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Abstract. We use the theory of entire functions and reproducing
kernels to establish universality at the (hard) edge of the spectrum
for a measure with compact support. This involves the Bessel
kernel. In particular, we show that universality at the hard edge
is equivalent to universality along the diagonal at the hard edge.

1. Results1

Let � be a �nite positive Borel measure with compact support supp[�].
Then we may de�ne orthonormal polynomials

pn (x) = nx
n + :::; n > 0;

n = 0; 1; 2; ::: satisfying the orthonormality conditionsZ
pnpmd� = �mn:

One of the key limits in random matrix theory, the so-called univer-
sality limit, involves the reproducing kernel

(1.1) Kn (x; y) =
n�1X
k=0

pk (x) pk (y)

and its normalized cousin

(1.2) eKn (x; y) = �0 (x)1=2 �0 (y)1=2Kn (x; y) :

For x in the interior of supp[�] (the "bulk" of the support), at least
when �0 (x) is �nite and positive, the universality limit typically takes
the form

lim
n!1

eKn

�
x+ aeKn(x;x)

; x+ beKn(x;x)

�
eKn (x; x)

=
sin � (a� b)

� (a� b)
;
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uniformly for a; b in compact subsets of the real line. There is a large
literature on this. Some recent references are [3], [14], [16], [17], [18],
[19], [20], [27], [31].
For x 2supp[�] n (supp [�])o (the so-called hard edge of the spec-

trum), the situation is more complicated, and the most general results
involve comparison to Jacobi weights on (�1; 1). Until recently, the
most general such result is due to Kuijlaars and Vanlessen [14]. Let �
be absolutely continuous, and � have the form

d� (x) = h (x)w(a;�) (x) dx = h (x) (1� x)� (1 + x)� dx;

where h is positive and analytic in [�1; 1]. They showed (together with
many other powerful results) that uniformly for a; b in bounded subsets
of (0;1) ; as n!1, the limit involves the Bessel kernel of order �:

(1.3)
1

2n2
~Kn

�
1� a

2n2
; 1� b

2n2

�
= J� (a; b) +O

�
a�=2b�=2

n

�
:

Here if u 6= v;

(1.4) J� (u; v) =
J� (

p
u)
p
vJ 0� (

p
v)� J� (

p
v)
p
uJ 0� (

p
u)

2 (u� v)
;

while

(1.5) J� (u; u) =
1

4

�
J2�
�p

u
�
� J�+1

�p
u
�
J��1

�p
u
�	
;

and J� is the usual Bessel function of the �rst kind and order �;

(1.6) J� (z) =
1X
n=0

(�1)n (z=2)2n+�

n!� (�+ n+ 1)
:

In [19], we used a comparison method to prove a more general result,
for so-called regular measures. We say that � is regular on [�1; 1] in
the sense of Ullmann and/ or Stahl and Totik [28], if

lim
n!1

1=nn = 2:

Theorem 1.1
Let � be a �nite positive Borel measure on (�1; 1) that is regular.
Assume that for some � > 0, � is absolutely continuous in J =
[1� �; 1], and in J , its absolutely continuous component has the form
w = hw(�;�), where �; � > �1: Assume that h (1) > 0 and h is contin-
uous at 1. Then uniformly for a; b in compact subsets of (0;1), we
have

(1.7) lim
n!1

1

2n2
~Kn

�
1� a

2n2
; 1� b

2n2

�
= J� (a; b) :
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If � � 0, we may allow compact subsets of [0;1).
The problem with the method of [19] is that it requires a comparison

measure with a similar support, for which universality at the edge is
known. In that paper, the comparison measure was the classic Jacobi
weight.
In this paper, we present a di¤erent method, based on the theory of

entire functions and reproducing kernels, which removes this restric-
tion. It is the analogue for the hard edge, of a method that has worked
well in the bulk, for measures on compact sets [20] and for exponential
and varying weights [17]. It should in principle allow an extension of
Theorem 1.1 to measures with general compact support.
We let

(1.8) J�� (z) = J� (z) =z
�

and

(1.9) J�� (z; v) = J� (z; v) =
�
z�=2v�=2

	
:

