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Abstract. We show how localization and smoothing techniques can be used
to establish universality at the edge of the spectrum for a fixed positive mea-
sure µ on [−1, 1]. Assume that µ is a regular measure, and is absolutely
continuous in some closed neighborhood J of 1. Assume that in J , µ′ (x) =

h (x) (1 − x)α (1 + x)β , where h (1) > 0 and h is continuous at 1. Then uni-
versality at 1 for µ follows from universality at 1 for the classical Jacobi weight

(1 − x)α (1 + x)β .

1. Results

Let µ be a finite positive Borel measure on (−1, 1). Then we may define or-
thonormal polynomials

pn (x) = γnxn + . . . , γn > 0,

n = 0, 1, 2, . . . satisfying the orthonormality conditions
∫ 1

−1

pnpmdµ = δmn.

These orthonormal polynomials satisfy a recurrence relation of the form

xpn (x) = an+1pn+1 (x) + bnpn (x) + anpn−1 (x) ,

where

an =
γn−1

γn
> 0 and bn ∈ R, n ≥ 1,

and we use the convention p−1 = 0. Throughout w = dµ
dx denotes the absolutely

continuous part of µ. A classic result of E. A. Rakhmanov [6] asserts that if w > 0
a.e. in [−1, 1], then µ belongs to the Nevai-Blumenthal class M, that is

lim
n→∞

an =
1

2
and lim

n→∞
bn = 0.

1991 Mathematics Subject Classification. 15A52, 42C05.
Research supported by NSF grant DMS0400446 and US-Israel BSF grant 2004353.

c©0000 (copyright holder)

1



2 D. S. LUBINSKY

A class of measures that contains M is the class of regular measures [7], defined
by the condition

lim
n→∞

γ1/n
n = 2.

One of the key limits in random matrix theory, the so-called universality limit
[1], involves the reproducing kernel

Kn (x, y) =

n−1∑

k=0

pk (x) pk (y)

and its normalized cousin

K̃n (x, y) = w (x)
1/2

w (y)
1/2

Kn (x, y) .

In [3], we presented a new approach to this universality limit, proving:

Theorem 1.1. Let µ be a finite positive Borel measure on (−1, 1) that is regu-
lar. Let I be a closed subinterval of (−1, 1) such that µ is absolutely continuous in
an open interval containing I.
(a) Assume that w is positive and continuous at each point of I. Then

lim
n→∞

K̃n

(
x + a

eKn(x,x)
, x + b

eKn(x,x)

)

K̃n (x, x)
=

sinπ (a − b)

π (a − b)
,

uniformly for x ∈ I and a, b in compact subsets of the real line.
(b) Assume that w is bounded above and below by positive constants, and moreover,
w is Riemann integrable in I. Then if p > 0 and I ′ is a closed subinterval of I0,

lim
n→∞

∫

I′

∣∣∣∣∣∣

K̃n

(
x + a

eKn(x,x)
, x + b

eKn(x,x)

)

K̃n (x, x)
− sin π (a − b)

π (a − b)

∣∣∣∣∣∣

p

dx = 0,

uniformly for a, b in compact subsets of the real line.

We also established L1 analogues assuming less on w. In this paper, we show
how localization and smoothing can be applied at the edge 1 of the spectrum. As
far as the author is aware, the most general result to date for Jacobi type weights
is due to Kuijlaars and Vanlessen [2]. Let µ be absolutely continuous, and w have
the form

(1.1) w (x) = h (x) w(a,β) (x) = h (x) (1 − x)
α

(1 + x)
β

,

where h is positive and analytic in [−1, 1]. They showed that uniformly for a, b in
bounded subsets of (0,∞), as n → ∞,

(1.2)
1

2n2
K̃n

(
1 − a

2n2
, 1 − b

2n2

)
= Jα (a, b) + O

(
aα/2bα/2

n

)
.

