
SOME RECENT METHODS FOR ESTABLISHING
UNIVERSALITY LIMITS

D. S. LUBINSKY

Abstract. We survey some recent methods for establishing universal-
ity limits for random matrices in the unitary case. These include Levin�s
method using a Markov-Bernstein inequality, a comparison inequality of
the author, and a method based on complex analysis and reproducing
kernels. We focus on the bulk of the spectrum for measures with com-
pact support, but the methods may also be used at the soft or hard
edge, and for measures with unbounded support.

1. Introduction1

LetM (n) denote the space of n by nHermitian matricesM = (mij)1�i;j�n.
Consider a probability distribution onM (n) ;

P (n) (M) = cw (M) dM

= cw (M)
�Yn

j=1
dmjj

��Y
j<k

d (Remjk) d (Immjk)
�
:

Here w (M) is a function de�ned onM (n), and c is a normalizing constant.
The most important case is

w (M) = exp (�2n Q (M)) ;

for appropriate functions Q de�ned onM (n). In particular, the choice

Q (M) = tr
�
M2
�
;

leads to the Gaussian unitary ensemble (apart from scaling) that was con-
sidered by Wigner, in the context of scattering theory for heavy nuclei.
One may identify P (n) above with a probability density on the eigenvalues
x1 � x2 � ::: � xn of M;

P (n) (x1; x2;:::; xn) = c

0@ mY
j=1

w (xj)

1A�Y
i<j
(xi � xj)2

�
:

See [15, p. 102 ¤.]. Again, c is a normalizing constant.
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2 D. S. LUBINSKY

It is at this stage that orthogonal polynomials arise [15], [43]. Let � be
a �nite positive Borel measure with compact support and in�nitely many
points in the support. De�ne orthonormal polynomials

pn (x) = nx
n + :::; n > 0;

n = 0; 1; 2; :::; satisfying the orthonormality conditionsZ
pjpkd� = �jk:

Throughout we use w to denote the Radon-Nikodym derivative of �. The
nth reproducing kernel for � is

(1.1) Kn (x; y) =
n�1X
k=0

pk (x) pk (y) ;

and the normalized kernel is

(1.2) eKn (x; y) = w (x)1=2w (y)1=2Kn (x; y) :
When

w (x) = e�2nQ(x)dx;

there is the basic formula for the probability distribution P (n) [15, p.112]:

P (n) (x1; x2; :::; xn) =
1

n!
det
�
~Kn (xi; xj)

�
1�i;j�n

:

One may use this to compute a host of statistical quantities - for example
the probability that a �xed number of eigenvalues of a random matrix lie
in a given interval. One particularly important quantity is the m�point
correlation function for M (n) [15, p. 112]:

Rm (x1; x2;:::; xm) =
n!

(n�m)!

Z
:::

Z
P (n) (x1; x2:::; xn) dxm+1 dxm+2 :::dxn

= det
�
~Kn (xi; xj)

�
1�i;j�m

:

The universality limit in the bulk asserts that for �xed m � 2, and � in
the interior of the support of f�g, and real a1; a2; :::; am, we have

lim
n!1

1
~Kn (�; �)

mRm

�
� +

a1
~Kn (�; �)

; � +
a2

~Kn (�; �)
; :::; � +

am
~Kn (�; �)

�
= det

�
sin� (ai � aj)
� (ai � aj)

�
1�i;j�m

:

Of course, when ai = aj , we interpret
sin�(ai�aj)
�(ai�aj) as 1. Because m is �xed in

this limit, this reduces to the case m = 2, namely

(1.3) lim
n!1

~Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
~Kn (�; �)

=
sin� (a� b)
� (a� b) :
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Thus, an assertion about the distribution of eigenvalues of random matrices
has been reduced to a technical limit involving orthogonal polynomials. The
term universal is quite justi�ed: the limit on the right-hand side of (1.3) is
independent of �, but more importantly is independent of the underlying
measure.
Typically, the limit (1.3) is established uniformly for a; b in compact sub-

sets of the real line, but if we remove the normalization from the outer Kn,
we can also establish its validity for complex a; b, that is,

(1.4) lim
n!1

Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
Kn (�; �)

=
sin� (a� b)
� (a� b) :

The most obvious approach is to use the Christo¤el-Darboux formula,

Kn (u; v) =
n�1
n

pn (u) pn�1 (v)� pn�1 (u) pn (v)
u� v ; u 6= v;(1.5)

Kn (u; u) =
n�1
n

�
p0n (u) pn�1 (u)� pn (u) p0n�1 (u)

�
;(1.6)

leading to (for b 6= a),

Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
Kn (�; �)

= w (�)
n�1
n

pn

�
� + a

~Kn(�;�)

�
pn�1

�
� + b

~Kn(�;�)

�
� pn�1

�
� + a

~Kn(�;�)

�
pn

�
� + b

~Kn(�;�)

�
a� b

= : w (�)
�n
a� b :

(1.7)