The advantage of J�� and J�� over J� and J� respectively, is that the
former are entire. We shall use them to prove a version of the univer-
sality limit (1.7) that holds also for a; b at 0, and more generally, for
a; b in compact subsets of the plane.
To motivate the formulation, we examine universality at the hard

edge for the Jacobi weight

w�;0 (x) = (1� x)� , x 2 (�1; 1) :
For this weight, with reproducing kernel K�;0

n , we have [21, p. 85], [29,
(4.5.8), p. 72],
(1.10)

lim
n!1

K�;0
n (1; 1)

�
1

2n2

��+1
=

1

22�+2� (�+ 1)� (�+ 2)
= J�� (0; 0) :

Hence for Jacobi weights,

(1.11)
�
J�� (0; 0)
K�;0
n (1; 1)

�1=(�+1)
=

1

2n2
(1 + o (1)) ;

and if we de�ne

�n =

�
J�� (0; 0)
K�;0
n (1; 1)

�1=(�+1)
;

and recall that ~Kn is the normalized kernel, then we may reformulate
(1.7) for the Jacobi weight as

lim
n!1

1

2n2

� a

2n2

��=2� b

2n2

��=2
K�;0
n (1� �na; 1� �nb) = J� (a; b) ;
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or,

(1.12) lim
n!1

K�;0
n (1� �na; 1� �nb)

K�;0
n (1; 1)

=
J�� (a; b)
J�� (0; 0)

:

It is this form that we shall generalize:

Theorem 1.2
Let � be a �nite positive Borel measure with compact support, such that
for some "0 > 0;

(1.13) supp [�] \ (1; 1 + "0) = ?:
Assume that � is absolutely continuous in [1� "0; 1] and for some
� > �1;
(1.14) lim

x!1�
(1� x)�� �0 (x) = 1:

Let

(1.15) �n =

�
J�� (0; 0)
Kn (1; 1)

�1=(�+1)
, n � 1:

The following are equivalent:
(I) For each real a,

(1.16) lim
n!1

Kn (1� a2�n; 1� a2�n)

Kn (1; 1)
=
J�� (a2; a2)
J�� (0; 0)

:

(II) Uniformly for a; b in compact subsets of the complex plane,

(1.17) lim
n!1

Kn (1� a2�n; 1� b2�n)

Kn (1; 1)
=
J�� (a2; b2)
J�� (0; 0)

:

Remarks
(a) The theorem shows that universality along the diagonal (where
b = a) is equivalent to universality in general. Because of the extremal
property

1=Kn (x; x) = inf
deg(P )<n

Z
P 2 (t) d� (t) =P 2 (x) ;

it is far easier to establish universality along the diagonal. Moreover,
asymptotics for the Christo¤el function �n (x) = 1=Kn (x; x) have been
studied for decades and are reasonably well understood [5], [21], [22],
[30].
(b) Of course, (1.16) certainly holds when for some constant c; and
uniformly for a in compact subsets of the real line,

(1.18) lim
n!1

Kn (1� a2�n; 1� a2�n)

(2n2)1+�
= cJ��

�
a2; a2

�
:
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When � is a measure regular in the sense of Stahl and Totik on [�1; 1],
and �0 is absolutely continuous in [1� "0; 1], for some "0 > 0, and
satis�es (1.14), then this last limit was established in [19] by comparing
� to a Jacobi weight, for which (1.18) is known.
(c) It is likely that (1.18) holds for measures with compact support
consisting of �nitely many intervals, and satisfying (1.14) and (1.15) at
the right endpoint of one of the intervals of support. However it does
not seem to have been formally done in the literature. It is also likely
that (1.16) can hold even when (1.18) fails.
(d) We use a2 and b2 rather than a and b, for later convenience.
(e) Of course, with trivial changes to the proof, we can assume, instead
of (1.14), the more general limit

lim
x!1�

(1� x)�� �0 (x) = c > 0:

The paper is organised as follows. In Section 2, we record our no-
tation, and present some background on orthogonal polynomials, and
the theory of entire functions of exponential type. In Section 3, we
begin with a Bernstein type growth lemma for the plane (Lemma 3.1),
and then proceed to obtain estimates on Christo¤el functions (Lemma
3.2). Our main lemma in Section 4 is Lemma 4.1, where the normality
of the functions ffng is established. In Lemmas 4.2 to 4.4, we establish
properties of the subsequential limit f , and its zeros. In Section 5, we
use Markov-Stieltjes inequalities to study the zero distribution of the
entire function f , and then prove Theorem 1.2. In Section 6, we es-
tablish some properties of the Bessel kernel, especially its reproducing
kernel property. These properties are used in Section 5.

