
UNIVERSALITY LIMITS FOR EXPONENTIAL WEIGHTS

ELI LEVIN1 AND DORON S. LUBINSKY2

Abstract. We establish universality in the bulk for �xed exponential weights
on the whole real line. Our methods involve �rst order asymptotics for orthogo-
nal polynomials and localization techniques. In particular we allow exponential
weights such as jxj2� g2 (x) exp (�2Q (x)), where � > �1=2, Q is convex and
Q00 satis�es some regularity conditions, while g is positive, and has uniformly
continuous and slowly growing or decaying logarithm.

1. Results1

Let W = e�Q , where Q : R! [0;1) is continuous, and all momentsZ
R
xjW 2 (x) dx; j = 0; 1; 2; ::: ,

are �nite. Then we may de�ne orthonormal polynomials

pn (x) = pn
�
W 2; x

�
= nx

n + :::; n > 0;

n = 0; 1; 2; ::: satisfying the orthonormality conditionsZ
R
pnpmW

2 = �mn:

One of the key limits in random matrix theory, the so-called universality limit
[4], involves the reproducing kernel

Kn (x; y) =
n�1X
k=0

pk (x) pk (y)

and its normalized cousineKn (x; y) =W (x)W (y)Kn (x; y) :

For the weight W (x) = exp (� jxj�), where � > 0, the limit in the bulk takes the
form

~Kn

�
x+

a
~Kn (x; x)

; x+
b

~Kn (x; x)

�
= ~Kn (x; x)!

sin� (b� a)
� (b� a) ;

uniformly for jxj � (1� ")C�n1=�, and a; b in compact subsets of the real line, as
n ! 1. Here " 2 (0; 1) is arbitrary, and C� is a constant depending only on �.
There are results at the �soft� edge of the spectrum, namely in a neighborhood
of the point x = �C�n1=�, where the sin kernel is replaced by the Airy kernel.
Moreover, universality is also often established for varying weights. Most of the
existing rigorous results have been established for weights of the form exp (�Q),
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where Q is analytic or piecewise analytic. Some of the important references are [1],
[2], [3], [4], [5], [6], [7], [9], [10], [17], [21].
In this paper, we show that the �rst order asymptotics for orthogonal polyno-

mials established by the authors in [11] imply universality in the bulk for �xed
exponential weights on R. We then use a localization technique, developed in [12],
[13] for weights on [�1; 1], to extend the range of weights that we can treat. Our
class of weights is:

De�nition 1.1
Let W = e�Q, where Q : R! [0;1) satis�es the following conditions:
(a) Q0 is continuous in R and Q (0) = 0:
(b) Q00 exists and is positive in Rn f0g :
(c)

lim
jtj!1

Q (t) =1:

(d) The function

T (t) =
tQ0 (t)

Q (t)
; t 6= 0;

is quasi-increasing in (0;1), in the sense that for some C > 0;

0 < x < y ) T (x) � CT (y) :

We assume an analogous restriction for y < x < 0. In addition, we assume that
for some � > 1;

T (t) � � in Rn f0g :

(e) There exists C1 > 0 such that

Q00 (x)

jQ0 (x)j � C1
Q0 (x)

Q (x)
a.e. x 2 Rn f0g :

Then we write W 2 F
�
C2
�
:

This class of weights is a special case of the class of weights considered in [11,
p. 7]; there more general intervals than the real line were permitted. Examples of
weights in this class are W = exp (�Q), where

Q (x) =

�
Ax�; x 2 [0;1)
B jxj� ; x 2 (�1; 0) ;

where �; � > 1 and A;B > 0. More generally, if expk = exp (exp (::: exp ())) denotes
the kth iterated exponential, we may take

Q (x) =

(
expk (Ax

�)� expk (0) ; x 2 [0;1)
exp`

�
B jxj�

�
� exp` (0) ; x 2 (�1; 0)

where k; ` � 1; �; � > 1.
A key descriptive role is played by the Mhaskar-Rakhmanov-Sa¤ numbers

a�n < 0 < an;
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de�ned for n � 1 by the equations

n =
1

�

Z an

a�n

xQ0 (x)p
(x� a�n) (an � x)

dx;(1.1)

0 =
1

�

Z an

a�n

Q0 (x)p
(x� a�n) (an � x)

dx:(1.2)

In the case where Q is even, a�n = �an. The existence and uniqueness of these
numbers is established in the monographs [11], [15], [19], but goes back to ear-
lier work of Mhaskar, Rakhmanov, and Sa¤. One illustration of their role is the
Mhaskar-Sa¤ identity:

kPWkL1(R) = kPWkL1[a�n;an] ;

valid for n � 1 and all polynomials P of degree � n.
We also de�ne,

(1.3) �n =
1

2
(an + a�n) and �n =

1

2
(an + ja�nj) ;

which are respectively the center, and half-length of the Mhaskar-Rakhmanov-Sa¤
interval

�n = [a�n; an] :

The linear transformation

Ln (x) =
x� �n
�n

maps �n onto [�1; 1]. Its inverse

L[�1]n (u) = �n + u�n

maps [�1; 1] onto �n. For 0 < " < 1, we let

(1.4) Jn (") = L[�1]n [�1 + "; 1� "] = [a�n + "�n; an � "�n] :
The smallest and largest zeros of pn

�
W 2; x

�
are very close to a�n and an. More-

over,
n
pn � L[�1]n

o
n�1

behaves much like a sequence of orthonormal polynomials on

[�1; 1]. In particular, staying well inside of the Mhaskar-Rakhmanov-Sa¤ interval
�n = [a�n; an] gives us the bulk of the spectrum, while a�n are the edges, in the
parlance of universality theory.
Our �rst result is:

Theorem 1.2
Let W = exp (�Q) 2 F

�
C2
�
. Let 0 < " < 1. Then uniformly for a; b in compact

subsets of the real line, and x 2 Jn ("), we have as n!1;

(1.5) ~Kn

�
x+

a
~Kn (x; x)

; x+
b

~Kn (x; x)

�
= ~Kn (x; x) =

sin� (b� a)
� (b� a) + o (1) :

In particular, if W is even, this holds uniformly for jxj � (1� ") an.
We note that the proof works without change for a larger class of weights, namely

the class F
�
lip 12

�
in [11, p. 12]. However, the de�nition of that class is more

implicit, so is omitted.
The proof of Theorem 1.2 involves a careful substitution of the �rst order as-

ymptotics for pn, derived in [11], into the Christo¤el-Darboux formula, for the case
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where a 6= b in (1.5). An extra argument is then used to deal with the case where
b� a! 0.
Using a localization technique, we shall extend this to other classes of weights.