It is clear from this that if we have su¢ cient knowledge of the asymptotic
behavior of pn as n ! 1, then we can substitute in these asymptotics,
and deduce universality. Of course, the question is: what is su¢ cient? For
classical weights, such as Jacobi weights, complete asymptotic expansions
(such as Plancherel-Rotach asymptotics) are available, and these yield far
more than universality.
In recent years, the deep and powerful Riemann-Hilbert methods have

also yielded far more than is required for universality. Originally, they were
applied to w = e�Q or varying weights w = e�nQ, for analytic Q [4], [5],
[8], [9], [15], [17]. The @-bar method has permitted their application to non
analytic Q, for example, when Q00 satis�es a Lipschitz condition [41], [42].
The Riemann-Hilbert literature is extensive; some recent references include
[3], [10], [11], [12], [13], [14], [16], [24], [25], [26], [27], [40], [59]. Other useful
methods arise from techniques in mathematical physics, probability theory,
and operator theory [1], [6], [7], [18], [20], [21], [23], [46], [47], [51], [56],
[57], [58], [60]. We shall not survey these methods here. We shall simply
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survey three recent methods, giving an outline of proofs, and some relevant
references.
In the sequel, C;C1; C2; ::: denote positive constants independent of n; x; t; z

and polynomials of degree � n. The same symbol does not necessarily de-
note the same constant in di¤erent occurrences. For x � 0, we let [x] denote
the greatest integer � x. For sequences fcng and fdng, we write

cn � dn
if there exist positive constants C1 and C2 such that for all n;

C1 � cn=dn � C2:
Similar notation is used for functions, and sequences of functions. While Kn
is associated with �, we shall useK�

n for the kernel associated with a measure
��. For other measures such as �, we shall use K�

n. Similar superscripts are
used for other orthogonal polynomial quantities.

2. The Chebyshev weight

Let us start with the Chebyshev weight

w (x) =
1p
1� x2

; x 2 (�1; 1) ;

for this gives substantial insight about the general case. Then p0 = 1p
�
,

while for n � 1;
n�1
n

=
1

2
and pn (cos �) =

r
2

�
cos (n�) :

Moreover, if
� = cos � 2 (�1; 1) ;

straightforward manipulations give

~Kn (�; �) =
1

�
p
1� �2

0@1 + 2 n�1X
j=1

(cos j�)2

1A
=

1

� sin �

�
n� 1

2
+
sin (2n� 1) �

2 sin �

�
=

n

� sin �
+O (1) :(2.1)

Let us set, for a given �; a and b, with b 6= a;

� +
a

~Kn (�; �)
= cos �n;

� +
b

~Kn (�; �)
= cos (�n + �n) :

Here, expanding to a Taylor series of �rst order,
a� b
~Kn (�; �)

= cos �n � cos (�n + �n)

= �n sin �n +O
�
�2n
�
;
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so �n = O
�
1
n

�
and

�n =
a� b

sin �n ~Kn (�; �)
(1 +O (�n))

=
a� b

sin �n ~Kn (�; �)
+O

�
n�2

�
:(2.2)

It is also easy to see that

(2.3) cos �n = cos � +O

�
1

n

�
; sin �n = sin � +O

�
1

n

�
:

Then from (2.1),

(2.4) �n =
� (a� b)

n
+O

�
1

n2

�
:

Then we can express the numerator �n in the right-hand side of (1.7) as

�n =
1

�
[(cosn�n) (cos (n� 1) (�n + �n))� (cos (n� 1) �n) cosn (�n + �n)]

=
1

2�

�
cos ((2n� 1) �n + (n� 1) �n) + cos (�n � (n� 1) �n)

� cos ((2n� 1) �n + n�n)� cos (�n + n�n)

�
=

1

�

�
sin

�
(2n� 1) �n +

�
n� 1

2

�
�n

�
sin

�
�n
2

�
+ sin

�
�n +

�n
2

�
sin

��
n� 1

2

�
�n

��
:

(2.5)

Here in the �rst step, we used the identity

cosA cosB =
1

2
[cos (A+B) + cos (A�B)]

and in the second step, we used

cosA� cosB = 2 sin
�
A+B

2

�
sin

�
B �A
2

�
:

Using (2.3) and (2.4), we continue (2.5) as

�n =
1

�

�
O

�
1

n

�
+

�
sin � +O

�
1

n

���
sin (� (a� b)) +O

�
1

n

���
=

1

�
(sin �) sin (� (a� b)) +O

�
1

n

�
:

Substituting into (1.7), we obtain

Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
Kn (�; �)

=
sin (� (a� b))
� (a� b) +O

�
1

n

�
:

Thus we have the universality limit (1.3) for a �xed � 2 (�1; 1) and for �xed
a; b with a 6= b:
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3. Levin�s Method

It is clear that the proof in the previous section requires modi�cation if
b = a. Indeed, one of the problems of substituting asymptotics for pn and
pn�1 into (1.7) is treating the case where b is close to a. In the past this
has been circumvented by using higher order terms in asymptotics for pn.
It was Eli Levin who �rst observed that �rst order asymptotics su¢ ce, and
that remainders can be estimated using a Markov-Bernstein inequality. This
was applied in [31] to exponential weights. We illustrate the method in this
section for measures with compact support.
Assume that our measure � has support [�1; 1]. Fix � = cos � 2 (�1; 1),

and assume that uniformly for x in a neighborhood of �, we have

(3.1) ~Kn (x; x) =
n

�
p
1� x2

(1 + o (1)) :