Here

Jα (u, v) =
Jα (

√
u)

√
vJ ′

α (
√

v) − Jα (
√

v)
√

uJ ′
α (

√
u)

2 (u − v)

is the Bessel kernel of order α, and Jα is the usual Bessel function of the first kind
and order α. Our result is:
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Theorem 1.2. Let µ be a finite positive Borel measure on (−1, 1) that is reg-
ular. Assume that for some ρ > 0, µ is absolutely continuous in J = [1 − ρ, 1],
and in J , its absolutely continuous component has the form w = hw(α,β), where
α, β > −1. Assume that h (1) > 0 and h is continuous at 1. Then uniformly for
a, b in compact subsets of (0,∞), we have

(1.3) lim
n→∞

1

2n2
K̃n

(
1 − a

2n2
, 1− b

2n2

)
= Jα (a, b) .

If α ≥ 0, we may allow compact subsets of [0,∞).

Remarks. (a) We remind the reader that µ is regular if w is positive a.e. in
(−1, 1), or more generally if µ ∈ M.
(b) Our proof uses the fact that universality holds for the Jacobi weight w(α,β).
(c) We can reformulate this in a way that allows a, b to vary in a compact subset
of the complex plane. To do this one shows that n−2α−2Kn

(
1 − a

2n2 , 1 − b
2n2

)
is

uniformly bounded for n ≥ 1 and a, b in compact subsets of the plane. This can

be proved by bounding
(
1 − x + 1

n2

)α+1/2
Kn (x, x) in [1 − δ, 1] for some δ > 0,

using Cauchy-Schwarz to bound Kn (x, y), and then using the maximum principle
for subharmonic functions.

This paper is organised as follows. In the next section, we establish asymptotics
for Christoffel functions. In section 3, we localize, and in section 4, we smooth, and
prove the theorem. In the sequel C, C1, C2, . . . denote constants independent of
n, x, θ. The same symbol does not necessarily denote the same constant in different
occurrences. We shall write C = C (α) or C 6= C (α) to respectively denote depen-
dence on, or independence of, the parameter α. Given measures µ∗, µ#, we use
K∗

n, K#
n and p∗n, p#

n to denote their reproducing kernels and orthonormal polyno-
mials. Similarly superscripts ∗, # are used to distinguish their leading coefficients
and Christoffel functions, and the superscript (α, β) denotes quantities associated
with the Jacobi weight w(α,β).
Acknowledgement

This research was stimulated by the wonderful conference in honor of Percy Deift’s
60th birthday, held at Courant Institute in June 2006.

2. Christoffel functions

Recall that the nth Christoffel function for µ is

λn (x) = 1/Kn (x, x) = min
deg(P )≤n−1

(∫ 1

−1

P 2dµ

)
/P 2 (x) .

The methods used to prove the following result are well known, but I could not find
this theorem in the literature.

Theorem 2.1. Let µ be a regular measure on [−1, 1]. Assume that for some
ρ > 0, µ is absolutely continuous in J = [1 − ρ, 1] and in J , w = hw(α,β), where
α, β > −1 and h is bounded above and below by positive constants with

lim
x→1−

h (x) = h (1) > 0.

Let A > 0. Then uniformly for a ∈ [0, A],

(2.1) lim
n→∞

λn

(
1 − a

2n2

)
/λ(α,β)

n

(
1 − a

2n2

)
= h (1) .
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Moreover, uniformly for n ≥ n0 (A) and a ∈ [0, A],

(2.2) λn

(
1 − a

2n2

)
∼ λ(α,β)

n

(
1 − a

2n2

)
∼ n−(2α+2).

The constants implicit in ∼ do not depend on ρ.

Remarks . The notation ∼ means that the ratio of the two quantities is
bounded above and below by positive constants independent of n and a. Our
proof actually shows that if {εn} is any sequence of positive numbers with limit 0,

λn (x) /λ(α,β)
n (x) = h (1) + o (1) ,

uniformly for x ∈ [1 − εn, 1].

Proof: Let ε > 0 and choose δ ∈ (0, ρ) such that

(2.3) (1 + ε)
−1 ≤ h (x)

h (1)
≤ 1 + ε, x ∈ [1 − δ, 1] .