2. Notation and Background

In this section, we record our notation, though some of it has already
been introduced earlier. In the sequel C;C1; C2; ::: denote constants in-
dependent of n; x; y; s; t. The same symbol does not necessarily denote
the same constant in di¤erent occurences. We shall write C = C (�) or
C 6= C (�) to respectively denote dependence on, or independence of,
the parameter �. We use � in the following sense: given real sequences
fcng, fdng, we write

cn � dn

if there exist positive constants C1; C2 with

C1 � cn=dn � C2:

Similar notation is used for functions and sequences of functions.
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Throughout, � denotes a �nite positive Borel measure with compact
support. Its Radon-Nikodym derivative is w = �0. The corresponding
orthonormal polynomials are denoted by fpng1n=0, so thatZ

pnpmd� = �mn.

We denote the zeros of pn by

(2.1) xnn < xn�1;n < ::: < x2n < x1n:

The reproducing kernel Kn (x; t), is de�ned by (1.1), while the nor-
malized reproducing kernel is de�ned by (1.2). The nth Christo¤el
function is

(2.2) �n (x) = 1=Kn (x; x) = inf
deg(P )�n�1

R
P 2d�

P 2 (x)
:

More generally, �n (u; x) denotes the nth Christo¤el function for a
weight u. The Gauss quadrature formula asserts that whenever P is a
polynomial of degree � 2n� 1;

(2.3)
nX
j=1

�n (xjn)P (xjn) =

Z
P d�:

In addition to this, we shall need another Gauss type of quadrature
formula [5, p. 19 ¤.]. There are n or n� 1 points tjn = tjn (1), one of
which is 1, such that

(2.4)
X
j

�n (tjn)P (tjn) =

Z
P d�;

whenever P is a polynomial of degree � 2n� 2. The ftjng are zeros of
(2.5)  n (1; t) = pn (1) pn�1 (t)� pn�1 (1) pn (t) :

Because we wish to focus on the point 1, we shall set t0n = 1, and
order the ftjng around 1, treated as the origin:
(2.6) ::: < t2;n < t1;n < t0n = 1 < t�1;n < ::: .

Of course the sequence ftjng consists of either n � 1 or n points, so
terminates, and it is possible that all tjn lie to the left of 1. It is known
[5, p. 19] that if (pnpn�1) (1) 6= 0, then one zero of  n (1; t) lies in
(xjn; xj�1;n) for each j, and the remaining zero lies outside (xnn; x1n). In
particular, this is the case when supp[�] � (�1; 1]. If (pnpn�1) (1) = 0,
then  n (1; t) is a multiple of pn or pn�1, and then again, one zero lies
in [xj�1;n; xjn) for each j.
Throughout, "0 > 0 is such that

(2.7) supp [�] \ (1; 1 + "0) = ?:
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We also assume that � is absolutely continuous in [1� "0; 1] and for
some � > �1;

(2.8) lim
x!1�

(1� x)�� �0 (x) = 1:

Throughout, J� is the Bessel function of order �, de�ned by (1.6),
while J�� is its entire cousin de�ned by (1.8). Moreover, the Bessel
kernel J� is de�ned by (1.4) and (1.5), while its entire cousin is J��,
de�ned by (1.9). We shall de�ne for n � 1;

(2.9) �n =

�
J�� (0; 0)
Kn (1; 1)

�1=(�+1)
;

and for all complex a; b;

(2.10) fn (a; b) =
Kn (1� a2�n; 1� b2�n)

Kn (1; 1)
:

The zeros of

fn (0; s) =
Kn (1; 1� s2�n)

Kn (1; 1)

will be denote by
�
�jn
	
j 6=0. Since ftjng are the zeros of  n (1; t) =�

n�1
n

��1
(1� t)Kn (1; t) ; we have for j 6= 0;

(2.11) tjn = 1� �n�
2
jn:

We also set,

�0n = 0;

corresponding to t0n = 1.
For an appropriate subsequence S of integers, we shall let

(2.12) f (a; b) = lim
n!1;n2S

fn (a; b) :

The zeros of f (0; �) will be denoted by
�
�j
	
j 6=0, and we set �0 = 0.