Assume, moreover, uniformly for such x = cos s,

(3.2) pn (x)w (x)
1=2 �1� x2�1=4 =r 2

�
cos (ns+ h (s)) + o (1) ;

where h is a continuously di¤erentiable function with bounded derivative.
We also assume that w is positive and continuous near �. For such measures,
we also have

(3.3)
n�1
n

=
1

2
+ o (1) :

We note that if � satis�es Szeg½o�s conditionZ 1

�1

log�0 (x)p
1� x2

dx > �1;

while � is absolutely continuous, and �0 is continuous in a neighborhood of
�, then (3.1) is true [39], [44], [45]. If in addition, �0 satis�es a Lipschitz
condition of order greater than 1

2 near �, then (3.2) is true [22, p. 246,
Table II]. Of course, more general results are available, but these are easy
to formulate.
We shall use the Christo¤el-Darboux formula (1.5) and its con�uent form

(1.6). We assume b 6= 0, set a = 0 (e¤ectively, this is a change of variable

� ! � +
a

~Kn (�; �)
);

and establish the limit

(3.4) lim
n!1

~Kn

�
� +

b
~Kn (�; �)

; �

�
= ~Kn (�; �) =

sin�b

�b
;

uniformly for b in compact subsets of the real line. Let us set

(3.5) �n;b = � +
b

~Kn (�; �)
= � +O

�
1

n

�
;
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recall (3.1). Also write

�n;b = cos �n;b; � = cos �;

so that
b

~Kn (�; �)
= cos �n;b � cos �

= � (sin �) (�n;b � �) +O
�
(�n;b � �)2

�
:

Then

(3.6) �n;b � � = �
b

(sin �) ~Kn (�; �)
+O

�
n�2

�
= ��b

n
+ o

�
n�1

�
so the asymptotics for pn and pn�1 at �n;b take the form

pn
�
�n;b
�
= w (�)�1=2

�
1� �2

��1=4r 2

�
cos (n�n;b + h (�n;b)) + o (1)

= w (�)�1=2
�
1� �2

��1=4r 2

�
cos (n� + h (�)� �b) + o (1) ;(3.7)

(3.8)

pn�1
�
�n;b
�
= w (�)�1=2

�
1� �2

��1=4r 2

�
cos ((n� 1) � + h (�)� �b) + o (1) :

The Christo¤el-Darboux formula in the form (1.7) gives

Kn
�
�n;b; �

�
=Kn (�; �)

= w (�)
n�1
n

 
pn
�
�n;b
�
pn�1 (�)� pn�1

�
�n;b
�
pn (�)

b

!
:

Inserting here the asymptotics (3.2), (3.3), (3.7), (3.8), we obtain uniformly
for b in a compact subset of Rn f0g ;

Kn
�
�n;b; �

�
=Kn (�; �)

=
1

�b

�
1� �2

��1=2� cos (n� + h (�)� �b) cos ((n� 1) � + h (�))
� cos ((n� 1) � + h (�)� �b) cos (n� + h (�))

�
+ o (1) :

Using some elementary trigonometry, as in the previous section, the cosine
terms in fg are reduced to

(sin�b) sin �;

and we �nally obtain

Kn

�
� +

b
~Kn (�; �)

; �

�
=Kn (�; �) =

sin�b

�b
+ o (1) :

This gives the result, but the uniformity in b follows only for b in compact
subsets of Rn f0g. For b = 0, the result is immediate.
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Now comes Levin�s main idea on bounding the tail. His method shows
that given a sequence fbng of non-zero numbers with limit 0, we have

(3.9) lim
n!1

Kn

�
� +

bn
~Kn (�; �)

; �

�
=Kn (�; �) = 1:

This will give the uniformity in b. We again use the Christo¤el-Darboux

formula, and expand pn
�
� + b= ~Kn (�; �)

�
and pn�1

�
� + b= ~Kn (�; �)

�
about

�n to the second order:

Kn

�
� +

bn
~Kn (�; �)

; �

�
=Kn (�; �)

=
1

bn
w (�)

n�1
n

�
pn

�
� +

bn
~Kn (�; �)

�
pn�1 (�)� pn�1

�
� +

bn
~Kn (�; �)

�
pn (�)

�

=
1

bn
w (�)

n�1
n

8>><>>:
[pn (�) pn�1 (�)� pn�1 (�) pn (�)]

+ bn
~Kn(�;�)

�
p0n (�) pn�1 (�)� p0n�1 (�) pn (�)

�
+1
2

�
bn

~Kn(�;�)

�2 �
p00n (r) pn�1 (�)� p00n�1 (s) pn (�)

�
9>>=>>;+ o (1) ;

where r and s are between � and �+ bn
~Kn(�;�)

. Using the con�uent form (1.6)

of the Christo¤el-Darboux formula, we continue this as
(3.10)

0 + 1 +O

�
jbnj
n2

��
max
J

��p00n��+max
J

��p00n�1����max
J
jpnj+max

J
jpn�1j

�
:

Here J is some interval containing � in its interior. Now the asymptotic
(3.2) ensures that pn is uniformly bounded in some open interval containing
�. To bound p00n, we use the Bernstein inequality��P 0 (t)�� � np

1� t2
kPkL1[�1;1] , t 2 (�1; 1) :