Let us define a measure µ∗ with

µ∗ = µ in [−1, 1− δ)

and in I = [1 − δ, 1], let µ∗ be absolutely continuous, with absolutely continuous
component w∗ satisfying

(2.4) w∗ = w(α,β)h (1) (1 + ε) in I.

Because of (2.3), dµ ≤ dµ∗, so that if λ∗
n is the nth Christoffel function for µ∗, we

have for all x

(2.5) λn (x) ≤ λ∗
n (x) .

We now find an upper bound for λ∗
n (x) for x ∈ [1 − δ/2, 1]. There exists r ∈ (0, 1)

such that

(2.6) 0 ≤ 1 −
(

t − x

2

)2

≤ 1 − r for x ∈ [1 − δ/2, 1] and t ∈ [−1, 1− δ].

In fact, we may take r =
(

δ
4

)2
. Choose η ∈

(
0, 1

2

)
and σ > 1 so close to 1 that

(2.7) σ1−η < (1 − r)
−η/4

.

Let m = m (n) = n − 2 [ηn/2]. Fix x ∈ [1 − δ/2, 1] and choose a polynomial Pm of
degree ≤ m − 1 such that

λ(α,β)
m (x) =

∫ 1

−1

P 2
mw(α,β) and P 2

m (x) = 1.

Thus Pm is the minimizing polynomial in the Christoffel function for the Jacobi
weight w(α,β) at x. Let

Sn (t) = Pm (t)

(
1 −

(
t − x

2

)2
)[ηn/2]

,
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a polynomial of degree ≤ m − 1 + 2 [ηn/2] ≤ n − 1 with Sn (x) = 1. Then using
(2.4) and (2.6),

λ∗
n (x) ≤

∫ 1

−1

S2
ndµ∗

≤ h (1) (1 + ε)

∫ 1

1−δ

P 2
mw(α,β) + ‖Pm‖2

L∞[−1,1−δ] (1 − r)
2[ηn/2]

∫ 1−δ

−1

dµ∗

≤ h (1) (1 + ε)λ(α,β)
m (x) + ‖Pm‖2

L∞[−1,1] (1 − r)[2ηn/2]
∫ 1

−1

dµ∗.

Now we use the key idea from [4, Lemma 9, p. 450]. For m ≥ m0 (σ), we have

‖Pm‖2
L∞[−1,1] ≤ σm

∫ 1

−1

P 2
mw(α,β)

= σmλ(α,β)
m (x) .

(This holds more generally for any polynomial P of degree ≤ m − 1, and is a
consequence of the regularity of the measure w(α,β). Alternatively, we could use
classic bounds for the Christoffel functions for Jacobi weight.) Then from (2.7),
uniformly for x ∈ [1 − δ/2, 1],

λ∗
n (x) ≤ h (1) (1 + ε)λ(α,β)

m (x)
{

1 + C
[
σ1−η (1 − r)η/2

]n}

≤ h (1) (1 + ε)λ(α,β)
m (x) {1 + o (1)} ,

so as λn ≤ λ∗
n,

sup
x∈[1−δ/2,1]

λn (x) /λ(α,β)
n (x)

≤ h (1) (1 + ε) {1 + o (1)} sup
x∈[1−δ/2,1]

λ(α,β)
m (x) /λ(α,β)

n (x) .(2.8)

Now for large enough n, and some C independent of δ, η, m, n,

(2.9) sup
x∈[1−δ/2,1]

λ(α,β)
m (x) /λ(α,β)

n (x) ≤ 1 + Cη.

Indeed if
{

p
(α,β)
k

}
denote the orthonormal Jacobi polynomials for w(α,β), they

admit the bound [5, p. 170]

∣∣∣p(α,β)
k (x)

∣∣∣ ≤ C

(
1 − x +

1

k2

)−α/2−1/4

, x ∈ [0, 1] .

