than in our case.
We shall assume the hypotheses of Theorem 1.1, and at the end, indicate

the simple changes required for the hypotheses of Theorem 1.3. We �rst
need:

Lemma 3.2
Assume the hypotheses of Theorem 1.1 and that J1 is a @G neighborhood
of J such that J1 � @G \ @Co (G) : There exists for z 2 J1, a quadratic
polynomial Rz with the following properties:
(i) Rz (z) = 1;
(ii) jRzj � 1 in G;
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(iii) Given � > 0, there exists � 2 (0; 1) such that jRzj � � in GnB
�
z; �2
�
.

Here � is independent of z 2 J1:
Proof
By a translation and rotation of G, we may assume that �G lies in the closed
left-half plane, and that the z for which Rz must be constructed is z = 0.
Thus the imaginary axis is a supporting line for Co

�
�G
�
. By a dilation, we

may also assume that

�G �
�
z : jzj � 1

13
sin

�

8

�
:

We shall see that
R0 (t) = 1 + t+ 2t

2

does the job. Let t = rei�, where � 2
�
�
2 ; �

�
and 0 � r � 1

13 sin
�
8 . It su¢ ces

to consider such t, since jR (�t)j = jR (t)j. A simple calculation shows that
jR0 (t)j2

= 1 + r
�
2 cos � + r [1 + 4 cos 2�] + 4r2 cos � + 4r3

	
:

If �rst, � 2
�
�
2 ;
5�
8

�
, then as cos � � 0;

jR0 (t)j2

� 1 + r2
�
1 + 4 cos 2� + 4r2

	
� 1 + r2

�
1� 2

p
2 +

4

169

�
� 1� r2

np
2� 1

o
:

If instead, � 2 (5�8 ; �], then

jR0 (t)j2

� 1 + r
n
�2 sin �

8
+ 5r + 4r2 + 4r3

o
� 1� r sin �

8
;

as 5r + 4r2 + 4r3 < 13r � sin �8 . Thus for all t 2 �G;

jR0 (t)j2 � max
n
1� r2

np
2� 1

o
; 1� r sin �

8

o
:

In particular, if t 2 GnB
�
0; �2
�
, so that jtj � �

2 , we have

jR0 (t)j2 � max
�
1� �

2

4

np
2� 1

o
; 1� �

2
sin

�

8

�
:

This latter bound can be taken as our �2, since it will clearly work uniformly
for z 2 J1. �

Remark
Uniform peak polynomial sets were discussed in [1] and [31], though with
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di¤erent terminology. It is easy to see that some geometric restriction is
needed. Indeed, let

G = fz : jzj � 1 with arg (z) 2 [��; �] [ [��;���]g ;

where 0 < � < �
2 . Thus G is the ball center 0, radius 1, with a sector of

width 2�� < � removed about the positive real axis. Then there does not
exist a polynomial R0 with the properties listed above. Indeed, if

R0 (z) = 1 + z +O
�
z2
�
;

then in order that jR0j < 1 in that part of G in the left-half plane close to
0, we need  > 0. But then for z in G close to 0 in the right-half plane, we
obtain jRzj > 1.

Proof of Theorem 3.1 under the hypotheses of Theorem 1.1
(a) Let " > 0 and choose � > 0 such that � is absolutely continuous with
respect to planar measure in J (�), and such that

(3.3) (1 + ")�1 � w (z)

w (u)
� 1 + "; z; u 2 J (�) \ �G with jz � uj � �:

(This is possible because of compactness of J and continuity and positivity
of w at every point of J). We may assume that � is so small that J (�)\@G is
a uniform peak polynomial set for �G. Let us �x z0 2 J; z 2 B (z0; �=2)\ @G
and let Rz be the quadratic polynomial of Lemma 3.2. Thus Rz (z) = 1 and
there exists r < 1 such that

jRzj � r in GnB
�
z;
�

2

�
:

Here r is independent of z and z0. Let � 2
�
0; 12
�
, n > 2 [�n], and consider

the polynomial

P (t) =
KC
n�2[n�] (t; z)

KC
n�2[n�] (z; z)

Rz (t)
[n�] :

We see that P (z) = 1, and P has degree � n � 1, so, using the properties
of Rz; and (3.3), and recalling jz � z0j < �=2,

�n (z)