This is valid for polynomials P of degree � n. In particular, jP 0j grows no
faster than n kPkL1[�1;1] in any compact subset of (�1; 1). Applying this
twice, with appropriate intervals, we obtain

max
J

��p00n��+max
J

��p00n�1�� = O �n2� ;
so we can continue (3.10) as

1 +O (jbnj) = 1 + o (1) :
Thus for any sequence fbng of non-zero numbers with limit 0,

lim
n!1

Kn

�
� +

bn
~Kn (�; �)

; �

�
=Kn (�; �) = 1:

We have thus proven that

lim
n!1

Kn

�
� + b

~Kn(�;�)
; �
�

Kn (�; �)
=
sin (�b)

�b
;
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uniformly for b in compact subsets of the real line. Because of the uniformity
in b, and local uniformity in �, we can, as noted above, make the substitution
� ! � + a

~Kn(�;�)
and deduce

Proposition 3.1
Under the assumptions (3.1), (3.2), and (3.3), we have

lim
n!1

Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
Kn (�; �)

=
sin� (a� b)
� (a� b) ;

uniformly for a; b in compact subsets of the real line.
Levin�s method should be useful whenever we have both (i) �rst order as-

ymptotics for orthogonal polynomials, and (ii) a suitable Markov-Bernstein
inequality.

4. A Comparison Inequality

The method of the previous section, like all of its predecessors, requires
asymptotics for the orthonormal polynomials themselves. Inspired by Percy
Deift�s 60th birthday conference, the author came up with an inequality
that allows one to establish universality when asymptotics for pn are not
available, but asymptotics are available for the reproducing kernel

Kn (x; x) =
n�1X
j=0

p2j (x)

along the diagonal. Since 1nKn (x; x) is an average of squares of orthonormal
polynomials, it is likely to have more regular behavior. Moreover, it satis�es
an extremal property,

Kn (x; x) = sup
deg(P )�n�1

P 2 (x) =

Z
P 2d�:

This is more commonly formulated for the Christo¤el function

�n (x) =
1

Kn (x; x)
;

as

(4.1) �n (x) = inf
deg(P )�n�1

Z
P 2d�=P 2 (x) :

Christo¤el functions have been studied for many decades, and serve as a
cornerstone of what one might call the Hungarian approach to orthogonal
polynomials - a theme studied by Erd½os, Turán, Freud, Nevai, Máté, Totik,
and others [22], [39], [45], [54].
The key inequality is:
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Lemma 4.1
Assume that � and �� are measures on the real line such that

R
xjd�� (x)

is �nite for each j � 0, and such that
� � ��:

Let K�
n denote the nth reproducing kernel for �

�. Then for all real x; y;

jKn (x; y)�K�
n (x; y)j =Kn (x; x)

�
�
Kn (y; y)

Kn (x; x)

�1=2 �
1� K

�
n (x; x)

Kn (x; x)

�1=2
:(4.2)

Proof
The idea is to estimate the L2 norm of Kn (x; t)�K�

n (x; t) and then to use
Christo¤el function estimates. NowZ

(Kn (x; t)�K�
n (x; t))

2 d� (t)

=

Z
K2
n (x; t) d� (t)� 2

Z
Kn (x; t)K

�
n (x; t) d� (t) +

Z
K�2
n (x; t) d� (t)

= Kn (x; x)� 2K�
n (x; x) +

Z
K�2
n (x; t) d� (t) ;

by the reproducing kernel property. As � � ��; we also haveZ
K�2
n (x; t) d� (t) �

Z
K�2
n (x; t) d�

� (t) = K�
n (x; x) :

So Z
(Kn (x; t)�K�

n (x; t))
2 d� (t)

� Kn (x; x)�K�
n (x; x) :(4.3)

Next for any polynomial P of degree � n � 1, (4.1) yields the Christo¤el
function estimate

(4.4) jP (y)j � Kn (y; y)1=2
�Z

P 2d�

�1=2
:

Applying this to P (t) = Kn (x; t) � K�
n (x; t) and using (4.3) gives, for all

x; y 2 [�1; 1] ;
jKn (x; y)�K�

n (x; y)j
� Kn (y; y)

1=2 [Kn (x; x)�K�
n (x; x)]

1=2 :

�
The essential feature is that in the left-hand side of (4.2), we haveKn (x; y)

with x and y di¤erent, while the right-hand side involves values of Kn
"along the diagonal". If K�

n (x; x) is close to Kn (x; x), and Kn (y; y) =
O (Kn (x; x)), then the left-hand side is small. Thus, assume that for x in a
neighborhood N of �,

~Kn (x; x) � Kn (x; x) � n
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while for some " 2
�
0; 12
�
, large enough n, and x 2 N ;

K�
n (x; x) � Kn (x; x) = (1 + ") .