Typically, we shall deal with weights

Wh = hW

as well as W �;W# (These will be de�ned later). Their reproducing kernels will be
denoted respectively by Kh

n (x; t) ; K
�
n (x; t) and K

#
n (x; t), and in normalized form

respectively by ~Kh
n (x; t) ;

~K�
n (x; t) and ~K#

n (x; t). The superscripts h; � and # will
also be used to indicate other quantities associated with these weights.
Recall that a generalized Jacobi weight w has the form

(1.6) w (x) =
NY
j=1

jx� �j j�j ;

where all f�jg are distinct, and all �j > �1.

Theorem 1.3
Let W = exp (�Q) 2 F

�
C2
�
. Let h : R! [0;1) be a function that is square inte-

grable over every �nite interval. Assume that there is a generalized Jacobi weight
w, a compact interval J; and C > 0 such that

(1.7) h2 � Cw in J;

while

(1.8) lim
r!1

log klog hkL1([0;r]nJ)
logQ (r)

= 0;

with an analogous limit as r ! �1. Assume that K is a closed subset of R in
which log h is uniformly continuous. Let 0 < " < 1. Then uniformly for a; b in
compact subsets of the real line, and x 2 Jn (") \ K;

(1.9) ~Kh
n

�
x+

a
~Kh
n (x; x)

; x+
b

~Kh
n (x; x)

�
= ~Kh

n (x; x) =
sin� (b� a)
� (b� a) + o (1) :

The uniform continuity of log h in K is assumed in the following "global" sense:
given " > 0, there exists � > 0 such that for x 2 K, and jt� xj < � (with possibly
t lying outside K), we have

jlog h (t)� log h (x)j < ":

Of course, this forces h to be positive in the set K in which universality is desired.
Note that we can take

h = w1=2g;

where w is a generalized Jacobi weight, and g is a positive continuous function,
with log g uniformly continuous in the real line, and

lim
jxj!1

log jlog g (x)j
log jxj = 0:

Such a choice satis�es (1.8) since Q (x) grows faster than jxj at 1. This rate of
growth/ decay of g is similar to that for entire functions of order 0. In this case,
the set K could be taken as the real line with small intervals removed around the
zeros and in�nities of w. At the other extreme, our theorem does yield universality
at a single point if we assume that log h is continuous only at a single point.
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One may replace the condition (1.7) by a more general but implicit one. We can
assume that for n � 1, and all polynomials P of degree � n, we haveZ

J

P 2 � Nn

Z
J

(Ph)
2
;

where for each � > 0;

logNn = O
�
n�
�
; n!1:

In addition, one could replace Wh over J by a measure satisfying some similar
inequality. One may also weaken the growth restriction (1.8) on h if we assume h
is di¤erentiable, and satis�es some other conditions.
The proof of Theorem 1.3 involves reduction to the situation of Theorem 1.2

by a localization technique. When we want universality at a given x0, we �x
� > 0, and replace Wh outside [x0 � � ; x0 + � ] by the weight h (x0)W (x). Subse-
quently, we use the fact that if � is small enough, thenWh is almost h (x0)W inside
[x0 � � ; x0 + � ] because of the continuity of h at x0. The details are substantially
more complicated than in the �nite interval case, since we wish to prove universality
uniformly for x0 2 Jn (") \ K; and Jn (") grows with n. In [12], we could instead
just use a compactness argument to prove uniformity.
This paper is organised as follows. In the next section, we present some technical

estimates. In Section 3, we prove Theorem 1.2. We recommend that at a �rst
reading, the reader skip Section 2, and focus on Section 3. In section 4, we establish
asymptotics of Christo¤el functions. In Section 5 we localize, and in section 6, we
prove Theorem 1.3. In the sequel C;C1; C2; ::: denote constants independent of
n; x, and polynomials of degree � n: The same symbol does not necessarily denote
the same constant in di¤erent occurences. We shall write C = C (�) or C 6= C (�)
to respectively denote dependence on, or independence of, the parameter �. Given
sequences fcng ; fdng of real numbers, we write

cn � dn

if there exist positive constants C1 and C2 such that for n � 1;

C1 � cn=dn � C2:

Similar notation is used for functions and sequences of functions. [x] denotes the
greatest integer � x.

2. Technical Estimates

Throughout, we assume W 2 F
�
C2
�
. The class F

�
C2
�
is contained in the

classes F
�
Lip 12

�
; F

�
lip 12

�
; F in [11], see p. 13 there. So we can apply estimates

for all these classes from there. We de�ne for n � 1 the square root factor

(2.1) �n (x) =
p
(x� a�n) (an � x), x 2 �n:

Our �rst lemma deals with estimates involving a�n :

Lemma 2.1
(a) Let � > 1 be as in De�nition 1.1. Then

(2.2) �n; ja�nj = O
�
n1=�

�
:
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(b) For 1
2 �

m
n � 2;

(2.3)

����aman � 1
���� � 1

T (an)

���m
n
� 1
��� :

Moreover,

(2.4)

�����m�n � 1
���� = O

����m
n
� 1
���� :

In particular, a2n � an and �2n � �n for n � 1:
(c) For n � 1 and x 2 �n;

(2.5) jQ0 (x)j � C
n

�n (x)
:

(d) For n � 1 and x 2 �n;

(2.6) Q (x) � Cn:

(e) Let " 2 (0; 1). For n � 1 and x 2 Jn (") ;

(2.7) �n (x) � �n:

(f) Let " 2 (0; 1). There exists s 2 (0; 1) such that for large enough n;

(2.8) Jn (") � �sn:

(g) There exists C0 such that if � 2 (0; C0), then for all " 2 (0; 1) and n � 1;

Jn (") � Jn�[�n] (2") :

(h) For n � 1 and polynomials P of degree � n;

(2.9) kPWkL1(R) = kPWkL1[a�n;an] :

Moreover, given p > 0 and r > 1, there exist C1; C2 such that for n � 1 and
polynomials P of degree � n;

(2.10) kPWkLp(Rn�rn)
� C1 exp

�
�nC2

�
kPWkLp(R) :

Proof
(a) See (3.30) in [11, Lemma 3.5, p. 72].
(b) See (3.51) in [11, Lemma 3.11, p. 81] for the �rst relation (2.3). Straightforward
manipulations then yield (2.4).
(c) See [11, Lemma 3.8(a), p. 77].
(d) See (3.18) in [11, Lemma 3.4, p. 69], and also use the fact that T � � there.
(e) This follows as in Jn (") ;

2�n � an � x � "�n;

2�n � x� a�n � "�n:

(f) The right endpoint of Jn (") is an � "�n while that of �sn is asn, so we want

an � "�n < asn

() an � asn < "�n:

This follows from (b) for some s close enough to 1. The left endpoints can be
similarly compared.
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(g) Comparing the right endpoints of Jn (") and Jn�[�n] (2"), we see that their
di¤erence is