�
Z
G
jP j2 d�

� w (z0) (1 + ")

KC
n�2[n�] (z; z)

2

Z
G\B(z; �2)

���KC
n�2[n�] (t; z)

���2 dA (t)
+

KC
n�2[n�] (�; z)

2
L1(GnB(z; �2))

KC
n�2[n�] (z; z)

2 r2[�n]
Z
GnB(z; �2)

d�:(3.4)



12 DORON S. LUBINSKY

Here Z
G\B(z; �2)

���KC
n�2[n�] (t; z)

���2 dA (t)
�

Z
G

���KC
n�2[n�] (t; z)

���2 dA (t) = KC
n�2[n�] (z; z) :

Moreover, by Cauchy-Schwarz, the maximum-modulus principle, and The-
orem 2.1(b), KC

n�2[n�] (�; z)

L1(G)

� Cn2:

Hence, using �Cn�2[n�] (z) = 1=KC
n�2[n�] (z; z), and Theorem 2.1(b) again,

(3.4) gives

�n (z) =�
C
n�2[�n] (z)

� w (z0) (1 + ") + Cn
2r2[�n]:

This bound holds uniformly for z 2 B
�
z0;

�
2

�
\ @G and z0 2 J . Now let

M > 0 and fzng � @G with jzn � z0j � M
n , n � 1. We then obtain for

n � 2M
� ;

�n (zn) =�
C
n�2[n�] (zn)

� w (z0) (1 + ") + Cn
2r[�n]:

Using the asymptotic (2.2) in Theorem 2.1(b), we deduce that

lim sup
n!1

n2�n (zn) �
2����0 (z0)��2w (z0) (1 + ") (1� 2�)�2 :

As " and � > 0 are arbitrary, we obtain, uniformly for z0 2 J and such
sequences fzng ;

(3.5) lim sup
n!1

n2�n (zn) �
2����0 (z0)��2w (z0) :

The converse inequality is a little more di¢ cult, and does use regularity
of the measure �. Much as before, we let Rz and � be as above, and for
n > 2 [�n], we set

P (t) =
Kn�2[n�] (t; z)

Kn�2[n�] (z; z)
Rz (t)

[n�] :
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Much as before, we obtain

�Cn (z)

�
Z
G
jP j2 dA

� w (z0)
�1 (1 + ")

Kn�2[n�] (z; z)
2

Z
G\B(z; �2)

��Kn�2[n�] (t; z)��2w (t) dA (t)
+

Kn�2[n�] (�; z)2L1(GnB(z;�=2))
Kn�2[n�] (z; z)

2 r2[�n]
Z
GnB(z;�=2)

dA:(3.6)

Here Z
G\B(z; �2)

��Kn�2[n�] (t; z)��2w (t) dA (t)
�

Z
G

��Kn�2[n�] (t; z)��2 d� (t) = Kn�2[n�] (z; z) :
Next, by the regularity of �, for any sequence fSng of polynomials, with
each Sn of degree � n, we have [27, Thm. 3.2.1(iii), p. 66],

lim sup
n!1

264 kSnkL1(G)�R
G jSnj

2 d�
�1=2

375
1=n

� 1:

In particular,Kn�2[n�] (�; z)2L1(G)
� (1 + o (1))n

Z
G

��Kn�2[n�] (t; z)��2 d� (z) = (1 + o (1))nKn�2[n�] (z; z) :
Substituting these estimates in (3.6) gives for such z; z0, and n;

�Cn (z) =�n�2[n�] (z)

� w (z0)
�1 (1 + ") + (1 + o (1))n r2[�n]

Z
G
dA:

Now recall that fzng is a sequence in @G with jzn � z0j � M=n for n � 1.
Setting z = zn�2[�n] and using our asymptotic Theorem 2.1(b) yields

lim sup
n!1

n�2=�n�2[n�]
�
zn�2[n�]

�
�

 
2����0 (z0)��2w (z0)

!�1
(1 + ") :

Now for anym large enough, we can writem = n�2 [n�] for some n: indeed,
the di¤erence between successive elements, namely (n+ 1� 2 [(n+ 1) �])�
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(n� 2 [n�]) = 1 + 2 ([n�]� [(n+ 1) �]) is no larger than 1. We deduce that

lim sup
m!1

m�2=�m (zm) �
 

2����0 (z0)��2w (z0)
!�1

(1 + ") (1� 2�)�2 :

Here " and � may be taken arbitrarily small. Together with (3.5), this gives
the result.
(b) This was essentially proved in (a) - use the estimates established uni-
formly for z 2 B (z0; �=2) and z0 2 J . �

Remark
Note that we did not use regularity of � in the upper bound. Thus for any
measure � on G, (3.5) holds. Of course, this is a familiar result in the con-
text of measures on the real line, and holds even when w is not continuous
at z0 [16], [29].