As � � ��, we also automatically have
K�
n (x; x) � Kn (x; x) :

Then given A > 0, (4.2) yields for n � n0 (A) and jaj ; jbj � A;
(4.5)������
Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
Kn (�; �)

�
K�
n

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
K�
n (�; �)

������ � C"1=2;
where C is independent of ". To replace ~Kn (�; �) by ~K�

n (�; �), in
a

~Kn(�;�)

and b
~Kn(�;�)

inside K�
n, one would use uniform convergence in a; b as n!1:

This approach is powerful because the Christo¤el function �n (x) = 1=Kn (x; x)
depends primarily on the structure of the support supp[�] of �, and the value
of �0 (x). In particular, if in some open neigborhood N of x

�jN = �
�
jN ;

and supp[�]=supp[��], then we expect that

lim
n!1

K�
n (x; x) =Kn (x; x) = 1;

and once we know universality for ��, it follows for �.
To establish this rigorously, one needs the concept of regularity in the

sense of Ullman or, Stahl and Totik [52]. We say the measure � is regular if

lim
n!1

1=nn =
1

cap (supp [�])
;

where cap denotes logarithmic capacity. For example, if supp[�] = [a; b], the
capacity is (b� a) =4 and the requirement is that

lim
n!1

1=nn =
4

b� a:

For those new to the concept, this de�nition may seem implicit. It is used
primarily because it is easy to state. One transparent su¢ cent condition
for regularity is that �0 > 0 a.e. in supp[�]. In applying it to universality,
the crucial feature of a regular measure is the following: if J is a compact
subset of supp[�], then

(4.6)

(
sup

deg(P )�n
kPkL1(J) =

�Z
jP j2 d�

�1=2)1=n
! 1 as n!1:

That is, sup norms of polynomials of deg � n over J , are dominated by
their L2 (�) norms, up to a factor that is eo(n). It is the latter property that
enables one to prove, for example:

Proposition 4.2
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Suppose that � and �� have the same support and both are regular measures.
Let x 2supp[�], and assume that � = �� in a neighborhood of x. Assume,
moreover, that given � > 0, there exists � > 0 such that for large enough n,

(4.7) K�
n (x; x) =K

�
[n(1��)] (x; x) � 1 + �:

Then
lim
n!1

Kn (x; x) =K
�
n (x; x) = 1:

Proof when supp[�] � [�1; 1]
Let � 2

�
0; 12
�
be such that �� = � in (x� �; x+ �) and let n � m � 1.

Choose a polynomial Pm of degree � m� 1, such that Pm (x) = 1 and

��m (x) = 1=K
�
m (x; x) =

Z
P 2md�

�:

We use this to estimate �n (x) above. There exists r 2 (0; 1) depending only
on � such that

(4.8) 0 � 1�
�
t� x
2

�2
� r for t 2 [�1; 1] n (x� �; x+ �) :

(We may take r = 1�
�
�
2

�2
). Let

Sn (t) = Pm (t)

 
1�

�
t� x
2

�2![n�m2 ]

;

a polynomial of degree � m � 1 + 2
�
n�m
2

�
� n � 1 with Sn (x) = 1. Then

using the extremal property of Christo¤el functions,

�n (x) �
Z
S2nd�

�
Z x+�

x��
P 2md�+ kPmk

2
L1(supp[�]n(x��;x+�)) r

2[n�m2 ]
Z
supp[�]n(x��;x+�)

d�

=

Z x+�

x��
P 2md�

� + kPmk2L1(supp[��]n(x��;x+�)) r
2[n�m2 ]

Z
supp[�]n(x��;x+�)

d�

� ��m (x) + kPmk
2
L1(supp[��]n(x��;x+�)) r

2[n�m2 ]
Z
d�:

(4.9)

Now we use the regularity of ��. Assume that m = m (n) is chosen so
that for some �xed � > 0, we have n � m � �n. For example, choosing
m = n� [�n]� 2 su¢ ces. By the regularity of ��,

kPmk2L1(supp[��]n(x��;x+�)) � (1 + o (1))n
Z
P 2md�

�

= (1 + o (1))n ��m (x) :

Since
r2[

n�m
2 ] (1 + o (1))n � r�n (1 + o (1))n = o (1) ;
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putting this in (4.9) gives

�n (x) � ��m (x) (1 + o (1)) :

By hypothesis (4.7), we can choose � in the de�nition of m = m (n) so small,
that for a given � and large enough n,

(4.10) ��m (x) � ��n (x) (1 + �) :
Assuming this, we obtain

lim sup
n!1

�n (x) =�
�
n (x) � 1 + �;

and since the left-hand side is independent of �, we obtain

lim sup
n!1

�n (x) =�
�
n (x) � 1:

In a similar fashion, we can establish

lim sup
n!1

��n (x) =�n (x) � 1;

and then have the result. The use of (4.7) for this converse direction is more
tricky (we did not assume it for �) but still doable. �

Corollary 4.3
Suppose that � is a regular measure on [�1; 1]. Let x 2supp[�], and as-
sume that � is absolutely continuous in a neighborhood of x, and that �0 is
positive and continuous at x. Then

lim
n!1

1

n
Kn

�
x+

a

n
; x+

a

n

�
=
1

�

�p
1� x2�0 (x)

��1
:

Sketch of Proof for a = 0
See [33] or [55] for more comprehensive results. The original ideas go back
to Nevai [44], [45], and Máté, Nevai and Totik [39]. Let �� be the Legendre
weight on [�1; 1],

d�� (x) = dx on supp [�] :

It is easy to establish (4.7) using bounds on Legendre polynomials, for

K�
n (x; x)�K�

m (x; x) =

n�1X
k=m

p�2k (x) � C (n�m)

uniformly in n;m and for x in compact subsets of (�1; 1). Moreover, it is
classical that uniformly for such x;

lim
n!1

1

n
K�
n (x; x) =

1

�

�p
1� x2

��1
:

From Proposition 4.2, it follows that for any regular measure � on [�1; 1],
with � absolutely continuous near x, and � 0 = 1 near x, we also have

lim
n!1

1

n
K�
n (x; x) =

1

�

�p
1� x2

��1
:
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To convert to the general case above, one considers a measure ! such that
! = � outside a neighborhood N of x, while in N , !0 = �0 (x) (1 + "). The
last limit, suitably scaled, shows that

lim
n!1

1

n
K!
n (x; x) =

1

�

�p
1� x2�0 (x)

��1
(1 + ")�1 :

If the neighborhood N of x is small enough, the assumed continuity of �0 at
x shows that throughout [�1; 1] ;

! � �:
We deduce that �!n � �n globally, and hence,

lim sup
n!1

1

n
Kn (x; x) �

1

�

�p
1� x2�0 (x)

��1
(1 + ")�1 :

Of course " here is arbitrary, and we can similarly establish an asymptotic
lower bound. �
This leads to:

Theorem 4.4
Let � be a �nite positive Borel measure on (�1; 1) that is regular. Let
� 2 (�1; 1) and such that � is absolutely continuous in an open set con-
taining �: Assume moreover, that �0 is positive and continuous at �. Then
uniformly for a; b in compact subsets of the real line, we have

(4.11) lim
n!1

eKn �� + aeKn(�;�)
; � + beKn(�;�)

�
eKn (�; �) =

sin� (a� b)
� (a� b) :

Sketch of proof
Step 1. Change � outside a neighborhood of �
Consider the measure �� that is absolutely continuous in [�1; 1], and which
is equal to the Legendre weight multiplied by �0 (�) outside a neighborhood
of �, while �� = � in that neighborhood of �. Let

� = max f��; �g :
Then � = � = �� near �, while � � � and � � ��. Moreover, by Corol-
lary 4.3, K�

n, K
�
n, and Kn all have the same asymptotic behavior along the

diagonal at x, so

lim
n!1

K�
n

�
� +

a

n
; � +

a

n

�
=K�

n

�
� +

a

n
; � +

a

n

�
= 1 = lim

n!1
K�
n

�
� +

a

n
; � +

a

n

�
=Kn

�
� +

a

n
; � +

a

n

�
:

We can then apply Lemma 4.1, as in the discussion after there, to deduce
that � and �� have the same universality behavior at �, and so do � and �.
Then � and �� also have the same universality behavior at �.
Step 2. Use the continuity of �0 at �
Because of Step 1, we can assume that � is a constant multiple of the
Legendre weight outside a neighborhood N of x, say �0 = �0 (�) outside N .



UNIVERSALITY LIMITS 15

Inside N , we leave � unchanged. We emphasize that this does not change
the universality behavior at �, as shown by Step 1. Next, we let �� be a
constant multiple of the Legendre weight in (�1; 1), namely (��)0 = �0 (�)
throughout (�1; 1). If N is small enough, we will have

1

1 + "
� (��)0

�0
� 1 + "

in N and hence globally. It follows that also globally,

1

1 + "
� ��n
�n
� 1 + ":

We can then apply Lemma 4.1 to the measures � and (1 + ")�� to show
that the universality behaviors of � and �� at � are O (") apart. Finally, let
" approach 0 carefully. �
We note that this approach has been taken far beyond the con�nes of

the above results, especially by Findley, Simon, and Totik [19], [49], [50],
[55]. In particular, Findley and Totik have shown that if � is a regular
measure on a compact set, then universality holds a.e. in a neighborhood
of any point where log�0 is integrable. The problem with the extension to
this case, is that there is no nice measure, such as the Legendre weight on
(�1; 1), for which universality is known. So Totik manufactured one. He �rst
consider supports of the form P [�1] [�1; 1], where P is a suitable polynomial
- this handles the case of supports that consist of several intervals. He then
approximates arbitrary compact sets by such "polynomial pullbacks". The
proof also shows that if �0 is positive and continuous at a given point x,
or more generally, the local Szeg½o function satis�es a Lebesgue point type
condition at x, then universality is true. A di¤erent approach to extension
was taken by Barry Simon, who used Jost functions, and obtained results
that are closely related to those of Findley and Totik.
The comparison approach has also been applied to universality on the unit

circle [29], to exponential weights [31], at the hard edge of the spectrum [34],
and in a generalized setting [35].

5. A normal families approach

The main drawback of the comparison inequality, is that it requires a com-
parison measure for which universality is known. This leads to the (weak)
global restriction of regularity, which is used in much the same way as out-
lined in Proposition 4.2. In [36], a method for establishing universality was
introduced, based on ideas from complex analysis, that avoids this pitfall. It
uses basic tools of complex analysis, such as normal families, together with
some of the theory of entire functions, and reproducing kernels.
Suppose that � is a measure with compact support and that w = �0 is

bounded above and below in some open interval O containing the closed
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interval J . Then it is well known that for some C1; C2 > 0;

(5.1) C1 �
1

n
Kn (x; x) � C2;

in any proper open subset O1 of O. Indeed, this follows by comparing �n
below to the Christo¤el function of the weight 1 on a suitable subinterval
of O, and comparing it above to a suitable dominating measure. Cauchy-
Schwarz inequality�s then gives

(5.2)
1

n
jKn (�; t)j � C

for �; t 2 O1. We can extend this estimate into the complex plane, as follows:

Lemma 5.1
Let [c; d] be a real interval and J be a compact subset of (c; d). Let A > 0.
There exists n0 and C such that for n � n0, polynomials P of degree � n,
x 2 J and jaj � A;

(5.3)
���P �x+ i a

n

���� � eCjaj kPkL1[c;d] :
Proof for [c; d] = [�1; 1].
Let x 2 J and z = x+ i an . By Bernstein�s growth inequality,

(5.4) jP (z)j �
���z +pz2 � 1���n kPkL1[�1;1] :

As
���x+px2 � 1��� = 1, straightforward estimation gives

log
���z +pz2 � 1��� � C jaj

n
+O

�
n�2

�
;

where C is independent of a and n. On substituting this into (5.4), we ob-
tain (5.3) in the special case [c; d] = [�1; 1]. �

Let A > 0 and �x � 2 J . We apply Lemma 5.1 to 1
nKn

�
� + a

n ; � +
b
n

�
,

separately in each variable a and b. This yields an n0 such that for n � n0
and jaj ; jbj � A,���� 1nKn

�
� +

a

n
; � +

b

n

����� � C1eC2(jIm aj+jIm bj):
Here C1 and C2 are independent of n;A; a and b. Thus�

1

n
Kn

�
� +

a

n
; � +

b

n

��1
n=1

is uniformly bounded in compact sets, and so is a normal family. In view of
(5.1), the same is true of ffn (a; b)g1n=1, where

(5.5) fn (a; b) =
Kn

�
� + a

~Kn(�;�)
; � + b

~Kn(�;�)

�
Kn (�; �)

:
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Thus, given A > 0, we have for n � n0 and jaj ; jbj � A, that

(5.6) jfn (a; b)j � C1eC2(jIm aj+jIm bj):

We emphasize that C1 and C2 are independent of n;A; a and b.
Let f (a; b) be the limit of some subsequence ffn (�; �)gn2S of ffn (�; �)g

1
n=1.

It is an entire function in a; b, but (5.6) shows even more: namely that for
all complex a; b;

(5.7) jf (a; b)j � C1eC2(jIm aj+jIm bj):

So f is bounded for a; b 2 R, and is an entire function of exponential type
in each variable. We can then apply the very rich theory of entire functions
of exponential type [28]. Recall, here, that the exponential type of an entire
function g of order 1, is the smallest number � such that for any given " > 0,
we have

jg (z)j � e(�+")jzj;

for large enough jzj.
Our goal is to show that

(5.8) f (a; b) =
sin� (a� b)
� (a� b) :

So we study the properties of f . Our main tool is to take elementary prop-
erties of the reproducing kernel Kn, and then after scaling and taking limits,
to deduce that an analogous property is true for f . Let us list some of these:
(I) Real Zeros
Let us �x a. Since for each real �, Kn (�; t) has only real zeros, the same is
true of f (a; �). Moreover, f (a; �) has countably many such zeros.
(II) Squares Inequality
For all a 2 C;

(5.9)
Z 1

�1
jf (a; s)j2 ds � f (a; �a) :

To prove this, we start with the identityZ
jKn (b; t)j2 d� (t) = Kn

�
b;�b
�
:

We let b = �+ a
~Kn(�;�)

, make the substitution t = �+ s
~Kn(�;�)

, and drop most

of the range of integration, leading to

Z r

�r

����Kn�� + a
~Kn (�; �)

; � +
s

~Kn (�; �)

�����2 �0
�
� + s

~Kn(�;�)

�
�0 (�)Kn (�; �)

ds

� Kn

�
� +

a
~Kn (�; �)

; � +
�a

~Kn (�; �)

�
:
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Recalling (5.5), we can reformulate this asZ r

�r
jfn (a; s)j2

�0
�
� + s

~Kn(�;�)

�
�0 (�)

ds � fn (a; �a)

If we now assume that �0 is positive and continuous at �, then we can let
n!1 through S, and deduce (5.9), but with (�1;1) replaced by (�r; r).
One simply lets r !1. With a little more work, this argument extends to
the case where � is a Lebesgue point of �.
(III) f is bounded above and below on real diagonal
Uniformly for u 2 R;
(5.10) f (u; u) � 1.
Indeed, this follows from (5.1): for some C1; C2; � > 0, for jtj � �; and for
large enough n,

C1 �
Kn (� + t; � + t)

Kn (�; �)
� C2;

while

f (u; u) = lim
n!1;n2S

Kn

�
� + u

~Kn(�;�)
; � + u

~Kn(�;�)

�
Kn (�; �)

:

(IV) If �a is the exponential type of f (a; �), then �a = �; indepen-
dent of a
For this one uses interlacing properties of zeros of Kn. Namely, that given
any real �, the zeros of Kn (�; t) interlace those of pn. This implies that in
any real interval [c; d], the di¤erence between the number of zeros of fn (a; �)
and of fn (b; �) is at most 2. By taking limits as n ! 1 through S, one
can deduce that in any interval, the di¤erence between the number of zeros
of f (a; �) and f (b; �) is bounded independent of the interval. By classical
results on entire functions of exponential type,

1

2r
�Number of zeros of f (a; �) in [�r; r]! �a

�

as r !1, and this yields that �a is independent of a.
(V) Key least squares inequality
For real a;

