
BULK UNIVERSALITY HOLDS POINTWISE IN THE

MEAN, FOR COMPACTLY SUPPORTED MEASURES

DORON S. LUBINSKY

Abstract. Let µ be a measure with compact support, with orthonor-
mal polynomials {pn}, and associated reproducing kernels {Kn}. We
show that without any global assumptions on the measure, a weak local
condition leads to the bulk universality limit in the mean. For example,
if µ′ ≥ C > 0 in some open interval J , then at each Lebesgue point ξ of
J , and for each r > 0,

lim
m→∞

1

m

m
X

n=1

sup
|u|,|v|≤r

˛

˛

˛

˛

˛

˛

Kn

“

ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

”

Kn (ξ, ξ)
−

sin π (u − v)

π (u − v)

˛

˛

˛

˛

˛

˛

= 0.

In particular, we don’t assume regularity of the measure µ.

1. Introduction

Let µ be a finite positive Borel measure with compact support and infin-
itely many points in the support. Define orthonormal polynomials

pn (x) = γnxn + · · · , γn > 0,

n = 0, 1, 2, . . . , satisfying the orthonormality conditions
∫

pjpkdµ = δjk.

Throughout we use µ′ to denote the Radon-Nikodym derivative of µ. The
nth reproducing kernel for µ is

Kn (x, y) =

n−1∑

k=0

pk (x) pk (y) , (1.1)

and the normalized kernel is

K̃n (x, y) = µ′ (x)1/2 µ′ (y)1/2 Kn (x, y) . (1.2)

In the theory of n by n random Hermitian matrices (the so-called uni-
tary case), there arise probability distributions on the eigenvalues that are
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expressible as determinants of reproducing kernels [5, p. 112]:

P (n) (x1, x2, . . . , xn) =
1

n!
det
(
K̃n (xi, xj)

)

1≤i,j≤n
.

One may use this to compute a host of statistical quantities - for example the
probability that a fixed number of eigenvalues of a random matrix lie in a
given interval. One important quantity is the m−point correlation function
for M (n) [5, p. 112]:

Rm (x1, x2, . . . , xm)

=
n!

(n − m)!

∫
· · ·
∫

P (n) (x1, x2, . . . , xn) dxm+1 dxm+2 . . . dxn

= det
(
K̃n (xi, xj)

)
1≤i,j≤m

.

The universality limit in the bulk asserts that for fixed m ≥ 2, and ξ in
the interior of the support of µ, and real a1, a2, . . . , am, we have

lim
n→∞

1

K̃n (ξ, ξ)m Rm

(
ξ +

a1

K̃n (ξ, ξ)
, ξ +

a2

K̃n (ξ, ξ)
, . . . , ξ +

am

K̃n (ξ, ξ)

)

= det

(
sin π (ai − aj)

π (ai − aj)

)

1≤i,j≤m

.

Of course, when ai = aj, we interpret
sinπ(ai−aj)

π(ai−aj)
as 1. Because m is fixed in

this limit, this reduces to the case m = 2, namely

lim
n→∞

K̃n

(
ξ + a

K̃n(ξ,ξ)
, ξ + b

K̃n(ξ,ξ)

)

K̃n (ξ, ξ)
=

sin π (a − b)

π (a − b)
. (1.3)

Thus, an assertion about the distribution of eigenvalues of random matrices
reduces to a technical limit involving orthogonal polynomials. The adjective
universal is justified: the limit on the right-hand side of (1.3) is independent
of ξ, but more importantly is independent of the underlying measure.

Typically, the limit (1.3) is established uniformly for a, b in compact sub-
sets of the real line, but if we remove the normalization from the outer Kn,
we can also establish its validity for complex a, b, that is,

lim
n→∞

Kn

(
ξ + a

K̃n(ξ,ξ)
, ξ + b

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
=

sin π (a − b)

π (a − b)
. (1.4)

There is an extensive literature on the topic - an overview may be found
in [1], [3], [4], [5], [6], [10]. In [13], we showed that universality holds in
measure for compactly supported µ. More precisely, we showed:
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Theorem 1.1. Let µ be a measure with compact support and with infinitely
many points in the support. Let ε > 0 and r > 0. Then as n → ∞,

meas

{
ξ ∈

{
µ′ > 0

}
:

sup
|u|,|v|≤r

∣∣∣∣∣∣

Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
− sinπ (u − v)

π (u − v)

∣∣∣∣∣∣
≥ ε

}
→ 0. (1.5)

Here meas denotes linear Lebesgue measure, while in the supremum, u, v
are complex variables, and {µ′ > 0} = {x : µ′ (x) > 0}. Because convergence
in measure implies convergence a.e. of subsequences, we deduced universality
for subsequences.

The obvious drawback of this result is that universality holds only in
measure. The strongest pointwise result to date, is due to to Totik [21],
[22]. (See also [7], [11], [12], [16], [17].) A measure µ is called regular (in the
sense of Stahl, Totik, Ullman) if

lim
n→∞

γ1/n
n =

1

cap (supp [µ])
,

where cap(supp[µ]) denotes the logarithmic capacity of the support of µ.
See [18] for a through exploration of this concept. Totik proved that if µ is
a measure with compact support that is regular, and if in some interval I,

∫

I
log µ′ > −∞,

then for a.e. ξ ∈ I, we have the universality limit (1.3). While regularity is
a weak global condition, it is not yet clear whether it is necessary for a full
pointwise result.