Then

0 ≤ 1 − λ
(α,β)
n (x)

λ
(α,β)
m (x)

= λ(α,β)
n (x)

n−1∑

k=m

(
p
(α,β)
k (x)

)2

≤ Cλ(α,β)
n (x) (n − m) max

n

2
≤k≤n

(
1 − x +

1

k2

)−α−1/2

≤ Cηnλ(α,β)
n (x)

(
1 − x +

1

n2

)−α−1/2

≤ Cη,

by classical bounds for Christoffel functions [5, p. 108, Lemma 5]. So we have (2.9).
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Now let a ∈ [0, A]. We see that for n ≥ n0 (A), we have 1 − a/
(
2n2
)
∈

[1 − δ/2, 1], and hence (2.8) gives

lim sup
n→∞

(
sup

a∈[0,A]

λn

(
1 − a

2n2

)
/λ(α,β)

n

(
1 − a

2n2

))
≤ h (1) (1 + ε) (1 + Cη) .

As the left-hand side is independent of the parameters ε, η, we deduce that

(2.10) lim sup
n→∞

(
sup

a∈[0,A]

λn

(
1 − a

2n2

)
/λ(α,β)

n

(
1 − a

2n2

))
≤ h (1) .

In a similar way, we can establish the converse bound

(2.11) lim sup
n→∞

(
sup

a∈[0,A]

λ(α,β)
n

(
1 − a

2n2

)
/λn

(
1 − a

2n2

))
≤ h (1)

−1
.

Indeed with m, x and η as above, let us choose a polynomial P of degree ≤ m − 1
such that

λm (x) =

∫ 1

−1

P 2
m (t) dµ (t) and P 2

m (x) = 1.

Then with Sn as above, and proceeding as above,

λ(α,β)
n (x) ≤

∫ 1

−1

S2
nw(α,β)

≤
[
h (1)−1 (1 + ε)

] ∫ 1

1−δ

P 2
mdµ + ‖Pm‖2

L∞[−1,1−δ] (1 − r)2[ηn/2]
∫ 1−δ

−1

w(α,β)

≤
[
h (1)

−1
(1 + ε)

]
λm (x)

{
1 + C

[
σ1−η (1− r)

η/2
]n}

,

and so as above,

sup
x∈[1−δ/2,1]

λ(α,β)
m (x) /λm (x)

≤
[
h (1)−1 (1 + ε)(1 + o (1))

]
sup

x∈[1−δ/2,1]

λ(α,β)
m (x) /λ(α,β)

n (x)

≤
[
h (1)

−1
(1 + ε)

]
{1 + o (1)} (1 + Cη) .

Then (2.11) follows after a scale change m → n and using monotonicity of λn in
n. Together (2.10) and (2.11) give the result. �

3. Localization

Theorem 3.1. Assume that µ, µ∗ are regular measures on [−1, 1]. Assume that

dµ = dµ∗ =
(
hw(α,β)

)
(t) dt in J = [1 − ρ, 1] ,

where h satisfies the hypothesis of Theorem 1.2. Let A > 0. Then as n → ∞,

(3.1) sup
a,b∈[0,A]

∣∣∣∣(Kn − K∗
n)

(
1 − a

2n2
, 1 − b

2n2

)∣∣∣∣ /n2α+2 = o (1) .
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Proof: We initially assume that

(3.2) dµ ≤ dµ∗ in (−1, 1) .

The idea is to estimate the L2 norm of Kn (x, t) − K∗
n (x, t) over [−1, 1], and then

to use Christoffel function estimates. Now
∫ 1

−1

(Kn (x, t) − K∗
n (x, t))2 dµ (t)

=

∫ 1

−1

K2
n (x, t) dµ (t) − 2

∫ 1

−1

Kn (x, t) K∗
n (x, t) dµ (t) +

∫ 1

−1

K∗2
n (x, t) dµ (t)

= Kn (x, x) − 2K∗
n (x, x) +

∫ 1

−1

K∗2
n (x, t) dµ (t) ,

by the reproducing kernel property. As dµ ≤ dµ∗, we also have
∫ 1

−1

K∗2
n (x, t) dµ (t) ≤

∫ 1

−1

K∗2
n (x, t) dµ∗ (t) = K∗

n (x, x) .