0 �
Z
R

�
f (a; s)

f (a; a)
� sin� (s� a)

� (s� a)

�2
ds

� 1

f (a; a)
� �
�
:(5.11)

To prove this, observe that the left-hand side equals

1

f (a; a)2

Z 1

�1
f (a; s)2 ds� 2

f (a; a)

Z 1

�1
f (a; s)

sin� (a� s)
� (a� s) ds+

Z 1

�1

�
sin� (a� s)
� (a� s)

�2
ds:

(5.12)
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We now apply (5.9) to the �rst term, obtaining the upper bound 1
f(a;a) . For

the second term, we use the reproducing kernel identity [53, p. 95]

(5.13) g (x) =

Z 1

�1
g (t)

sin� (x� t)
� (x� t) dt; x 2 R;

which holds for g that is entire of exponential type at most � and g 2 L2 (R).
The second term in (5.12) then becomes �2�

� . Choosing g (t) =
sin�t
�t also

leads to Z 1

�1

�
sin� (a� s)
� (a� s)

�2
ds =

�

�
;

which can be substituted for the third term in (5.12). Then (5.11) follows.
(VI) A formula for the type

(5.14) � = � sup
x2R

f (x; x) :

Since the left-hand side of (5.11) is nonnegative, we obtain

� � � sup
a2R

f (a; a) :

The converse direction is more di¢ cult. One uses classical inequalities, the
so-called Markov-Stieltjes inequalities. If ftjng are the zeros of (t� �n)Kn (�; t)
in increasing order, these assert that for k > `;

`�1X
j=k+1

�n (tjn) �
Z t`n

tkn

d� (t) �
X̀
j=k

�n (tjn) :

Suitably scaled, these zeros tjn correspond to zeros of fn (0; z). In the limit
as n!1 through the subsequence S, the zeros of fn (0; z) converge to zeros
of f (0; z). If we denote the zeros of zf (0; z) by

�
�j
	
in increasing order,

we obtain
`�1X
j=k+1

1

f
�
�j ; �j

� � �` � �k � X̀
j=k

1

f
�
�j ; �j

� :
The left-hand inequality leads to

`� k � 1
supx2R f (x; x)

� �` � �k:

This enables us to estimate above the number of zeros of f (0; z) in any
interval [�r; r], aka [�k; �`]. Dividing by 2r, and using classic results on zero
distribution of entire functions of exponential type, leads to

�

supx2R f (x; x)
� �:

Then (5.14) follows.
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Plugging into (5.11) givesZ 1

�1

�
f (a; s)

f (a; a)
� sin� (a� s)

� (a� s)

�2
ds

� 1

f (a; a)
� 1

supx2R f (x; x)
:(5.15)

Finally, if we assume universality along the diagonal, which we formulate as

lim
n!1

fn (a; a) = 1

for all a, then f (a; a) = 1 for all a. The right-hand side of (5.15) vanishes,
while � = �, and we obtain

f (a; s) =
sin� (a� s)
� (a� s) :

Since the limit is independent of the subsequence, we have sketched the
proof of [36]:

Theorem 5.2
Let � be a �nite positive Borel measure on the real line with compact sup-
port. Let J � supp[�] be compact, and such that � is absolutely continuous
in an open set containing J: Assume that w is positive and continuous at
each point of J . The following are equivalent:
(I) Uniformly for � 2 J and a in compact subsets of the real line,

(5.16) lim
n!1

Kn
�
� + a

n ; � +
a
n

�
Kn (�; �)

= 1:

(II) Uniformly for � 2 J and a; b in compact subsets of the complex plane,
we have

(5.17) lim
n!1

Kn

�
� + aeKn(�;�)

; � + beKn(�;�)

�
Kn (�; �)

=
sin� (a� b)
� (a� b) :

The clear advantage of the theorem is that there is no global restriction
on �. The downside is that we still have to establish the ratio asymptotic
(5.16) for the Christo¤el functions/ reproducing kernels, and to date, these
have only been established in the stronger form

lim
n!1

1

n
Kn (�; �)�

0 (�) = � 0 (�) ;

where � 0 is the density of the equilibrium measure of the support of �, and
� is assumed to be regular, together with some local condition. However,
it seems likely that the ratio asymptotic (5.16) should hold more generally
than this last limit. Note too that the continuity assumption on w can be
replaced by a Lebesgue point type condition.
Initially, I believed that the hypotheses in Theorem 5.2 should give (5.16)

automatically. However, I am inclined to doubt this now. One can show
under the hypotheses of Theorem 5.2, that the limit of any subsequence of
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Kn

�
�+ aeKn(�;�) ;�+ beKn(�;�)

�
Kn(�;�)

)
is the reproducing kernel of a de Branges space

that is norm equaivalent to a classical Paley-Wiener space. Since there are
such spaces with reproducing kernel other than the sinc kernel, this raises
the possibility that there might be other subsequential limits than the sinc
kernel. This has been used in [38] to show that for sequences of measures, one
can get universality limits "in some sense in the bulk" that are di¤erent from
the sinc kernel. However, it remains to establish this for a �xed measure.
We note that the method of this section has been applied to varying

exponential weights [30], at the hard edge of the spectrum in [37], at the
soft edge of the spectrum [32], and to Cantor sets with positive measure by
Avila, Last and Simon [2].
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