In this paper, we avoid any global assumptions on µ, other than compact
support. We show that when µ satisfies some local regularity condition,
then pointwise universality holds in the mean:

Theorem 1.2. Let µ be a measure with compact support and with infinitely
many points in the support. Assume that J is an open interval in which for
some C > 0,

µ′ ≥ C a.e. in J. (1.6)

Let ξ ∈ J be a Lebesgue point of µ. Then for each r > 0,

lim
m→∞

1

m

m∑

n=1

sup
|u|,|v|≤r

∣∣∣∣∣∣

Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
− sin π (u − v)

π (u − v)

∣∣∣∣∣∣
= 0.

(1.7)
In particular, this holds for a.e. ξ ∈ J .
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Remarks . (i) By a Lebesgue point ξ of µ, we mean a point at which

lim
h→0+

1

2h
µ [ξ − h, ξ + h] = µ′ (ξ) ,

with µ′ (ξ) finite. In particular, the singular part µs of µ satisfies

lim
h→0+

1

2h
µs [ξ − h, ξ + h] = 0.

Of course if µ is absolutely continuous in a neighborhood of ξ, and µ′

is continuous at ξ, then the Lebesgue point condition is satisfied at ξ.

(ii) An equivalent formulation is that universality holds outside a set of
positive integers of density 0. That is, there exists a set E of integers
of density 0, such that

lim
n→∞,n/∈E

Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
=

sinπ (u − v)

π (u − v)
,

uniformly for u, v in compact subsets of C. Here, recall that a set E
of positive integers has density 0 if

lim
n→∞

1

n
# {j : 1 ≤ j ≤ n and j ∈ E} = 0,

where # denotes cardinality. The set E depends on the particular ξ.

Theorem 1.2 is a special case of the following theorem, whose formulation
involves maximal functions. For a finite positive measure ν on the real line,
its maximal function is

M [dν] (x) = sup
h>0

1

2h

∫ x+h

x−h
dν. (1.8)

In the sequel, M [Kndµ] (x) denotes the maximal function for the measure
Kn (x, x) dµ (x).

Theorem 1.3. Let µ be a measure with compact support and with infinitely
many points in the support. Let ξ be a Lebesgue point of µ with µ′ (ξ) > 0.
Assume that there exist C1, C2, C3, C4 with the following properties: given
r > 0, there exists n0 = n0 (r) such that for n ≥ n0, both

(I) for all complex u, v with |u| , |v| ≤ r,
∣∣∣Kn

(
ξ +

u

n
, ξ +

v

n

)∣∣∣ ≤ C1neC2(|u|+|v|); (1.9)

(II) for all s ∈ [−r, r],

Kn

(
ξ +

s

n
, ξ +

s

n

)
≥ C3n; (1.10)

(III) for n ≥ 1,
M [Kndµ] (ξ) ≤ C4n. (1.11)

Then (1.7) holds for all r > 0.
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When µ satisfies a Szegő type condition
∫
J log µ′ > −∞ in an interval J ,

then results of Totik [21], [22] indicate that both (1.9) and (1.10) hold at a.e.
ξ ∈ J . However, it is not clear that (1.11) also follows. In [2], Avila, Last
and Simon assumed similar conditions to (1.9), (1.10), but assumed instead
of (1.11) an implicit limit condition, in proving pointwise universality.

This paper is structured as follows: in Section 2, we present the ideas
of proof. In Section 3, we establish upper and lower bounds for Kn. In
Section 4, we deduce normality of the normalized reproducing kernels, and
establish properties of their subsequential limits, which are entire functions.
In Section 5, we estimate averages of tail integrals using maximal functions,
and then prove Theorems 1.2 and 1.3.

We close this section with some notation. Throughout, C,C1, C2, . . . de-
note positive constants independent of n, x, t, and polynomials of degree ≤ n.
The same symbol does not necessarily denote the same constant in different
occurrences. We shall use calligraphic symbols such as En,Fn,Gn,Hn . . . to
denote sets that typically have small measure. The nth Christoffel function
for µ is

λn (x) =
1

Kn (x, x)
= inf

deg(P )≤n−1

∫
P 2 (t)

P 2 (x)
dµ (t) . (1.12)

For r > 0, we define the tail integral

Φn (x, r) =

∫
|t−x|≥ r

n

Kn (x, t)2 dµ (t)

Kn (x, x)
. (1.13)

Let

An (x) = p2
n−1 (x) + p2

n (x) . (1.14)

For complex u, v, real ξ, and r > 0, we let

fn (u, v, ξ) =
Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
; (1.15)

Γn (u, v, ξ, r) (1.16)

= sup
s≥r K̃n(ξ,ξ)

n

∣∣∣∣∣∣
fn (u, v, ξ) −

∫ s

−s
fn (u, t, ξ) fn (v, t, ξ)

dµ
(
ξ + t

K̃n(ξ,ξ)

)

µ′ (ξ)

∣∣∣∣∣∣
.

In the integral in the right-hand side, t is the variable of integration. Also,
let

In (ξ, r) =
1

4

∫ 1

−1

∫ 1

−1
Γn (u, v, ξ, r) (fn (u, u, ξ) fn (v, v, ξ))−1/2 du dv. (1.17)

For σ > 0, PWσ denotes the Paley-Wiener space, consisting of entire func-
tions of exponential type at most σ that are square integrable on the real
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axis, with the usual L2 (R) norm. The reproducing kernel for PWσ is
sinσ(u−v)

π(u−v) . Thus for g ∈ PWσ, and all complex z [19, p. 95],

g (z) =

∫ ∞

−∞
g (t)

sin σ (t − z)

π (t − z)
dt.