(an � "�n)�
�
an�[�n] � 2"�n�[�n]

�
� "�n�[�n]

�
2� �n

�n�[�n]

�
;

as an increases with n. By (b) of this lemma,

1� �n
�n�[�n]

= O (�) ;

uniformly for n � 1, so there exists C0 such that for � 2 (0; C0) ; and n � 1;
(an � "�n)�

�
an�[�n] � 2"�n�[�n]

�
� 0:

Comparison of the left endpoints is similar.
(h) This is classical, see for example [11, (4.7), p. 97]. �
Next, we de�ne the equilibrium density

(2.11) �n (x) =
�n (x)

�2

Z an

a�n

Q0 (s)�Q0 (x)
s� x

ds

�n (s)
, x 2 �n:

It satis�es the equation for the equilibrium potential [11, p. 16]:Z an

a�n

log
1

jx� sj�n (s) ds+Q (x) = C, x 2 �n;Z an

a�n

�n = n;

and admits the alternative representation [11, p. 46]

(2.12) �n (x) =
1

�

Z n

jbxj

ds

�s (x)
, x 2 �n;

where b is the inverse function of the map t ! at; t 2 R, that is b (at) = t, t 2 R.
Sometimes, we also use the density transformed to [�1; 1],

(2.13) ��n (x) =
�n
n
�n

�
L[�1]n (x)

�
; x 2 [�1; 1] ;

which has total mass 1. Recall that the nth Christo¤el function for W 2 is

�n
�
W 2; x

�
= 1=Kn

�
W 2; x; x

�
= min

deg(P )�n�1

�Z
R
P 2W 2

�
=P 2 (x) :

Our next lemma deals with �n and �n :

Lemma 2.2
Let 0 < "; s < 1; A > 0:
(a) Uniformly for x 2 �sn;

(2.14) ~Kn (x; x) = ��1n
�
W 2; x

�
W 2 (x) = �n (x) (1 + o (1)) :

In particular, this holds uniformly for x 2 Jn (").
(b) Uniformly for x 2 Jn ("),

(2.15) �n (x) �
n

�n
:
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(c) Uniformly for jaj � A and x 2 Jn ("), we have

(2.16)
�
1� Ln

�
x+

a
~Kn (x; x)

��
= [1� Ln (x)] (1 + o (1)) � 1:

(d) Uniformly for jaj � A;n � 1; and x 2 Jn ("), we have

(2.17) W

�
x+

a�n
n

�
=W (x) = exp (O (jaj)) � 1:

(e) Uniformly for jaj � A; and x 2 Jn ("), we have

(2.18) �n

�
x+

a
~Kn (x; x)

�
=�n (x) = 1 + o (1) :

A similar statement holds if we replace a
~Kn(x;x)

by a �nn .

(f) Uniformly for jaj � A; and x 2 Jn ("), we have

(2.19) ~Kn

�
x+

a
~Kn (x; x)

; x+
a

~Kn (x; x)

�
= ~Kn (x; x) = 1 + o (1) :

(g) For n
2 � m � n and x 2 �sm;

(2.20) 1 � �n (x)

�m (x)
� 1 + C

�
1� m

n

�
:

Proof
(a) This is Theorem 1.25 in [11, Theorem 1.25, p. 26].
(b) From Theorem 5.2(b) in [11, Theorem 5.2, p. 110], for any �xed s 2 (0; 1) ;

(2.21) �n (x) �
n

�n (x)
in �sn

uniformly in n; x. Then (2.15) follows from Lemma 2.1(e) and (f).
(c) For x 2 Jn (") ;

1� Ln (x) � ";

while �
1� Ln

�
x+

a
~Kn (x; x)

��
� (1� Ln (x))

= � a

�n ~Kn (x; x)
= O

�
1

n

�
;

uniformly for jaj � A and x 2 Jn ("). Then (2.16) follows.
(d) For some � between x and x+ a�n

n ;����Q�x+ a�n
n

�
�Q (x)

����
=

����Q0 (�) a�nn
���� � C jaj ;

by Lemma 2.1(c) and (e).
(e) To prove (2.18), we use the smoothness estimate for ��n from [11, Theorem
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6.3(a), p.148] with  (t) = t1=2 there: for n � 1 and u; v 2 (�1; 1) ;�����n (u)p1� u2 � ��n (v)p1� v2���
� C

�
ju� vj
1� u2

�1=4
:

Setting u = Ln (x) and v = Ln

�
x+ a

~Kn(x;x)

�
= Ln (x) +

a
�n ~Kn(x;x)

, and recalling

the de�nition (2.13) of ��n, and that �n (x) = �n
p
1� L2n (x), we obtain

1

n

����(�n�n) (x)� (�n�n)�x+ a
~Kn (x; x)

�����
� C

 
jaj

�n ~Kn (x; x)

�
�n

�n (x)

�2!1=4
� Cn�1=4;

so ������1�
(�n�n)

�
x+ a

~Kn(x;x)

�
(�n�n) (x)

������ � Cn�1=4;

by (2.21) of this lemma. Finally, as �n (x) � "�n, it is easily seen that

�n

�
x+

a
~Kn (x; x)

�
� �n (x)

= O

�
�n

�n (x)

a
~Kn (x; x)

�
= O

�
�n
n

�
= O

�
�n (x)

n

�
;

so

�n

�
x+

a
~Kn (x; x)

�
=�n (x) = 1 + o (1) :

(f) This follows from (e) and (a).
(g) From (2.12), for x 2 �sm;

0 < �n (x)� �m (x)

=
1

�

Z n

m

ds

�s (x)

� 1

�

n�m
�m (x)

� C�m (x)
� n
m
� 1
�
;

by (2.21). �
Next, we record some asymptotics for orthonormal polynomials:

Lemma 2.3
(a)

(2.22)
n�1
n

=
�n
2
(1 + o (1)) :

(b) Let 0 < " < 1. Uniformly for x 2 Jn (") ;

(2.23) �1=2n (pnW ) (x) =
�
1� Ln (x)2

��1=4r 2

�
cos �n (x) + o (1) ;
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where

(2.24) �n (x) =
1

2
arccosLn (x) + �

Z an

x

�n �
�

4
:

Moreover,

(2.25) �1=2n (pn�1W ) (x) =
�
1� Ln (x)2

��1=4r 2

�
cos n (x) + o (1) ;

where

(2.26)  n (x) = �n (x)� arccosLn (x) :
Proof
(a) This is (1.124) of Theorem 1.23 in [11, p. 26] Note that there An =

n�1
n

:

(b) In [11, Theorem 15.3, p. 403], it is shown that there exists � > 0 such that for
a range of m that includes m = n� 1; n; and uniformly for for juj � 1� n��;

�1=2n (pmW )
�
L[�1]n (u)

� �
1� u2

�1=4
=

r
2

�
cos

��
m� n+ 1

2

�
arccosu+ n�

Z 1

u

��n �
�

4

�
+O

�
n��

�
:

Setting u = Ln (x), and noting the relationship (2.13) between �n and ��n, we
obtain the result. We also use that for x 2 Jn ("), u = L

[�1]
n (x) 2 [�1 + "; 1� "],

we have p
1� u2 =

q
1� Ln (x)2 �

p
":

�
Our �nal lemma concerns derivatives of orthogonal polynomials.