So

(3.3)

∫ 1

−1

(Kn (x, t) − K∗
n (x, t))2 dµ (t) ≤ Kn (x, x) − K∗

n (x, x) .

Next for any polynomial P of degree ≤ n − 1, we have the Christoffel function
estimate

(3.4) |P (y)| ≤ Kn (y, y)
1/2

(∫ 1

−1

P 2dµ

)1/2

.

Applying this to P (t) = Kn (x, t) − K∗
n (x, t) and using (3.3) gives

|Kn (x, y) − K∗
n (x, y)| ≤ Kn (y, y)

1/2
[Kn (x, x) − K∗

n (x, x)]
1/2

so
|Kn (x, y) − K∗

n (x, y)|
Kn (x, x)

≤
(

Kn (y, y)

Kn (x, x)

)1/2 [
1 − K∗

n (x, x)

Kn (x, x)

]1/2

.

Now we set x = 1 − a
2n2 and y = 1 − b

2n2 , where a, b ∈ [0, A]. By Theorem 2.1,

uniformly for such x,
K∗

n
(x,x)

Kn(x,x) = 1 + o (1), for they both have the same asymptotics

as for the Jacobi weight. Moreover, uniformly for a, b ∈ [0, A],

Kn

(
1 − b

2n2
, 1 − b

2n2

)
∼ Kn

(
1 − a

2n2
, 1 − a

2n2

)
∼ n2α+2,

so

sup
a,b∈[0,A]

∣∣∣∣(Kn − K∗
n)

(
1 − a

2n2
, 1 − b

2n2

)∣∣∣∣ /n2α+2 = o (1) .

Now we drop the extra hypothesis (3.2). Define a measure ν by ν = µ = µ∗ in J
and

dν (x) = max {1, w, w∗} dx + dµs + dµ∗
s , in [−1, 1]\J

where w, w∗ and µs, µ
∗
s are respectively the absolutely continuous and singular

components of µ, µ∗. Then dµ ≤ dν and dµ∗ ≤ dν, and ν is regular as its absolutely
continuous component is positive in (−1, 1), and hence lies in the even smaller class
M. The case above shows that the reproducing kernels for µ and µ∗ have the same
asymptotics as that for ν, in the sense of (3.1), and hence the same asymptotics as
each other. �
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4. Smoothing

In this section, we approximate µ of Theorem 1.2 by a Jacobi measure µ# and
then prove Theorem 1.2. Our smoothing result is:

Theorem 4.1. Let µ be as in Theorem 1.2. Let ε ∈
(
0, 1

2

)
and choose δ > 0

such that (2.3) holds. Let

(4.1) w# = h (1) w(α,β) in (−1, 1) .

Let A > 0. Then there exists C and n0 such that for n ≥ n0,

(4.2) sup
a,b∈[0,A]

∣∣∣∣
(
Kn − K#

n

)(
1 − a

2n2
, 1 − b

2n2

)∣∣∣∣ /n2α+2 ≤ Cε1/2,

where C is independent of ε, n.

Proof: We note that because of our localization result Theorem 3.1, we may replace
w by w∗, where

w∗ = w = w(α,β)h in I = [1 − δ, 1]

and

w∗ = w(α,β)h (1) in [−1, 1]\I,

without affecting the asymptotics for Kn

(
1 − a

2n2 , 1 − b
2n2

)
. (Note that ε and δ play

no role in Theorem 3.1.) So in the sequel, we assume that w = w(α,β)h (1) = w#

in [−1, 1]\I , while keeping w the same in I . Observe that (2.3) implies that

(4.3) (1 + ε)−1 ≤ w

w#
≤ 1 + ε, in [−1, 1] .

Then, much as in the previous section,
∫ 1

−1

(
Kn (x, t) − K#

n (x, t)
)2

w# (t) dt

=

∫ 1

−1

K2
n (x, t) w# (t) dt − 2

∫ 1

−1

Kn (x, t) K#
n (x, t) w# (t) dt

+

∫ 1

−1

K#2
n (x, t) w# (t) dt

=

∫ 1

−1

K2
n (x, t) w (t) dt +

∫

I

K2
n (x, t)

(
w# − w

)
(t) dt − 2Kn (x, x) + K#

n (x, x)

= K#
n (x, x) − Kn (x, x) +

∫

I

K2
n (x, t)

(
w# − w

)
(t) dt,

recall that w = w# in [−1, 1] \I . By (4.3),
∫

I

K2
n (x, t)

(
w# − w

)
(t) dt ≤ ε

∫

I

K2
n (x, t) w (t) dt ≤ εKn (x, x) .