The Cartwright class [9] consists of all entire functions g of exponential type
such that ∫ ∞

−∞

log+ |g (t)|
1 + t2

dt < ∞, (1.18)

where log+ x = max {0, log x}.

2. Ideas of Proof

Recall our notation

fn (u, v, ξ) =
Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)

Kn (ξ, ξ)
.

Our local hypotheses on µ in Theorem 1.2 give upper bounds on Kn (t, t)
for t in any compact subinterval of J . We can then use Bernstein’s growth
inequality in the plane to show that for ξ ∈ J and all complex u, v,

∣∣∣Kn

(
ξ +

u

n
, ξ +

v

n

)∣∣∣ ≤ C1neC2(|u|+|v|).

Here C1, C2 depend on ε, but are independent of u, v, n, ξ. There is also
a lower bound for Kn (t, t) that holds for arbitrary measures. Thus the
hypotheses of Theorem 1.2 imply those of Theorem 1.3. The latter give
uniform boundedness of {fn} for all complex u, v,

|fn (u, v, ξ)| ≤ C1e
C2(|u|+|v|).

One deduces that if f (·, ·, ξ) is a subsequential limit, it is entire of exponen-
tial type in each variable. Moreover, there exists σ > 0 such that for all real
a, f (a, ·, ξ) is of exponential type σ, and lies in Cartwright’s class. Some
assertions about the zeros of f (0, ·, ξ) are then proved as in [11], [13].

The most difficult step is to show that

f (u, v, ξ) =
sin π (u − v)

π (u − v)
. (2.1)

We adopt an indirect approach, based on a uniqueness theorem proved in
[13]. The essential feature there, is that the relation

f (a, b, ξ) =

∫ ∞

−∞
f (a, t, ξ) f (b, t, ξ) dt, (2.2)

for all complex a, b, together with f (0, 0, ξ) = 1, and some other restrictions
on zeros of f (0, ·), yields (2.1).

To establish (2.2), we estimate averages of the tail integrals
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Φn (x, r) =

∫
|t−x|≥ r

n

Kn (x, t)2 dµ (t)

Kn (x, x)
.

Using maximal functions, we show in Section 5, that for |y − x| ≤ r
4m ,

2m−1∑

n=m

Φn (x, r)1/2 ≤ 8C0

r1/2

(
K2m (x, x)

Km (x, x)

)1/2

(mM [K2mdµ] (y))1/2 ,

where

C0 = sup
n

γn−1

γn
.

We can then deduce estimates for averages of

In (ξ, r) =
1

4

∫ 1

−1

∫ 1

−1
Γn (u, v, ξ, r) (fn (u, u, ξ) fn (v, v, ξ))−1/2 du dv,

where

Γn (u, v, ξ, r)

= sup
s≥r

K̃n(ξ,ξ)
n

∣∣∣∣∣∣
fn (u, v, ξ) −

∫ s

−s
fn (u, t, ξ) fn (v, t, ξ)

dµ
(
ξ + t

K̃n(ξ,ξ)

)

µ′ (ξ)

∣∣∣∣∣∣
.

More precisely, we show that for some C independent of r and m,

1

m

2m−1∑

n=m

In (ξ, r)1/2 ≤ C

r1/2
.

This leads to (2.2), and hence (2.1), for subsequential limits f that avoid
a thin set of integers. Using the fact that {fn} are uniformly bounded in
compact sets, we then obtain (1.7).

3. Bounds for Kn

We show that the hypotheses of Theorem 1.2 imply those of Theorem 1.3.

Lemma 3.1. Assume the hypotheses of Theorem 1.2. Let J1 be a compact
subinterval of J . There exist C1, C2 and C3 with the following properties:

(a) Given r > 0, there exists n0 = n0 (r) such that for n ≥ n0, ξ ∈ J1,
and for all complex u, v with |u| , |v| ≤ r,

∣∣∣Kn

(
ξ +

u

n
, ξ +

v

n

)∣∣∣ ≤ C1neC2(|u|+|v|); (3.1)

(b) Let ξ ∈ J be a Lebesgue point of µ. Then for n ≥ 1,

M [Kndµ] (ξ) ≤ C3n. (3.2)
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Proof. (a) This follows from the assumed lower bounds on µ′ and Bern-
stein’s growth inequality for polynomials, by using standard meth-
ods. Here are some details: let ω denote the Legendre measure for
the interval J , so that ω′ = 1 there. By (1.6) and monotonicity of
Christoffel functions,

λn (µ, x) ≥ Cλn (ω, x) .

Standard estimates for the Christoffel function for the Legendre
weight [15, p. 108, Lemma 5] give that for n ≥ 1 and x ∈ J1,

λn (ω, x) ≥ C1/n.

Thus for n ≥ 1 and x ∈ J1,

Kn (x, x) = λ−1
n (x) ≤ (CC1)

−1n.

By Cauchy-Schwarz, for n ≥ 1, and x, y ∈ J1,

|Kn (x, y)| ≤ (CC1)
−1n.

We now apply Bernstein’s growth inequality

|P (z)| ≤
∣∣∣z +

√
z2 − 1

∣∣∣
n
‖P‖L∞[−1,1] ,

valid for all complex z, and polynomials P of degree ≤ n. We refor-
mulate this for the interval J , and estimate in a standard fashion to
obtain (3.1). See [11, Lemmas 5.1 and 5.2, pp. 383–384].