Lemma 2.4
Let " 2

�
0; 13
�
. There exists C > 0 such that for n � 1;

(2.27) kp00nWkL1(Jn(")) � C
n2

�5=2n

:

Proof
By Theorem 1.17 of [11, p. 22], for each s 2 (0; 1), there exists C = C (s) such that
for n � 1;

(2.28) kpnWkL1(Jn(s)) � C��1=2n :

Moreover, from Theorem 1.18 there, there exist C1; C2 > 0 such that for n � 1;
(2.29) kpnWkL1(R) � C1n

C2 :

(The factors T (a�n) there are o
�
n2
�
). We multiply pn by a fast decreasing polyno-

mial Sm of appropriate degree, and then apply a Markov-Bernstein inequality. More
speci�cally, by Theorem 7.5 in [11, p. 172], given ��m 2

�
0; 13
�
with m2��m !1

as m!1, there exist polynomials Sm such that

jSm (x)� 1j � e
�C0m

q
minf��m;�mg, x 2

�
�1 + 3

2
��m; 1�

3

2
�m

�
;

0 < Sm (x) � C, x 2 [�1; 1] ;

0 < Sm (x) � e�C0m
p
�m , x 2 [1� 1

2
�m; 1);
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with a similar relation in [�1;�1 + 1
2��m]. We choose for some large enough K

(chosen so that C0K
p
"� C2, where C2 is as in (2.29)),

m = m (n) = [K log n] ;

and choose ��m so that

1� 3
2
�m = Lm+n � L[�1]n (1� ") ;

�1 + 3
2
��m = Lm+n � L[�1]n (�1 + ") ;

and set
Rm (x) = Sm (Lm+n (x)) :

Note that

Lm+n � L[�1]n (1� ") = Lm+n (an � "�n)

= 1 +
an � am+n � "�n

�m+n

= 1� "+O
�m
n

�
= 1� "+ o (1) ;

by Lemma 2.1(b). So 3
2�m = " + o (1). Similarly, 3

2��m = " + o (1). Then the
conditions on ��m are met, and we have for some �xed 0 < "0 < ";

(2.30) jRm (x)� 1j � n�C0K
p
"=2, x 2 Jn (") ;

(2.31) 0 < Rm (x) � C, x 2 �m+n;

(2.32) Rm (x) � Cn�C0K
p
"=2, x 2 �m+nnJn ("0) :

From (2.28), (2.29), (2.31) and (2.32), and the Mhaskar-Sa¤ identity, we see that

kpnRmWkL1(R) = kpnRmWkL1(�m+n)
� C��1=2n :

Now we apply the Markov-Bernstein inequality in [11, Theorem 1.15, p. 21],

k(pnRmW )0'nkL1(R) � C kpnRmWkL1(�m+n)
� C��1=2n ;

where 'n is a function de�ned in [11, (1.92), p. 19]. It is shown in [11, p. 112]
that given s 2 (0; 1), we have for n � 1 and x 2 �sn;

'n (x) � ��1n (x) :

Then (2.8) and (2.15) imply that for n � 1 and x 2 Jn ("), we have

'n (x) �
�n
n
:

Thus for x 2 Jn (") ;

jp0nRmW j (x) � jpnR0mW j (x) + jQ0 (x)j jpnRmW j (x) + C
n

�3=2n

:

Here as Rm has degree O (log n), and is bounded (uniformly in n) in �m+n,
Markov�s inequality gives

jR0m (x)j = O (log n)
2
;

while by Lemma 2.1(c), and (e),

jQ0 (x)j � C
n

�n
:
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Since also Rm � 1 in Jn ("), it follows that (for each �xed " 2 (0; 1))

kp0nWkL1(Jn(")) � C
n

�3=2n

:

Moreover, the global bound (2.29) on pnW , and the Markov inequality in [11, Cor.
1.16, p. 21] gives for some C1; C2 > 0;

kp0nWkL1(R) � C1n
C2 :

These last two bounds are analogous to (2.28) and (2.29). Applying the same ar-
gument as above once more, then gives (2.27). �

3. Proof of Theorem 1.2

We shall use the Christo¤el-Darboux formula

Kn (x; t) =
n�1
n

pn (x) pn�1 (t)� pn�1 (x) pn (t)
x� t

and its con�uent form

Kn (x; x) =
n�1
n

�
p0n (x) pn�1 (x)� p0n�1 (x) pn (x)

�
:

We shall make the change of variable

x! x+
a

~Kn (x; x)
:

This is permissible, in view of Lemma 2.2(f) and the fact that we shall prove
uniformity in b. Thus it su¢ ces to establish the limit

(3.1) lim
n!1

~Kn

�
x+

b
~Kn (x; x)

; x

�
= ~Kn (x; x) =

sin�b

�b
;

uniformly for b in compact subsets of the real line and x 2 Jn ("). Let us set, for a
given x,

xn;b = x+
b

~Kn (x; x)
= x+O

�
�n
n

�
;

recall Lemma 2.2(a), (b). From Lemma 2.2(c),

(3.2) 1� L2n (xn;b) =
�
1� L2n (x)

�
(1 + o (1)) :

Moreover, uniformly in b and x, Lemma 2.2 (a), (e) giveZ xn;b

x

�n = (xn;b � x)�n (x) (1 + o (1))

= b+ o (1) ;

so recalling the notation (2.24),

�n (x)� �n (xn;b)

=
1

2
[arccosLn (x)� arccosLn (xn;b)] + �

Z xn;b

x

�n

= �b+ o (1) ;

by Lemma 2.2(c). Also, by (2.26), we then have

 n (x)�  n (xn;b) = �b+ o (1) :
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From Lemma 2.3, and the above considerations, the asymptotics for pn and pn�1
at xn;b take the form

(3.3) �1=2n (pnW ) (xn;b) =
�
1� Ln (x)2

��1=4r 2

�
cos (�n (x)� �b) + o (1) ;

(3.4) �1=2n (pn�1W ) (xn;b) =
�
1� Ln (x)2

��1=4r 2

�
cos ( n (x)� �b) + o (1) :