Our ordering of zeros is

0 < �1 � �2 � ::: .

We shall denote the (exponential) type of f (a; �) by �a. We shall show
that �a is independent of a, and then just use � to denote the type.
Initially, this type will be associated with the speci�c subsequence S.
We next review some theory that we shall use about entire functions

of exponential type. Most of this can be found in the elegant series of
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lectures of B. Ja. Levin [15]. Recall that if g is entire of order 1, then
its exponential type � is

(2.13) � = lim sup
r!1

maxjzj=r log jg (z)j
r

:

We say that an entire function g belongs to the Cartwright class and
write g 2 C if it is of exponential type and

(2.14)
Z 1

�1

log+ jg (t)j
1 + t2

dt <1:

Here log+ s = max f0; log sg.
We let n (g; r) denote the number of zeros of g in the ball center 0,

radius r, counting multiplicity. An important result is that for g 2 C;
that is real valued on the real axis,

(2.15) lim
r!1

n (g; r)

2r
=
�

�
:

For this, see [15, Theorem 1, p. 127]. A simpler proof, in the case of g
having all real zeros, is given in [13, p. 66].
When g is entire of exponential type � and bounded along the real

axis, we have [15, p. 38, Theorem 3]

(2.16) jg (z)j � e�jIm zj kgkL1(R) , z 2 C:

When g is entire of exponential type � and g 2 L2 (R), we write, as
did Levin, g 2 L2�. Here, we have instead of the last inequality, [15, p.
149]

jg (z)j �
�
2

�

�1=2
e�(jIm zj+1) kgkL2(R) ; z 2 C:

3. Bounds on Polynomials and Christoffel Functions

Throughout, we assume the hypotheses of Theorem 1.2. We start
with a consequence of a Bernstein growth lemma:

Lemma 3.1
Let [c; 1] be a non-empty interval and � 2 R. Let K be a compact sub-
set of C. Then there exists n0 = n0 (K) such that for n � n0, a 2 K,
and polynomials P of degree � n satisfying

(3.1) jP (x)j
�
1� x+

1

n2

��
� 1, x 2 [c; 1] ;
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we have if � � 0;

(3.2)

����P �1� a2

n2

����� � C1

����1 + a2n2

������ eC2jIm(a)j:
and if � < 0; with the added restriction

��1�p�a2�� � 1;
(3.3)

����P �1� a2

n2

����� � C1

����1 +p�a2n

����2j�j eC2jIm(a)j:
Here Cj 6= Cj(n; P; a;K). In particular, for jaj � 2, and any �;

(3.4)

����P �1� a2

n2

����� � C1

�
jaj
n

��2�
eC2jIm(a)j:

Proof for the case � � 0
We assume [c; 1] = [�1; 1]. The general case follows by a linear trans-
formation. We may also assume that P has degree n. (If not, consider
P (x) + "xn and then let "! 0+). Let

G (z) = log jP (z)j+ � log

����1� z +
1

n2

����� (n+ �) log j' (z)j ;

z 2 C, where

' (z) = z +
p
z2 � 1:

Then G is subharmonic in the plane, has a �nite limit at1, and is non-
positive on [�1; 1] by (3.1). By the maximum principle for subharmonic
functions,

G � 0 in C.

Now let a 2 C and

z = 1� a2

n2
.

Then

log jP (z)j � �� log
����1� z +

1

n2

����+ (n+ �) log j' (z)j :
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Here if a2 =2 (�1; 0) ;

log j' (z)j = log

�����1� a2

n2
+

r
�2a

2

n2
+
a4

n4

�����
= Re

�p
�2a2
n

�
+O

 
jaj2

n2

!

=

p
2 jIm (a)j
n

+O

 
jaj2

n2

!
:

This latter estimate also holds trivially if a2 2 (�1; 0). Moreover,

log

����1� z +
1

n2

���� = log ����1 + a2n2

���� :
So, uniformly for a 2 K;

log

����P �1� a2

n2

����� � �� log ����1 + a2n2

����+p2 jIm (a)j+O

�
1

n

�
:

Then (3.2) follows.
Proof for the case � < 0.
Let g (z; w) denote the Green�s function for the domain Cn [�1; 1] with
pole at w =2 [�1; 1]. Thus, g (z; w) + log jz � wj is bounded as z ! w,
while g (z; w) is harmonic in Cn ([�1; 1] [ fwg), and has limit 0 as z
approaches points in (�1; 1). An explicit formula for g (z; w) is

g (z; w) = log

�����1� ' (z)' (w)

' (z)� ' (w)

����� :
This can easily be derived by combining the explicit formula for the
Green�s function for the unit ball [24, p. 109], with the simple way
in which Green�s functions are transformed under conformal maps [24,
Theorem 4.4.4, p. 107].