(b) Choose η > 0 so that ξ ± η ∈ J1, a compact subinterval of J . In J1,
(a) implies that Kn (x, x) ≤ C1n. Then for ξ ∈ J and 0 < h < η,

1

2h

∫ ξ+h

ξ−h
Kn (t, t) dµ (t) ≤ C1n

1

2h
µ [ξ − h, ξ + h] .

As ξ is a Lebesgue point of µ,

lim
h→0+

1

2h
µ [ξ − h, ξ + h] = µ′ (ξ) < ∞.

Hence there exists C2 > 0 such that for h > 0,

1

2h
µ [ξ − h, ξ + h] ≤ C2.

This yields the desired estimate for 0 < h < η. For h ≥ η, we use
the trivial estimate

1

2h

∫ ξ+h

ξ−h
Kn (t, t) dµ (t) ≤ 1

2η

∫
Kn (t, t) dµ (t) =

n

2η
.

�

Lemma 3.2. Let µ be a measure with compact support, and with infinitely
many points in its support. For each Lebesgue point ξof µ, there exists
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C = C (ξ) with the following property: let T > 0. Then there exists n0such
that for n ≥ n0,

inf
s∈[−T,T ]

Kn

(
ξ +

s

n
, ξ +

s

n

)
≥ Cn. (3.3)

Moreover, this also holds at every point ξ /∈ supp [µ].

Proof. See, for example, [13, Lemmas 3.1 and 3.2]. A far more precise
asymptotic lower bound was proved in [20]. �

4. Normal Family Estimates

Recall the definition (1.15) of fn. In this section, we prove:

Theorem 4.1. Assume that µ and ξ are as in Theorem 1.3. There exist
C1, C2 > 0 with the following properties:

(a) For all complex u, v,

|fn (u, v, ξ)| ≤ C1e
C2(|u|+|v|). (4.1)

(b) Let f (·, ·, ξ) be the limit of some subsequence {fn}n∈T of {fn}n≥1.
Then
(i) f (·, ·, ξ) is entire in each variable, and with C1, C2 as in (a),

for all complex u, v,

|f (u, v, ξ)| ≤ C1e
C2(|u|+|v|). (4.2)

(ii) For each complex u,
∫ ∞

−∞
|f (u, s, ξ)|2 ds ≤ f (u, ū, ξ) < ∞. (4.3)

(iii) f (0, ·, ξ) has infinitely many real simple zeros {ρj}j 6=0 where

· · · < ρ−2 < ρ−1 < 0 < ρ1 < ρ2 < · · ·
and no other zeros. Let ρ0 = 0. For j 6= 0, f (ρj, ·, ξ) has zeros
{ρk}k∈Z\{j}and no other zeros.

(iv) There exists C0 > 0 such that for all real t,

f (t, t, ξ) ≥ C0, (4.4)

and f (0, 0) = 1.
(v) There exists σ > 0 such that for each real a, f (a, ·, ξ) is an

entire function of exponential type σ.

Remark . C0, C1, and C2 are independent of n, u, v, and the particular
subsequential limit f .

Proof of Theorem 4.1(a). From Lemmas 3.1 and 3.2, we deduce that for
Lebesgue points ξ ∈ J1, and all complex u, v, we have

∣∣∣∣∣
Kn

(
ξ + u

n , ξ + v
n

)

Kn (ξ, ξ)

∣∣∣∣∣ ≤ C1e
C2(|u|+|v|).
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Here C1, C2 are independent of n, u, v. Since also
n

K̃n (ξ, ξ)
≤ C

in J1, some C (from Lemma 3.2), we obtain for (different) C1, C2,
∣∣∣∣∣∣

Kn

(
ξ + u

K̃n(ξ,ξ)
, ξ + v

K̃n(ξ,ξ)

)

Kn (ξ, ξ)

∣∣∣∣∣∣
≤ C1e

C2(|u|+|v|).

�

Proof of Theorem 4.1(b).

(i) From (i), {fn}n≥1 is a normal family in compact subsets of C
2. If

f denotes some subsequential limit, say as n → ∞ through T , then
(a) gives the bound

|f (u, v, ξ)| ≤ C1e
C2(|u|+|v|),

for all complex u, v.
(ii) Next, let u ∈ C, and U = ξ + u

K̃n(ξ,ξ)
, and use the reproducing kernel

relation

1 =

∫ ∣∣K2
n (U, t)

∣∣
Kn

(
U, Ū

) dµ (t) .

We drop most of the integral and make the substitution t = ξ +
s

K̃n(ξ,ξ)
:

1 ≥
∫ ξ+ r

K̃n(ξ,ξ)

ξ− r

K̃n(ξ,ξ)

∣∣K2
n (U, t)

∣∣
Kn

(
U, Ū

) dµ (t)

=

∫ r

−r

|fn (u, s, ξ)|2
fn (u, ū, ξ)

dµ
(
ξ + s

K̃n(ξ,ξ)

)

µ′ (ξ)
.

As we assumed that ξ is a Lebesgue point of µ, and we may assume
that as n → ∞ through T , fn → f locally uniformly, we obtain

1 ≥
∫ r

−r

|f (u, s, ξ)|2
f (u, ū, ξ)

ds.