For b = 0, the relation (3.1) is immediate, as the right-hand side is 1. Now assume
b 6= 0. The Christo¤el-Darboux formula gives

~Kn (xn;b; x) = ~Kn (x; x)

=
1

b

n�1
n

(pn (xn;b) pn�1 (x)� pn�1 (xn;b) pn (x))W (xn;b)W (x) :

Inserting here the expressions (3.2), (3.3), (3.4), (2.22), (2.23) and (2.25), we obtain
uniformly in x 2 Jn (") and b in a compact subset of Rn f0g ;

~Kn (xn;b; x) = ~Kn (x; x)

= (1 + o (1))
1

�b

�
1� L2n (x)

��1=2 �
�fcos (�n (x)� �b) cos ( n (x))� cos ( n (x)� �b) cos �n (x) + o (1)g :

After some simple trigonometry and using (2.26), the cosine terms are reduced to

sin (�b) sin (�n (x)�  n (x))
= sin (�b) sin (arccosLn (x))

= sin (�b)
p
1� L2n (x);

and we �nally obtain

~Kn (xn;b; x) = ~Kn (x; x) = (1 + o (1))

�
sin�b+ o (1)

�b

�
:

This gives the result, but the uniformity in b follows only for b in compact subsets
of Rn f0g. To complete the proof, it su¢ ces to show that given a sequence fbng of
non-zero numbers with limit 0, and a sequence fxng with xn 2 Jn ("), we have

(3.5) lim
n!1

~Kn

�
xn +

bn
~Kn (xn)

; xn

�
= ~Kn (xn) = 1;

where we now use the abbreviation

~Kn (xn) = ~Kn (xn; xn) :

Note that ~Kn (xn) � n=�n. We again use the Christo¤el-Darboux formula, and

expand pn
�
xn + b= ~Kn (xn)

�
and pn�1

�
xn + b= ~Kn (xn)

�
about xn to the second

order. We also use the identity

~Kn (xn) =
n�1
n

�
p0npn�1 � p0n�1pn

�
(xn)W

2 (xn) ;

and the following consequence of Lemma 2.2(d):

W

�
xn +

bn
~Kn (xn)

�
=W (xn) = exp (O (jbnj)) = 1 + o (1) :
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We obtain

~Kn

�
xn +

bn
~Kn (xn)

; xn

�
= ~Kn (xn)

=
1 + o (1)

bn

n�1
n

8<:
0 + bn

~Kn(xn)

�
p0npn�1 � p0n�1pn

�
(xn)W

2 (xn)

+O

��
bn

~Kn(xn)

�2
maxj=n�1;n kpjWkL1(Jn("))maxj=n�1;n

p00jWL1(Jn("))
� 9=;

= 1 +O

�
bn
�3n
n2

max
j=n�1;n

kpjWkL1(Jn(")) max
j=n�1;n

p00jWL1(Jn("))
�
+ o (1)

= 1 +O(bn) + o (1) ;

by Lemma 2.4, and (2.28), completing the proof. �

4. Christoffel functions

In this section, we show that for a suitable range of x;

�n

��
Wh

�2
; x
�
=�n

�
W 2; x

�
= h2 (x) (1 + o (1)) :

In addition, we also need a "localized" form of this result, involving weights that are
equal toWh =Wh in a neighborhood of a given x0. We shall need some additional
notation for this purpose. We choose x0 and � > 0, and set

(4.1) I (x0; �) = [x0 � � ; x0 + � ] :
We let

(4.2) W � (x) =W (x)

�
h (x) ; x 2 I (x0; �)
h (x0) ; x 2 RnI (x0; �)

;

(4.3) W# (x) =W (x)

�
h (x) ; x 2 I (x0; �)

max fh (x) ; h (x0)g ; x 2 RnI (x0; �)
:

We shall use the fact that

(4.4) Wh �W# and W � �W# in R;
while

(4.5) Wh =W � =W# in I (x0; �) :

Of course, W � and W# depend on x0, but the estimates and asymptotics will be
uniform for a range of x0. We shall assume throughout that W 2 F

�
C2
�
and that

h satis�es the hypotheses of Theorem 1.3.

Theorem 4.1
Let 0 < " < 1; A > 0. Then for

W1 =Wh or W � or W#;

we have

(4.6) sup
x02K\Jn(");jaj�A

����� �n
�
W 2
1 ; x0 + a

�n
n

�
�n
�
W 2; x0 + a

�n
n

�
h2 (x0)

� 1
����� = o (1) :

As a �rst step, we prove the following. We remind the reader that W � and W#

both depend on � .
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Lemma 4.2
Let � > � > 0, �; " 2 (0; 1). There exists n0 such that for n � n0, x0 2 K \ Jn ("),
x1 2 I (x0; �=2), we have

(4.7) �n
�
W 2
1 ; x1

�
=�n

�
W 2; x1

�
� khk2L1(I(x0;�)) (1 + �) + e

�nC

and

(4.8) �n
�
W 2; x1

�
=�n

�
W 2
1 ; x1

�
�
h�12

L1(I(x0;�))
(1 + �) + e�n

C

:

The threshhold n0 is independent of x0 2 K \ Jn ("), but depends on � ; �; �; ".
Proof of (4.7)
Let � 2

�
0; 12
�
; n � 1, and m = n� [�n]. Choose a polynomial R of degree � m�1

such that

�m
�
W 2; x1

�
=

Z
R
(RW )

2 and R (x1) = 1:

We shall need the fast decreasing polynomials of Ivanov and Totik [8, p. 2, Theorem
1]. Choosing there

' (x) = min
n
(n jxj)2 ; n jxj

o
; x 2 [�1; 1] ;

there exists C1 � 1 and polynomials S�n of degree � C1n log n such that

S�n (0) = 1 and jS�n (t)j � e�minf(njtj)
2;njtjg; t 2 [�1; 1] :

In particular jS�nj � 1 in [�1; 1] and

jS�n (t)j � e�njtj,
1

n
� jtj � 1:

Let

Sn (t) = S�[�n=(2C1 logn)]

�
t� x1
2�2n

�
;

a polynomial of degree � �n, for n exceeding some threshold that depends only on
�. Note that for t 2 �2nnI (x0; �), we have jt� x1j � �=2, so

(4.9) jSn (t)j � e�C2
�n
logn

�
2�2n � e�n

C3
; t 2 �2nnI (x0; �) ;

recall (2.2). Note also that

(4.10) jSn (t)j � 1; t 2 �2n:

Let us set
P = RSn;

a polynomial of degree � n� 1 with P (x1) = 1. Then

�n
�
W 2
1 ; x1

�
�

Z 1

�1
(PW1)

2

=

"Z
I(x0;�)

+

Z
JnI(x0;�)

+

Z
�2nn(J[I(x0;�))