Proof of Theorem 3.1 under the hypotheses of Theorem 1.3
The only di¤erence is that we let

P (t) =
KC
n�k[n�] (t; z)

KC
n�k[n�] (z; z)

Rz (t)
[n�]

for the asymptotic upper bound, and

P (t) =
Kn�k[n�] (t; z)

Kn�k[n�] (z; z)
Rz (t)

[n�]

for the asymptotic lower bound, where Rz is the polynomial of degree, say,
� k of De�nition 1.2. Here k is by hypothesis, independent of z. Moreover,
� 2

�
0; 1k

�
. The rest of the details are as before. �

4. Proof of Theorems 1.1, 1.3 and Corollary 1.2

We begin with an inequality:

Lemma 4.1
Suppose that �; �� are measures on G with � � �� in G. Then for z; t 2 C;

jKn (z; t)�K�
n (z; t)j =Kn (z; z)

�
�
Kn (t; t)

Kn (z; z)

�1=2 �
1� K

�
n (z; z)

Kn (z; z)

�1=2
:(4.1)

Proof
The idea is to estimate the L2 norm of Kn � K�

n over G, and then to use
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Christo¤el function estimates. NowZ
G
j(Kn �K�

n) (z; t)j
2 d� (t)

=

Z
G
jKn (z; t)j2 d� (t)� 2Re

Z
G

�
KnK

�
n

�
(z; t) d� (t)

+

Z
G
jK�

n (z; t)j
2 d� (t)

= Kn (z; z)� 2K�
n (z; z) +

Z
G
jK�

n (z; t)j
2 d� (t) ;

by the reproducing kernel property. As � � ��; we also haveZ
G
jK�

n (z; t)j
2 d� (t) �

Z
G
jK�

n (z; t)j
2 d�� (t) = K�

n (z; z) :

So Z
G
j(Kn �K�

n) (z; t)j
2 d� (t)

� (Kn �K�
n) (z; z) :(4.2)

Next for any polynomial P of degree � n�1, we have the Christo¤el function
estimate

jP (t)j � K1=2
n (t; t)

�Z
G
jP j2 d�

�1=2
:

Applying this to the polynomial P (t) = (Kn �K�
n) (z; t) ; and using (4.2)

gives the result. �
From this we readily deduce:

Lemma 4.2
Assume that �; �� are regular measures on G, and that G; J; � are as in
Theorem 1.1 or 1.3. Assume �� is also absolutely continuous with respect to
planar measure in a relatively open subset of �G set containing J . Assume
that

d� = d�� in J:

Let A > 0. Then as n!1;

(4.3) j(Kn �K�
n) (zn; tn)j =n2 = o (1) ;

uniformly for all sequences fzng ; ftng � @G with the following properties:
for some z0 2 J we have for all n � 1, jzn � z0j � A=n; jtn � z0j � A=n:
Proof
We initially assume that

(4.4) d� � d�� in G:

Then the inequality (4.1) of Lemma 4.1 holds. Now we set z = zn and
t = tn where fzng ; ftng are as above. By Theorem 3.1, uniformly for such
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sequences; K
�
n(zn;zn)

Kn(zn;zn)
= 1 + o (1), for (��)0 = �0 = w in J . Moreover,

Kn (zn; zn) � Kn (tn; tn) � n2;

so uniformly for such fzng ; ftng ; (4.1) gives

j(Kn �K�
n) (zn; tn)j =n2 = o (1) :

Now we drop the extra hypothesis (4.4). De�ne a measure � by � = � = ��

in J ; and in GnJ , let

d� (t) = max fdist (t; J) ; w (t) ; w� (t)g dA (t) + d�s (t) + d��s (t) ;

where w;w� and �s; �
�
s are respectively the absolutely continuous and sin-

gular components of �; ��. Then � � � and �� � �, and � is regular as its
absolutely continuous component is positive in G: Moreover, � is absolutely
continuous in an open subset of G whose boundary contains J; and w� = w
in J . The case above shows that the reproducing kernels for � and �� have
the same asymptotics as that for �, in the sense of (4.3), and hence the same
asymptotics as each other. �
We next approximate � of Theorem 1.1 by a multiple �# of Lebesgue

measure on G, and then prove Theorem 1.1. Recall that ~Kn is the normal-
ized kernel, given by (1.4).