Now let r → ∞.
(iii) Now for each fixed real ξ, with (pn−1pn) (ξ) 6= 0, the function

Ln (t, ξ) = (t − ξ) Kn (t, ξ)

=
γn−1

γn
(pn (t) pn−1 (ξ) − pn−1 (t) pn (ξ))

has simple zeros that interlace those of pn. See, for example [8, p. 19
ff.]. More precisely Ln (·, ξ) has a simple zero in (xjn, xj−1,n) for
2 ≤ j ≤ n, and one zero outside (xnn,x1n). When (pn−1pn) (ξ) = 0,
then Ln is a multiple of pn−1 or pn. It follows that in all cases
Ln (·, ξ) has a zero in [xjn, xj−1,n), 2 ≤ j ≤ n, and at most one other
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zero, outside [xnn, x1n). Let {tjn}j 6=0 = {tjn (ξ)}j 6=0 denote these

zeros of Kn (ξ, t), and t0n (ξ) = ξ. We order the zeros as

· · · < t−1n (ξ) < t0n (ξ) < t1n (ξ) < t2n (ξ) < · · ·
Then fn (0, ·, ξ) has simple zeros

ρjn = K̃n (ξ, ξ) (tjn − ξ) , j 6= 0,

and no other zeros. Let ρ0n = 0. Note that

· · · < ρ−1,n < ρ0n = 0 < ρ1n < ρ2n < · · ·
Now as n → ∞ through T , we have

lim
n→∞,n∈T

fn (0, u, ξ) = f (0, u, ξ)

uniformly for u in compact subsets of the plane. Moreover, f (0, 0, ξ) =
limn→∞,n∈T fn (0, 0, ξ) = 1, so f is not identically 0. By Hurwitz’
theorem, each zero of f (0, ·, ξ) is a limit of zeros of fn (0, ·, ξ).

Next, (i) shows that f (0, ·, ξ) is of exponential type at most type

C2, while from (ii),
∫∞
−∞ f (0, s, ξ)2 ds < ∞. A well known bound [9,

p. 149] asserts that

|f (0, x + iy, ξ)|2 ≤ 2

π
e2C2(|y|+1)

∫ ∞

−∞
f (0, s, ξ)2 ds (4.5)

for all complex x + iy. In particular, then f (0, ·, ξ) is bounded on
the real axis and so satisfies (1.18) and lies in the Cartwright class.
It is also real valued on the real axis. Then [9, p. 130], if {ρj} are
the zeros of f (0, ·, ξ),

f (0, z, ξ) = lim
R→∞

∏

|ρj |<R

(
1 − z

ρj

)
.

It follows that f has infinitely many zeros {ρj}, and these are then
necessarily the limits of the zeros {ρj,n} of fn (0, ·, ξ). Since each ρj,n

is a simple zero of fn, ρj is a simple zero of f (0, ·, ξ) unless ρj = ρj−1

or ρj+1.
Next, we note that for j 6= k,

Kn (tjn, tkn) = 0.

Indeed, it follows from the Christoffel-Darboux formula that both
tjn and tkn are roots of the equation

pn (t) pn−1 (ξ) − pn−1 (t) pn (ξ) = 0.

Then for j 6= k,

fn (ρjn, ρkn, ξ) = 0

and because of the locally uniform convergence,

f (ρj, ρk, ξ) = 0.
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Moreover, because of Hurwitz’ theorem, f (ρj, ·, ξ) has no other ze-
ros. We still have to show the simplicity of the zeros.

(iv) We know from Lemma 3.2, that there exists C > 0, such that given
T > 0, there exists n0 = n0 (T ) such that for n ≥ n0,

inf
s∈[−T,T ]

Kn

(
ξ +

s

K̃n (ξ, ξ)
, ξ +

s

K̃n (ξ, ξ)

)
≥ Cn,

where C is independent of T . Also, we have the upper bound (3.1)
for Kn (ξ, ξ). Thus

inf
s∈[−T,T ]

fn (s, s, ξ) ≥ C.

As C is independent of T , we obtain

inf
t∈R

f (t, t, ξ) ≥ C.

This also shows that f (ρj , ρj , ξ) > 0, so necessarily ρj±1 6= ρj, and
all zeros of f (0, ·, ξ) are simple.

(v) As above, the zeros of Ln (t, ξ) = (t − ξ)Kn (t, ξ) interlace those of
pn. Let m > k. It follows that whatever is ξ, the number j of zeros
of Kn (t, ξ) in [xmn, xkn] satisfies

|j − (m − k)| ≤ 1.

Now let N (g, r) denote the number of zeros of a function g in [−r, r].
It follows from this last estimate that for any real a, b, and r > 0,
and n ≥ 1, we have

|N (fn (a, ·, ξ) , r) − N (fn (b, ·, ξ) , r)| ≤ 2.

Letting n → ∞ through the appropriate subsequence of integers
gives for each r > 0,

|N (f (a, ·, ξ) , r) − N (f (b, ·, ξ) , r)| ≤ 4. (4.6)

Since f (a, ·, ξ) has only real zeros, and lies in Cartwright’s class, as
follows from (i) and (ii), so,

lim
r→∞

N (f (a, ·) , r)

2πr
= σa,

where σa is the exponential type of f (a, ·, ξ), see [9, p. 127, eqn. (5)].
It follows from (4.6) that σa = σ is independent of a. We must still
show that σ > 0. To do this, we use the bound (4.5) with C2 = σ:

|f (0, x + iy, ξ)|2 ≤ 2

π
e2σ(|y|+1)

∫ ∞

−∞
|f (0, t, ξ)|2 dt.

If σ = 0, this implies that f (0, ·, ξ) is bounded and hence constant,
contradicting its square integrability over the real line.