So

(4.4)

∫ 1

−1

(
Kn (x, t) − K#

n (x, t)
)2

w# (t) dt ≤ K#
n (x, x) − (1 − ε) Kn (x, x) .

Applying an obvious analogue of (3.4) to P (t) = Kn (x, t) − K#
n (x, t) and using

(4.4) gives for y ∈ [−1, 1],
∣∣Kn (x, y) − K#

n (x, y)
∣∣ ≤ K#

n (y, y)
1/2 [

K#
n (x, x) − (1 − ε) Kn (x, x)

]1/2
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so
∣∣Kn (x, y) − K#

n (x, y)
∣∣

K#
n (x, x)

≤
(

K#
n (y, y)

K#
n (x, x)

)1/2 [
1 − (1− ε)

Kn (x, x)

K#
n (x, x)

]1/2

.

In view of (4.3), we also have

Kn (x, x)

K#
n (x, x)

=
λ#

n (x)

λn (x)
≥ 1

1 + ε
,

so for all y ∈ [−1, 1],

∣∣Kn (x, y) − K#
n (x, y)

∣∣

K#
n (x, x)

≤
(

K#
n (y, y)

K#
n (x, x)

)1/2 [
1 − 1− ε

1 + ε

]1/2

≤
√

2ε

(
K#

n (y, y)

K#
n (x, x)

)1/2

.

Now we set x = 1 − a
2n2 and y = 1 − b

2n2 , where a, b ∈ [0, A]. By Theorem 2.1,
uniformly for a, b ∈ [0, A],

K#
n

(
1 − b

2n2
, 1 − b

2n2

)
∼ K#

n

(
1 − a

2n2
, 1 − a

2n2

)
∼ n2α+2,

and also the constants implicit in ∼ are independent of ε (this is crucial!). Thus
for some C and n0 depending only on A, we have for n ≥ n0,

sup
a,b∈[0,A]

∣∣∣∣
(
Kn − K#

n

)(
1 − a

2n2
, 1 − b

2n2

)∣∣∣∣ /n2α+2 ≤ C
√

ε. �

Proof of Theorem 1.2: Let ε1 > 0. We can choose ε > 0 so small that the
right-hand side of (4.2) is less than ε1. (Recall that C there is independent of ε.)
Hence for n ≥ n0 (A, ε1),

sup
a,b∈[0,A]

∣∣∣∣
(
Kn − K#

n

)(
1 − a

2n2
, 1 − b

2n2

)∣∣∣∣ /n2α+2 ≤ ε1.

It follows that

lim
n→∞

(
sup

a,b∈[0,A]

∣∣∣∣
(
Kn − K#

n

)(
1 − a

2n2
, 1 − b

2n2

)∣∣∣∣ /n2α+2

)
= 0.

Next, uniformly for a ∈ [A1, A2], where 0 < A1 < A2 < ∞, we see that

w
(
1− a

2n2

)
= (1 + o (1)) h (1) 2β

( a

2n2

)α

= w#
(
1 − a

2n2

)
(1 + o (1)) ,

with a similar relation when we replace a by b. Hence uniformly for a, b ∈ [A1, A2],

1

2n2
K̃n

(
1 − a

2n2
, 1 − b

2n2

)

=
1

2n2
K̃#

n

(
1 − a

2n2
, 1 − b

2n2

)
(1 + o (1)) + o (1)

= Jα (a, b) + o (1) ,

by the universality limit (1.2) for the scaled Jacobi weight w# = h (1) w(α,β). For
this, see for example [2]. When α ≥ 0, we can allow instead a ∈ [0, A]. �
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