Lemma 4.3
Let G; J; � be as in Theorem 1.1 or 1.3. Let A > 0; " 2

�
0; 12
�
and choose

� > 0 such that (3.3) holds. Then there exists n0 such that for n � n0;
z0 2 J and z; t 2 B

�
z0;

�
2

�
\ @G;

(4.5)
���� ~Kn � ~KC

n

�
(z; t)

��� =n2 � Cp";
Here C is independent of n; z; t; z0; "; �.
Proof
Fix z0 2 J and let w# be the scaled Legendre weight

w# = w (z0) in G:

Note that

(4.6) K#
n (�; �) =

1

w (z0)
KC
n (�; �) :

Because of our localization result Lemma 4.2, we may replace d� by w� (t) dA (t),
where

w� = w in B (z0; �)

and
w� = w (z0) in GnB (z0; �) ;

without a¤ecting the asymptotics for Kn (z; t) =n2 in the ball B
�
z0;

�
2

�
.

(Note that " and � play no role in Lemma 4.2). So in the sequel, we assume
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that w = w (z0) = w# in GnB (z0; �), while not changing w in B (z0; �).
Observe that (3.3) implies that

(4.7) (1 + ")�1 � w

w#
� 1 + ", in G:

Let

w1 = (1 + ")w:

Then w1 � w# in G, and if K1
n denotes the kernel function for w1, we have

K1
n (�; �) =

1

1 + "
Kn (�; �) :

By Lemma 4.1, for all u; v 2 C;���K#
n (u; v)�K1

n (u; v)
��� =K#

n (u; u)

�
 
K#
n (v; v)

K#
n (u; u)

!1=2 "
1� K1

n (u; u)

K#
n (u; u)

#1=2
:(4.8)

Here

K1
n (u; u)

K#
n (u; u)

=
1

1 + "

Kn (u; u)

K#
n (u; u)

� 1

(1 + ")2
;

in view of (4.7). Then (4.6) and (4.8) give for all z; t 2 B
�
z0;

�
2

�
\ @G;����K#

n (z; t)�
1

1 + "
Kn (z; t)

���� =K#
n (z; z)

�
�
KC
n (t; t)

KC
n (z; z)

�1=2 �
1� 1

(1+")2

�1=2
:

Using that K#
n (z; t) = O

�
n2
�
and K#

n (z; z) � Cn2, we obtain for all z; t 2
B
�
z0;

�
2

�
\ @G; ����Kn �K#

n

�
(z; t)

��� =n2 � Cp";
so (4.6) gives

(4.9)
��w (z0)Kn (z; t)�KC

n (z; t)
�� =n2 � Cp":

Next, by (3.3), we have for z; t 2 B
�
z0;

�
2

�
\G;

(1 + ")�1 � w (z)1=2w (t)1=2

w (z0)
� 1 + ":
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Then for such z; t and z0;���( ~Kn � ~KC
n ) (z; t)

��� =n2
=

�����w (z)1=2w (t)1=2w (z0)
w (z0)Kn (z; t)�KC

n (z; t)

����� =n2
�

�����w (z)1=2w (t)1=2w (z0)
� 1
�����w (z0) jKn (z; t)j =n2 + ��w (z0)Kn (z; t)�KC

n (z; t)
�� =n2

� C
p
";

by (4.9). �

Our last lemma is a growth estimate for polynomials:

Lemma 4.4
Let � > 0;M > 0. There exists C > 0 such that for n � 1 and polynomials
P of degree � n;
(4.10) jP (z)j � C sup

J(�)\@G
jP j

for all z with dist (z; J \ @G) � M
n :

Proof
We use the fact that J (�) \ @G consists of �nitely many smooth arcs of
length at least 2�, so that the Green�s function for the complement of the
set is well behaved. More precisely, let g (z) denote the Green�s function for
Cn (J (�) \ @G) with pole at 1. Since � = @G 2 C (1; �) with � > 1