�
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5. Proof of Theorems 1.2 and 1.3

We begin by estimating the tail integral Φn using maximal functions. It is
really these estimates that allow us to avoid the hypothesis that µ is regular.
Recall our notation (1.13)–(1.17). A version of Lemma 5.1(a) was already
proved and used in [14].

In the sequel, we let

C0 = sup
n

γn−1

γn
. (5.1)

Lemma 5.1. (a) Let µ be a measure on the real line with infinitely many
points in its support. Let r > 0 and m ≥ 1. Let |y − x| ≤ r

4m . Then

2m−1∑

n=m

Φn (x, r)1/2 ≤ 8C0

r1/2

(
K2m (x, x)

Km (x, x)

)1/2

(mM [K2mdµ] (y))1/2 . (5.2)

(b) Let 0 < A ≤ r/4. Then

∫ ξ+ A
m

ξ− A
m

(
2m−1∑

n=m

Φn (t, r)1/2

)
dt

≤ 8C0

r1/2
(mM [K2mdµ] (ξ))1/2

∫ ξ+ A
m

ξ− A
m

(
K2m (t, t)

Km (t, t)

)1/2

dt. (5.3)

(c) Assume in addition, that µ and ξ satisfy the hypotheses of Theo-
rem 1.3. There exist C > 0 and m1 such that for m ≥ m1 and all
r > 0,

∫ ξ+ A
m

ξ− A
m

(
2m−1∑

n=m

Φn (t, r)1/2

)
dt ≤ C√

r
. (5.4)

Here C is independent of m, r, but depends on A, ξ.

Proof. (a) Observe that

|Kn (x, t)| =
γn−1

γn

∣∣∣∣
pn (x) pn−1 (t) − pn−1 (x) pn (t)

x − t

∣∣∣∣

≤ γn−1

γn

An (x)1/2 A
1/2
n (t)

|x − t| ,

by Cauchy-Schwarz. Then for 2m − 1 ≥ n ≥ m,

Φn (x, r) ≤ C2
0

An (x)

Km (x, x)

∫

|t−x|≥ r
2m

An (t)

(t − x)2
dµ (t) .
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Using Cauchy-Schwarz, we obtain

2m−1∑

n=m

Φn (x, r)1/2

≤ C0

Km (x, x)1/2

2m−1∑

n=m

An (x)1/2

(∫

|t−x|≥ r
2m

An (t)

(t − x)2
dµ (t)

)1/2

≤ C0

Km (x, x)1/2

(
2m−1∑

n=m

An (x)

)1/2(2m−1∑

n=m

∫

|t−x|≥ r
2m

An (t)

(t − x)2
dµ (t)

)1/2

≤ 2C0

Km (x, x)1/2
(K2m (x, x))1/2

(∫

|t−x|≥ r
2m

K2m (t, t)

(t − x)2
dµ (t)

)1/2

. (5.5)

We assumed that |y − x| ≤ r
4m . Then for j ≥ −1, and |t − x| ≤

2j+1 r
2m ,

|t − y| ≤ 2j+1 r

2m
+ |x − y| ≤ 2j+2 r

2m

so using the definition of the maximal function, we see that
∫

2j r
2m

≤|t−x|≤2j+1 r
2m

Km (t, t) dµ (t) ≤
∫

|t−y|≤2j+2 r
2m

Km (t, t) dµ (t)

≤ 2j+2 r

m
M [K2mdµ] (y) .

Then

∫

|t−x|≥ r
2m

K2m (t, t)

(t − x)2
dµ (t) ≤

∞∑

j=−1

∫

2j r
m
≤|t−x|≤2j+1 r

2m

K2m (t, t)

(2jr/m)2
dµ (t)

≤
∞∑

j=−1

m2

22jr2
2j+2 r

m
M [K2mdµ] (y)

=
16m

r
M [K2mdµ] (y) .

Substituting this into (5.5) yields (5.2).
(b) This follows directly from (a) as |t − ξ| ≤ A

m ⇒ |t − ξ| ≤ r
4m .

(c) This follows directly from (b) and our hypotheses (1.9), (1.10), (1.11).
�

We can now deduce estimates for Γn and In, defined respectively by (1.16)
and (1.17).

Lemma 5.2. Assume that µ and ξ are as in Theorem 1.3. There exists
δ > 0 with the following properties:
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(a) For r > 0 and |u| , |v| ≤ rδ
2 ,

Γn (u, v, ξ, r) ≤
[
fn (u, u, ξ) Φn

(
ξ +

u

K̃n (ξ, ξ)
,
r

2

)]1/2

×
[
fn (v, v, ξ) Φn

(
ξ +

v

K̃n (ξ, ξ)
,
r

2

)]1/2

. (5.6)

(b) For r ≥ 4/δ,

1

m

2m−1∑

n=m

In (ξ, r)1/2 ≤ C1

r1/2
. (5.7)

Here C1 is independent of m, r.

Proof. We use the fact that for some δ ∈ (0, 1),

δn ≤ K̃n (ξ, ξ) ≤ δ−1n, n ≥ 1. (5.8)

This follows from Lemmas 3.1 and 3.2.