+

Z
Rn�2n

#
(PW1)

2

= : I1 + I2 + I3 + I4:(4.11)
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Here as W1 �W khkL1(I(x0;�)) in I (x0; �), (recall (4.5)), while (4.10) holds, so

I1 � khk2L1(I(x0;�))
Z
I(x0;�)

(RW )2

� khk2L1(I(x0;�)) �m
�
W 2; x1

�
:(4.12)

Next, using (4.9), (4.10), and the fact that W � 1, we see that

I2 � e�n
C3 kRk2L1(J)

Z
J

max fh; h (x0)g2 :

Here using Christo¤el function bounds for the Legendre weight [16, p. 106, 108],
we see that

kRk2L1(J) � CnC
Z
J

R2

� C1n
C

Z
J

R2W 2:

Thus

(4.13) I2 � C3n
Ce�n

C3
�m
�
W 2; x1

� �
1 + khk2L1(I(x0;�))

�
:

Next, h�1 (x0) are bounded for x0 2 K\Jn (")\J , while (2.6) and (1.8) imply that
uniformly for x0 2 K\ Jn (") nJ , log

��log h�1 (x0)�� = o (log n). Hence, for all r > 0;

(4.14) log
max�h�1; h�1 (x0)	L1(�2nnJ)

= O (nr) :

Then by (4.4) and (4.9),

I3 � e�n
C3
�
en

C3=2

+ khk2L1(I(x0;�))
�Z

�2nnJ
(RW )

2

� C1e
�nC3=2

�
1 + khk2L1(I(x0;�))

�
�m
�
W 2; x1

�
;

for n large enough, with the threshhold on n depending only on h. Finally, we note
that given r > 0, we have for n � n0 and all j � 1;

kW1=WkL1(�2j+1nn�2jn)
� kmax fh; h (x0)gkL1(�2j+1nn�2jn)

� exp
��
2j+1n

�r�
;

so

I4 =
1X
j=0

Z
�2j+1nn�2jn

(PW1)
2

�
1X
j=0

exp
�
2
�
2j+1n

�r�Z
�2j+1nn�2jn

(PW )
2

�
1X
j=0

exp
�
2
�
2j+1n

�r � �2jn�C2�Z
R
(PW )

2
;

by (2.10) of Lemma 2.1(h), applied to P , regarded as a polynomial of degree � 2jn.
As we may assume r < C2, we obtain for n � n0 6= n0 (x0) ;

I4 � e�n
C

Z
�2n

(PW )
2 � e�n

C

Z
�2n

(RW )
2 � e�n

C

�m
�
W 2; x1

�
:
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Adding the estimates for I1; I2; I3; I4 gives for n � n0;

�n
�
W 2
1 ; x1

�
=�m

�
W 2; x1

�
� khk2L1(I(x0;�))

�
1 + e�n

C5
�
+ e�n

C5
:

Here n0 is independent of x1 2 I (x0; �) ; x0 2 K \ Jn ("). Finally, given 0 < s < 1,
Lemma 2.2(a), (g) give for x1 2 �sm,
(4.15)

�m
�
W 2; x1

�
=�n

�
W 2; x1

�
=
�n (x1)

�m (x1)
(1 + o (1)) � 1 + C

� n
m
� 1
�
� 1 + C�:

Combining this estimate and the previous one, and choosing � > 0 small enough,
gives the result for x1 2 �sm \ K \ Jn ("). In view of (2.8), we may choose s so
close to 1 that K \ Jn (") � �sm.
Proof of (4.8)
Although this is similar to (4.7), there are some signi�cant di¤erences, so we provide
some details. Let � 2

�
0; 12
�
; n � 1, and m = n� [�n]. Choose a polynomial R of

degree � m� 1 such that

�m
�
W 2
1 ; x1

�
=

Z
R
(RW1)

2 and R (x1) = 1:

Let Sn and P = RSn, as above. Then

�n
�
W 2; x1

�
�

Z 1

�1
(PW )

2

=

"Z
I(x0;�)

+

Z
JnI(x0;�)

+

Z
�2nn(J[I(x0;�))

+

Z
Rn�2n

#
(PW )

2

= : I1 + I2 + I3 + I4:(4.16)

Here W �W1

h�1
L1(I(x0;�))

in I (x0; �), while (4.10) holds, so

(4.17) I1 �
h�12

L1(I(x0;�))
�m
�
W 2
1 ; x1

�
:

Next, using (4.9) and (4.10), we see that

I2 � C1e
�nC4

Z
JnI(x0;�)

(RW )
2
:

If W =W �, we continue this as

I2 � C1e
�nC4h (x0)

�2
Z
JnI(x0;�)

(RW1)
2

� C1e
�nC4h (x0)

�2
�m
�
W 2
1 ; x1

�
:

If W1 = Wh or W#, we instead use (1.7), namely that h2 majorizes a generalized
Jacobi weight over J , together with the fact that for some C > 0;Z

J

R2 � nC
Z
J

R2w;

see [16, p. 120]. Since
max fh; h (x0)g2 � h2 � Cw,

we see that

I2 � C1e
�nC4nC

Z
J

(RW1)
2 � e�n

C

�m
�
W 2
1 ; x1

�
:
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Thus in all cases,

I2 � e�n
C
�
1 +

h�12
L1(I(x0;�))

�
�m
�
W 2
1 ; x1

�
:

Next, by (4.9) and (4.14),

I3 � C1e
�nC4 max�h�1; h�1 (x0)	2L1(�2nnJ)

Z
�2nnJ

(RW1)
2

� C1e
�2�nC4+nC4=2�m

�
W 2
1 ; x1

�
;

for n large enough. Next, by (2.10),

(4.18) I4 � e�n
C

Z
�2n

(RW )
2
:

We now proceed to replace W by W1. Firstly,Z
�2nnJ

(RW )
2

� kW=W1k2L1(�2nnJ)

Z
�2nnJ

(RW1)
2

� eO(n
r)�m

�
W 2
1 ; x1

�
;(4.19)

for each r > 0, by (4.14). Next, as above,Z
J

(RW )
2 � CnC1

�
1 +

h�12
L1(I(x0;�))

�Z
J

(RW1)
2:

Combining this, (4.18), and (4.19), we see that

I4 � e�n
C

�m
�
W 2
1 ; x1

�
:

Adding the estimates for I1; I2; I3; I4 gives for n � n0;

(4.20) �n
�
W 2; x1

�
=�m

�
W 2
1 ; x1

�
�
h�12

L1(I(x0;�))

�
1 + e�n

C
�
+ e�n

C5
:

Then, using (4.15), and recalling that m = n� [�n] � n
2 , we see that

�m
�
W 2; x0

�
=�m

�
W 2
1 ; x0

�
�
h�12

L1(I(x0;�))
(1 + C�) + e�m

C5
:

Finally, as n runs through the positive integers, so does m = m (n) (for m (n+ 1)�
m (n) � 1), so choosing � > 0 small enough, we obtain the result. �

Proof of Theorem 4.1
Let � 2

�
0; 12
�
. By uniform continuity of log h in K, there exists � > 0 such that

jlog h (s)� log h (t)j � �

for js� tj � � and dist(s;K) � � and dist(t;K) � �. Then for such s; t,����h (s)h (t)
� 1
���� � e� � 1 � 2�

and so for x0 2 Jn (") \ K;
(4.21)

h�1
L1(I(x0;�))

=h�1 (x0) � 1 + 2�:

Moreover, for n � n0 (A), we have x0 + a �nn 2 I (x0; �=2), uniformly for x0 2
K \ Jn ("). Substituting these in Lemma 4.2, we obtain the result. �
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5. Localization

Throughout, we assume the hypotheses of Theorem 1.3, and the de�nitions (4.2),
(4.3) of W � and W#.

Theorem 5.1
Let A > 0. Then as n!1;

(5.1) sup
a;b2[�A;A];x02Jn(")\K

����� ~Kh
n � ~K�

n

��
x0 + a

�n
n
; x0 + b

�n
n

����� = ~Kh
n (x0; x0)! 0:

Remark
We emphasize that ~K�

n depends on the speci�c x0, and � , although the limit is
uniform in x0 2 Jn (") \ K (for a given �).
Proof
Recall that Wh =W � =W# in I (x0; �), and

(5.2) W �;Wh �W# in R:

The idea is to estimate the L2 norm of K#
n �Kh

n over R, and then to use Christo¤el
function estimates, and to develop an analogous estimate for K#

n �K�
n. NowZ

R

�
K#
n (x; t)�Kh

n (x; t)
�2 �

Wh (t)
�2
dt

=

Z
R

�
K#
n (x; t)

�2 �
Wh (t)

�2
dt� 2

Z
R
K#
n (x; t)K

h
n (x; t)

�
Wh (t)

�2
dt+

Z
R

�
Kh
n (x; t)

�2 �
Wh (t)

�2
dt

=

Z
R

�
K#
n (x; t)

�2 �
Wh (t)

�2
dt� 2K#

n (x; x) +K
h
n (x; x) ;

by the reproducing kernel property. In view of (5.2), we also haveZ
R

�
K#
n (x; t)

�2 �
Wh (t)

�2
dt �

Z
R

�
K#
n (x; t)

�2 �
W# (t)

�2
dt = K#

n (x; x) :

So Z
R

�
K#
n (x; t)�Kh

n (x; t)
�2 �

Wh (t)
�2
dt

� Kh
n (x; x)�K#

n (x; x) :(5.3)

Next for any polynomial P of degree � n�1, we have by de�nition of the Christo¤el
functions,

(5.4) jP (y)j � Kh
n (y; y)

1=2

�Z
R

�
PWh

�2�1=2
:

Applying this to P (t) = K#
n (x; t)�Kh

n (x; t) and using (5.3) gives��K#
n (x; y)�Kh

n (x; y)
��

� Kh
n (y; y)

1=2 �
K#
n (x; x)�Kh

n (x; x)
�1=2

so for all x; y 2 R; ��K#
n (x; y)�Kh

n (x; y)
�� =Kh

n (x; x)

�
�
Kh
n (y; y)

Kh
n (x; x)

�1=2 "
1� Kh

n (x; x)

K#
n (x; x)

#1=2
:
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Now we set x = x0+ a
�n
n and y = x0+ b

�n
n , where a; b 2 [�A;A]. By Theorem 4.1,

uniformly for x 2 Jn (") \ K; and jaj ; jbj � A,

Kh
n (x; x)

K#
n (x; x)

= 1 + o (1) :

Moreover, by Theorem 4.1, Lemma 2.2 (a), (d), (e), and the uniform continuity of
log h (compare (4.21)),

Kh
n (y; y)

Kh
n (x; x)

� C
(hW )

2
(x)�n (y)

(hW )
2
(y)�n (x)

� C:

Similarly,

Kh
n (x; x)

Kh
n (x0; x0)

� C:

So,

sup
a;b2[�A;A]

�����K#
n �Kh

n

��
x0 + a

�n
n
; x0 + b

�n
n

����� =Kh
n (x0; x0)

= o (1) :

The estimate holds uniformly for x0 2 Jn (")\K. The exact same proof shows that

sup
a;b2[�A;A]

�����K#
n �K�

n

��
x0 + a

�n
n
; x0 + b

�n
n

����� =K�
n (x0; x0)

= o (1) :

Theorem 4.1 shows that Kh
n (x0; x0) =K

�
n (x0; x0) = 1 + o (1) uniformly for x0 2

Jn (") \ K. Then we may combine the last two estimates, giving uniformly for
x0 2 Jn (") \ K,

sup
a;b2[�A;A]

�����Kh
n �K�

n

��
x0 + a

�n
n
; x0 + b

�n
n

����� =Kh
n (x0; x0)

= o (1) :

Finally, by Lemma 2.2(d), uniformly for x0 2 Jn (") and jaj ; jbj � A;

W

�
x0 + a

�n
n

�
=W (x0) � 1 �W

�
x0 + b

�n
n

�
=W (x0) :

so

sup
a;b2[�A;A]

����� ~Kh
n � ~K�

n

��
x0 + a

�n
n
; x0 + b

�n
n

����� = ~Kh
n (x0; x0)

= sup
a;b2[�A;A]

(Wh)
�
x0 + a

�n
n

�
(Wh)

�
x0 + b

�n
n

�
(Wh)

2
(x0)

�����Kh
n �K�

n

��
x0 + a

�n
n
; x0 + b

�n
n

����� =Kh
n (x0; x0)

= o (1) :

�
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6. Proof of Theorem 1.3

In this section, we prove Theorem 1.3, whose hypotheses we assume throughout.
We also assume the de�nition (4.2) and (4.3) of W � and W#.