2 ; each
arc of J (�)\@G is smooth and of length � 2�. Then for z 2 Cn (J (�) \ @G)
with dist (z; J) � �=2;

g (z) � Cdist (z; J (�) \ @G) :
To see this, we use the classic representation of the Greens function in terms
of the equilibrium potential for J (�)\@G, and the fact that the equilibrium
density is continuous, and so bounded, in J (�=2) \ @G. See, for example,
[24, p. 216]. We now use the Bernstein-Walsh inequality

jP (z)j � eng(z) sup
J(�)\@G

jP j

and the estimate above for the Green�s function, which gives

g (z) � Cdist (z; J \ @G) � CM
n
:

�

Proof of Theorems 1.1 and 1.3
Let A; " > 0. Choose � > 0 such that (3.3) holds. Now cover J by,
say, L balls B

�
ẑj ;

�
2

�
, 1 � j � L, each of diameter �. For each j, there
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exists a threshhold n0 = n0 (j) for which (4.5) holds for n � n0 (j) and
z; t 2 B

�
ẑj ;

�
2

�
\ @G. Let n1 denote the largest of these. Then we obtain,

for n � n1, z0 2 J; z; t 2 B
�
z0;

�
2

�
\ @G;���� ~Kn �KC

n

�
(z; t)

��� =n2 � Cp":
It follows that if fzng ; ftng are sequences in @G such that for some M > 0
and z0 2 J , we have jzn � z0j � M

n and jtn � z0j � M
n for all n, then

(4.11) lim
n!1

���� ~Kn �KC
n

�
(zn; tn)

��� =n2 = 0:
In particular, suppose that for some given a; b;

(4.12) zn = z0 +
an
n
and tn = z0 +

bn
n
; with lim

n!1
an = a and lim

n!1
bn = b:

From (4.11) and the uniform convergence in Theorem 2.1(c) for Carleman
polynomials, we have

lim
n!1

Kn
�
z0 +

an
n ; z0 +

bn
n

�
Kn (z0; z0)

= lim
n!1

~Kn
�
z0 +

an
n ; z0 +

bn
n

�
~Kn (z0; z0)

= lim
n!1

KC
n

�
z0 +

an
n ; z0 +

bn
n

�
KC
n (z0; z0)

= H
�
a�0 (z0)� (z0) + b�

0 (z0)� (z0)
�
:

We claim that then this implies for the given a; b;

(4.13) lim
n!1

Kn
�
z0 +

a
n ; z0 +

b
n

�
Kn (z0; z0)

= H
�
a�0 (z0)� (z0) + b�

0 (z0)� (z0)
�
:

This will follow if we can show that
�
Kn(z0+ s

n
;z0+

t
n)

Kn(z0;z0)

�
n

is a normal family

for s; t in compact subsets of the plane. To show the latter, recall from
Theorem 3.1(b) and Cauchy-Schwarz,

sup
u;v2J(�)\@G

jKn (u; v)j � Cn2:

Lemma 4.4 gives that for all u; v with dist(u; J \ @G) � M
n and dist(v; J \ @G) �

M
n ;

jKn (u; v)j � Cn2 (� CKn (z0; z0)) :
The desired normality then follows. Finally, we can choose sequences of
in�nitely many distinct a; b with a �nite limit point for which there exist
sequences fzng ; ftng in J (�)\@G with the properties (4.11) and (4.12). (In

fact, there is a continuum of such a; b). The normality of
�
Kn(z0+ a

n
;z0+

b
n)

Kn(z0;z0)

�
n

and convergence continuation theorems then show that (4.13) holds uni-
formly for a; b in compact subsets of the plane. �
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Proof of Corollary 1.4
Exactly as in the proof of Corollary 2.2, we have the Taylor series identity
(2.8) for Kn instead of KC

n . Moreover, as at (4.13), we have the uniform
convergence of 1

Kn(z0;z0)
Kn
�
z0 +

a
n ; z0 +

b
n

�
for a; b in compact subsets of

the complex plane. Recalling the identity (2.9) from Theorem 2.1, the re-
sult now follows, for each �xed z 2 J . However, the uniformity in z still
must be proved separately. For this, we just use the uniform boundedness
in z also. �
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