(a) This is as in [13]. Let

U = ξ +
u

K̃n (ξ, ξ)
; V = ξ +

v

K̃n (ξ, ξ)
,

and let s ≥ r. From the reproducing kernel relation,

Kn (U, V )

Kn (ξ, ξ)
−
∫

|y−ξ|≤ s
n

Kn (U, y)

Kn (ξ, ξ)

Kn (V, y)

Kn (ξ, ξ)
K̃n (ξ, ξ)

dµ (y)

µ′ (ξ)

=

∫

|y−ξ|> s
n

Kn (U, y)√
Kn (ξ, ξ)

Kn (V, y)√
Kn (ξ, ξ)

dµ (y) .

We now make the substitution y = ξ + t
K̃n(ξ,ξ)

, in the first integral

only, recasting the last equation as

fn (u, v, ξ) −
∫ s K̃n(ξ,ξ)

n

−s K̃n(ξ,ξ)
n

fn (u, t, ξ) fn (v, t, ξ)
dµ
(
ξ + t

K̃n(ξ,ξ)

)

µ′ (ξ)

= fn (u, u, ξ)1/2 fn (v, v, ξ)1/2
∫

|y−ξ|> s
n

Kn (U, y)√
Kn (U,U)

Kn (V, y)√
Kn (V, V )

dµ (y) .

(5.9)

Next, observe that for ξ ∈ J , (5.8) gives for s ≥ r,

|y − ξ| ≥ s

n
⇒ |y − U | ≥ |y − ξ| − |u|

n

n

K̃n (ξ, ξ)

≥ s

n
− |u|

δn
≥ s

2n
≥ r

2n
,
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as |u| ≤ δr
2 ≤ δs

2 . Now use Cauchy-Schwarz on the right-hand side
of (5.9), and the fact that s ≥ r:

Γn (u, v, ξ, r)

= sup
s≥r

∣∣∣∣∣∣
fn (u, v, ξ) −

∫ s
K̃n(ξ,ξ)

n

−s
K̃n(ξ,ξ)

n

fn (u, t, ξ) fn (v, t, ξ)
dµ
(
ξ + t

K̃n(ξ,ξ)

)

µ′ (ξ)

∣∣∣∣∣∣

≤
[
fn (u, u, ξ) fn (v, v, ξ)

∫

|y−U |> r
2n

K2
n (U, y)

Kn (U,U)
dµ (y)

∫

|y−V |> r
2n

K2
n (V, y)

Kn (V, V )
dµ (y)

]1/2

.

We obtain (5.6), on taking account of the definition (1.13) of Φn.
(b) Using (a) and integrating, gives

In (ξ, r) =
1

4

∫ 1

−1

∫ 1

−1
Γn (u, v, ξ, r) (fn (u, u, ξ) fn (v, v, ξ))−1/2 du dv

≤
(

1

2

∫ 1

−1
Φn

(
ξ +

u

K̃n (ξ, ξ)
,
r

2

)1/2

du

)2

=


K̃n (ξ, ξ)

2

∫

|t−ξ|≤ 1
K̃n(ξ,ξ)

Φn

(
t,

r

2

)1/2
dt




2

≤
(

n

2δ

∫

|t−ξ|≤ 1
nδ

Φn

(
t,

r

2

)1/2
dt

)2

,

by (5.8). Adding for m ≤ n ≤ 2m − 1, gives

1

m

2m−1∑

n=m

In (ξ, r)1/2 ≤ δ−1

∫

|t−ξ|≤ 1
mδ

[
2m−1∑

n=m

Φn (t, r)1/2

]
dt

≤ C

r1/2
,

by Lemma 5.1(c). Here we need 1
δ ≤ r

4 .

�

We need:

Definition 5.3. For a given (ξ, r), we say a positive integer n is (ξ, r) bad
if

In (ξ, r) ≥ r−1/2.

We denote by B (ξ, r) the set of all (ξ, r) bad integers, and for k ≥ 1, we let

Dk (ξ) =
∞⋃

j=k

B
(
ξ, 2j

)
. (5.10)
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Lemma 5.4. Let δ be as in Lemma 5.2. For n ≥ 1 and k ≥ log2 (4/δ),

1

n
# (Dk (ξ) ∩ [1, n]) ≤ C22

−k/4. (5.11)

Here C2 is independent of n and k.

Proof. From Lemma 5.2(b), provided r ≥ 4/δ, we have

C1r
−1/2 ≥ 1

m

2m−1∑

n=m

In (ξ, r)1/2

≥ 1

m
r−1/4# (B (ξ, r) ∩ [m, 2m − 1]) .

That is,

# (B (ξ, r) ∩ [m, 2m − 1]) ≤ C1mr−1/4.

Then for ℓ ≥ 1, and 2k ≥ 4/δ,

#
(
Dk (ξ) ∩

[
2ℓ, 2ℓ+1 − 1

])
≤

∞∑

j=k

#
(
B
(
ξ, 2j

)
∩
[
2ℓ, 2ℓ+1 − 1

])

≤ C1

∞∑

j=k

2ℓ/2j/4 ≤ C22
ℓ−k/4.

Then

# (Dk (ξ) ∩ [1, n]) ≤
[log2 n]+1∑

ℓ=0

#
(
Dk (ξ) ∩

[
2ℓ, 2ℓ+1 − 1

])

≤ C2

[log2 n]+1∑

ℓ=0

2ℓ−k/4 ≤ C3n2−k/4.

�

We need a characterization of the sinc kernel:

Lemma 5.5. Let σ > 0 and F : C
2 → C be an entire function in each

variable with the following properties:

(i) For each real a, F (a, ·) is an entire function of exponential type σ,
that is real on the real axis, with

∫ ∞

−∞
|F (a, s)|2 ds < ∞.