Theorem 6.1
Let A > 0; � 2

�
0; 14
�
. There exist C; � > 0 and n0 such that for n � n0; and

x0 2 Jn (") \ K;

(6.1) sup
a;b2[�A;A]

����� ~K�
n � ~Kn

��
x0 +

a�n
n
; x0 +

b�n
n

����� = ~Kn (x0; x0) � C�1=2;

where C is independent of �; � ; n; x0.
Proof
Choose � > 0 such that

(6.2)
1

1 + �
� h (t)

h (s)
� 1 + � for s 2 I (t; �) and t 2 K:

This is possible because of the uniform continuity of log h in K. Fix x0 2 Jn (")\K
and let W� be the scaled weight

W� (x) = h (x0)W (x) in R:

Note that pn
�
W�2; x

�
= 1

h(x0)
pn
�
W 2; x

�
; and hence,

(6.3) K�
n (x; y) =

1

h2 (x0)
Kn (x; y) :

Observe that (4.2) and (6.2) imply that

(6.4) (1 + �)
�1 � W �

W� � 1 + � in R:

Then, much as in the previous section,Z
R

�
K�
n (x; t)�K�

n (x; t)
�2
W�2 (t) dt

=

Z
R
K�2
n (x; t)W�2 (t) dt� 2

Z
R
K�
n (x; t)K

�
n (x; t)W

�2 (t) dt+

Z
R
K�2
n (x; t)W�2 (t) dt

=

Z
R
K�2
n (x; t)W �2 (t) dt+

Z
I(x0;�)

K�2
n (x; t)

�
W�2 �W �2

�
(t) dt� 2K�

n (x; x) +K
�
n (x; x)

= K�
n (x; x)�K�

n (x; x) +

Z
I(x0;�)

K�2
n (x; t)

�
W�2 �W �2

�
(t) dt;

recall that W � =W� = h (x0)W in RnI (x0; �). By (6.4),Z
I(x0;�)

K�2
n (x; t)

�
W�2 �W �2

�
(t) dt � 3�

Z
I(x0;�)

K�2
n (x; t)W �2 (t) dt � 3�K�

n (x; x) :

So Z
R

�
K�
n (x; t)�K�

n (x; t)
�2
W�2 (t) dt � K�

n (x; x)� (1� 3�)K�
n (x; x) :
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Applying an obvious analogue of (5.4) to P (t) = K�
n (x; t) � K�

n (x; t) gives for
x; y 2 R; ���K�

n (x; y)�K�
n (x; y)

���
� K�

n (y; y)
1=2
h
K�
n (x; x)� (1� 3�)K�

n (x; x)
i1=2

so ���K�
n (x; y)�K�

n (x; y)
��� =K�

n (x; x)

�
�
K�
n (y; y)

K�
n (x; x)

�1=2 �
1� (1� 3�) K

�
n (x; x)

K�
n (x; x)

�1=2
:

In view of (6.4), we also have

K�
n (x; x)

K�
n (x; x)

=
��n (x)

��n (x)
� 1

(1 + �)
2 ;

so for all x; y 2 R; ���K�
n (x; y)�K�

n (x; y)
��� =K�

n (x; x)(6.5)

�
�
K�
n (y; y)

K�
n (x; x)

�1=2 "
1� 1� 3�

(1 + �)
2

#1=2

�
p
6�

�
K�
n (y; y)

K�
n (x; x)

�1=2
=

p
6�

�
Kn (y; y)

Kn (x; x)

�1=2
:

Here we have used (6.3). That relation also implies that

~K�
n (x; y) =

~Kn (x; y) :

Then for x; y 2 I (x0; �) ;��� ~K�
n (x; y)� ~Kn (x; y)

��� = ~Kn (x; x)(6.6)

=
��� ~K�

n (x; y)� ~K�
n (x; y)

��� = ~K�
n (x; x)

=
W (y)

W (x)

�����h (y)h (x)h (x0)
2 K�

n (x; y)�K�
n (x; y)

����� =K�
n (x; x)

� W (y)

W (x)

�����h (y)h (x)h (x0)
2 � 1

����� jK�
n (x; y)j =K�

n (x; x)

+
W (y)

W (x)

���K�
n (x; y)�K�

n (x; y)
��� =K�

n (x; x) :
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Here by Cauchy-Schwarz and (6.4),

W (y)

W (x)
jK�

n (x; y)j =K�
n (x; x)

� W (y)

W (x)

�
K�
n (x; x)

K�
n (x; x)

K�
n (y; y)

K�
n (x; x)

�1=2
� (1 + �)

2 W (y)

W (x)

�
K�
n (y; y)

K�
n (x; x)

�1=2

= (1 + �)
2

 
~Kn (y; y)
~Kn (x; x)

!1=2
:

Then (6.2), (6.5), (6.6) and the above two inequalities give��� ~K�
n (x; y)� ~Kn (x; y)

��� = ~Kn (x; x)

�
 
~Kn (y; y)
~Kn (x; x)

!1=2 n
(1 + �)

2
h
(1 + �)

2 � 1
i
+
p
6�
o
:

Now we set x = x0+
a�n
n and y = x0+

b�n
n , where a; b 2 [�A;A]. Applying Lemma

2.2(a), (d), (e), we obtain

sup
a;b2[�A;A]

����� ~K�
n � ~Kn

��
x0 +

a�n
n
; x0 +

b�n
n

����� = ~Kn (x0; x0) � C
p
�;

uniformly for x0 2 Jn (") \ K. �

Proof of Theorem 1.3
Let A; " > 0. By Lemma 2.2(a), (b) and Theorem 4.1, uniformly for n � 1 and
x0 2 Jn (") \ K;

(6.7) ~Kn (x0; x0) �
n

�n
� ~Kh

n (x0; x0) :

Combining Theorem 5.1 and Theorem 6.1, we see that uniformly for n � n0 and
x0 2 Jn (") \ K;

(6.8) sup
a;b2[�A;A]

����� ~Kh
n � ~Kn

��
x0 +

a�n
n
; x0 +

b�n
n

����� = ~Kn (x0; x0) � C�1=2:

Here C is independent of �, but n0 may depend on �: As the left-hand side is
independent of �, we deduce that as n!1;

sup
a;b2[�A;A]

����� ~Kh
n � ~Kn

��
x0 +

a�n
n
; x0 +

b�n
n

����� = ~Kn (x0; x0)! 0

uniformly for x0 2 Jn (") \ K. It follows (because of the uniformity in a; b above,
and by (6.7)) that also

sup
a;b2[�A;A]

����� ~Kh
n � ~Kn

��
x0 +

a
~Kn (x0; x0)

; x0 +
b

~Kn (x0; x0)

����� = ~Kn (x0; x0) = o (1) :
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Then Theorem 1.2 gives
(6.9)

~Kh
n

�
x0 +

a
~Kn (x0; x0)

; x0 +
b

~Kn (x0; x0)

�
= ~Kn (x0; x0) =

sin� (a� b)
� (a� b) + o (1) ;

uniformly for x0 2 Jn (")\K. To replace ~Kn (x0; x0) by ~Kh
n (x0; x0) in the left-hand

side, we use the fact that

~Kn (x0; x0) = ~K
h
n (x0; x0) = 1 + o (1)

uniformly for x0 2 Jn (") \ K, by Theorem 4.1. We also use the uniformity in a; b
in (6.9). �
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