(ii) Let ρ0 = 0 and F (0, ·)have distinct simple zeros {ρj}j∈Z\{0}, or-

dered in increasing size, and no other zeros. Assume that for j 6= 0,
F (ρj, ·) has zeros {ρk}k∈Z\{j} and no other zeros.
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(iii) There exists C > 0 such that for all real t,

F (t, t) ≥ C,

and F (0, 0) = 1.
(iv) For all complex a, b,

F (a, b) =

∫ ∞

−∞
F (a, s)F (b, s) ds.

Then for all complex u, v,

F (u, v) =
sin π (u − v)

π (u − v)
.

Proof. See Theorem 6.1 in [13]. �

Lemma 5.6. Let δ be as in Lemma 5.2. Let k ≥ log2 (4/δ). Let µ and
ξ ∈ J be as in Theorem 1.3. Then uniformly for u, vin compact subsets of
C,

lim
n→∞,n/∈Dk(ξ)

fn (u, v, ξ) =
sinπ (u − v)

π (u − v)
.

Proof. We know that {fn (·, ·, ξ)}n≥1 is a normal family. Suppose that S is

a subsequence of positive integers that does not intersect Dk (ξ). By passing
to a further subsequence (and keeping the same notation for the sequence),
we can assume that fn → f as n → ∞ through S, uniformly in compact
subsets of C

2. Now if n ∈ S, then n /∈ B
(
ξ, 2j

)
for all j ≥ k. It follows that

for fixed such j,

In

(
ξ, 2j

)
< 2−j/2.

That is, taking account of (1.17) and the uniform boundedness above and

below of fn (u, u, ξ), we have for each fixed s ≥ 2j K̃n(ξ,ξ)
n , and hence for

s ≥ 4
δ 2j ,

∫ 1

−1

∫ 1

−1

∣∣∣∣∣fn (u, v, ξ) −
∫ s

−s
fn (u, t, ξ) fn (v, t, ξ)

dµ
(
ξ + t

K̃n(ξ,ξ)

)

µ′ (ξ)

∣∣∣∣∣du dv

≤ C2−j/2.

The constant C is independent of both n and j. Letting n → ∞ through S,
and using that ξ is a Lebesgue point, gives

∫ 1

−1

∫ 1

−1

∣∣∣∣f (u, v, ξ) −
∫ s

−s
f (u, t, ξ) f (v, t, ξ) dt

∣∣∣∣ du dv ≤ C2−j/2.

Letting first s → ∞, and then j → ∞, we obtain
∫ 1

−1

∫ 1

−1

∣∣∣∣f (u, v, ξ) −
∫ ∞

−∞
f (u, t, ξ) f (v, t, ξ) dt

∣∣∣∣ du dv = 0.
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This is permissible in view of (4.3). Thus, for a.e. (u, v) ∈ [−1, 1] × [−1, 1],
we have

f (u, v, ξ) =

∫ ∞

−∞
f (u, t, ξ) f (v, t, ξ) dt.

As both sides are entire, this equation holds for all complex u, v. Then
Lemma 5.5 shows that

f (u, v, ξ) =
sin π (u − v)

π (u − v)
.

Indeed, all the remaining hypotheses of Lemma 5.5 were proved in The-
orem 4.1. As every subsequence of positive integers outside Dk (ξ) has a
subsequence converging locally uniformly to the sinc kernel, it follows that
the full sequence outside Dk (ξ) converges to the sinc kernel. �

Lemma 5.4 shows that Dk (ξ) is a set of density at most C2−k/4. This is
small for large k, but not 0. We now turn to the

Proof of Theorem 1.3. Let δ be as in Lemma 5.2. Given k ≥ log2 (4/δ),
and r > 0, there exists nk such that for n ≥ nk and n /∈ Dk (ξ),

sup
|u|,|v|≤r

∣∣∣∣fn (u, v, ξ) − sinπ (u − v)

π (u − v)

∣∣∣∣ ≤
1

k
. (5.12)

Moreover, because of the uniform boundedness proved in Theorem 4.1, there
exists C (r) depending only on r, such that for n ≥ 1,

sup
|u|,|v|≤r

∣∣∣∣fn (u, v, ξ) − sinπ (u − v)

π (u − v)

∣∣∣∣ ≤ C (r) . (5.13)

Then

1

m

m∑

n=1

sup
|u|,|v|≤r

∣∣∣∣fn (u, v, ξ) − sinπ (u − v)

π (u − v)

∣∣∣∣

≤ 1

m




∑

nk≤n≤m,n/∈Dk(ξ)

1

k
+

∑

n≤nk or nk<n≤m,n∈Dk(ξ)

C (r)




≤ 1

k
+

nk

m
C (r) +

(
C22

−k/4
)

C (r) .

Here we have used Lemma 5.4, and it is crucial that both C (r) and C2

are independent of k,m. We first take lim sup’s as m → ∞, and then let
k → ∞, to obtain (1.7). �

Remark. The proof actually shows that if Ψ : [0,∞) → [0,∞) is an in-
creasing function with limt→0+ Ψ (t) = 0, then

lim
m→∞

1

m

m∑

n=1

Ψ

(
sup

|u|,|v|≤r

∣∣∣∣fn (u, v, ξ) − sin π (u − v)

π (u − v)

∣∣∣∣

)
= 0.

Proof of Theorem 1.2. The hypotheses of Theorem 1.2 were shown to
imply those of Theorem 1.3 in Lemmas 3.1 and 3.2. �
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