We can take the Green�s function g
�
z; 1 + 1

n2

�
with pole at 1 + 1

n2
,

and let

G (z) = log jP (z)j+�
�
log

����1� z +
1

n2

����+ g

�
z; 1 +

1

n2

��
�(n+ �) log j' (z)j :

Here log
��1� z + 1

n2

�� + g
�
z; 1 + 1

n2

�
is harmonic outside [�1; 1], and

grows like logjzj + O (1) at 1, while g
�
�; 1 + 1

n2

�
= 0 on [�1; 1], so as

above, we obtain
G � 0 in C.
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Then

log jP (z)j � ��
�
log

����1� z +
1

n2

����+ g

�
z; 1 +

1

n2

��
+(n+ �) log j' (z)j :

Taking z = 1� a2

n2
, we obtain, as above, uniformly for a 2 K;

log jP (z)j � ��
�
log

����1 + a2n2

����+ g

�
1� a2

n2
; 1 +

1

n2

��
+
p
2 jIm (a)j+O

�
1

n

�
;

(3.5)

so we need to estimate above g
�
1� a2

n2
; 1 + 1

n2

�
. We emphasize that

the order term is independent of n; P; a 2 K: First,

(3.6) '

�
1� a2

n2

�
= 1 +

p
�2a2
n

� a2

n2
+O

�
1

n3

�
;

'

�
1 +

1

n2

�
= 1 +

p
2

n
+
1

n2
+O

�
1

n3

�
;

so uniformly for a 2 K, provided
��1�p�a2�� � 1;����'�1 + 1

n2

�
� '

�
1� a2

n2

�����
=

p
2

n

���1�p�a2��� ����1 + 1 +p�a2p
2n

+O

�
1

n2

����� :
Then

log

����'�1� a2

n2

�
� '

�
1 +

1

n2

�����
= log

 p
2

n

���1�p�a2���!+Re�1 +p�a2p
2n

�
+O

�
1

n2

�
;

provided
��1�p�a2�� � 1. Next, from (3.6), uniformly for a 2 K;

1� '

�
1� a2

n2

�
'

�
1 +

1

n2

�
= �

p
2

n

�
1 +

p
�a2

�
�
�
1 +

p
�a2

n

�2
+O

�
1

n3

�
:
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Then provided
��1 +p�a2�� � 1,

log

�����1� '

�
1� a2

n2

�
'

�
1 +

1

n2

������
= log

 p
2

n

���1 +p�a2���!+Re�1 +p�a2p
2n

�
+O

�
1

n2

�
;

so

g (z; w) = log

�����1� '

�
1� a2

n2

�
'

�
1 +

1

n2

������� log
����'�1� a2

n2

�
� '

�
1 +

1

n2

�����
= log

����1 +p�a21�
p
�a2

����+O

�
1

n2

�
:

Then

��
�
log

����1 + a2n2

����+ g

�
1� a2

n2
; 1 +

1

n2

��
= 2 j�j log

����1 +p�a2n

����+O

�
1

n

�
:

So uniformly for a 2 K; with
��1�p�a2�� � 1; (3.5) gives

log

����P �1� a2

n2

����� � 2 j�j log ����1 +p�a2n

����+p2 jIm (a)j+O

�
1

n

�
;

and hence (3.3) follows. In particular, (3.4) follows if jaj � 2. �

Lemma 3.2
There exists "1 > 0 such that for n � 1 and x 2 [1� "1; 1],

(3.7) �n (x) �
1

n

�
1� x+

1

n2

��+ 1
2

:

Moreover,

(3.8) �n =

�
J�� (0; 0)
Kn (1; 1)

�1=(�+1)
� n�2:

Proof
We prove this by comparing � above and below to suitable measures.
The lower bound
Let "1 2 (0; 1) and

w1 (x) = (1� x)� , x 2 [1� "1; 1] ;
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and w1 = 0 elsewhere. By our hypothesis (2.8), for appropriate "1 >
0,we have

�0 � 1

2
w1 in [1� "1; 1]

and hence

�n (x) �
1

2
�n (w1; x) for x 2 [1� "1; 1] :

Let L denote the linear transformation of [1� "1; 1] onto [�1; 1], so
that

L (t) = �1 + 2

"1
[t� (1� "1)] :

Also, let
w�;0 (x) = (1� x)� , x 2 [�1; 1] :

Then

w�;0 (L (t)) =

�
2

"1

��
w1 (t) , t 2 [1� "1; 1]

and a simple substitution shows that

�n (w1; x) =
�"1
2

��+1
�n
�
w�;0; L (x)

�
:

Standard estimates [21, Theorem 28, p. 120] for �n (w�; L (x)) give for
x 2 [1� "1; 1] ;

�n (w1; x) �
1

n

�
1� L (x) +

1

n2

��+ 1
2

� 1

n

�
1� x+

1

n2

��+ 1
2

;

and hence

(3.9) �n (x) �
C

n

�
1� x+

1

n2

��+ 1
2

:

The Upper Bound
Choose a < 1 < c < d such that

supp [�] � [a; 1] [ [c; d] =: K:
Let

L1 (t) = 1� � (t� 1) (t� c) ;

where � is a small positive number, so small that

L (t) 2 [0; 1] for all t 2 K:
Observe that

1� L (t) � 1� t, t 2 [a; 1]
and

L0 (t) = 2�

�
1 + c

2
� t

�
� 1 for t 2 [a; 1] :
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Let K�;0
n denote the kernel corresponding to w�;0. We have for all x;Z 1

1�"1
K�;0
[n=2] (L (t) ; L (x))

2 (1� t)� dt

� C

Z 1

1�"1
K�;0
[n=2] (L (t) ; L (x))

2 (1� L (t))� L0 (t) dt

= C

Z 1

�1
K�;0
[n=2] (s; L (x))

2 (1� s)� ds = CK�;0
[n=2] (L (x) ; L (x)) :(3.10)

Note too [21, Theorem 28, p. 120] that for some C0 > 0; n � 2;

(3.11)
���K�;0

[n=2] (u; v)
��� � nC0, u; v 2 [�1; 1] :

Now �x x 2 [1� "1; 1] and choose a fast decreasing polynomial R of
degree � n=2� 1 such that R (x) = 1, while

jRj � 1 in [a; d] ;
and for some C > 0;

(3.12) jR (t)j � e�Cn, t 2 [a; d] with jt� 1j � "1:

Such polynomials were constructed by Ivanov and Totik [12], [25, p.
313]. Let

P (t) = R (t)K�;0
[n=2] (L (t) ; L (x)) ;

a polynomial of degree � n� 1, with

P (x) = K�;0
[n=2] (L (x) ; L (x)) � n

�
1� L (x) +

1

n2

��(�+ 1
2)
� n

�
1� x+

1

n2

��(�+ 1
2)
:

Then using (3.10), (3.11), (3.12),

�n (x) �
Z
P 2 (t) d� (t) =P 2 (x)

=

�Z 1

1�"1
+

Z
supp[�]n[1�"1;1]

�
P 2d�=P 2 (x)

� C

Z 1

1�"1
K�;0
[n=2] (L (t) ; L (x))

2 (1� t)� dt=K�;0
[n=2] (L (x) ; L (x))

2

+e�2Cnn2C0
Z
supp[�]n[1�"1;1]

d�==K�;0
[n=2] (L (x) ; L (x))

2

� C=K�;0
[n=2] (L (x) ; L (x)) + Ce

�2Cnn2C0

� C

n

�
1� x+

1

n2

��+ 1
2

:
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Together, this and (3.9) give (3.7), and hence (3.8). �

4. Normality

Recall that

(4.1) fn (a; b) =
Kn (1� a2�n; 1� b2�n)

Kn (1; 1)
;

where �n satis�es (3.8).

Lemma 4.1
(a) ffn (a; b)g is uniformly bounded for a; b in compact subsets of the
plane.
(b) If f (�; �) is the uniform limit of some subsequence ffngn2S, then f
is entire and even in a; b, and

(4.2) jf (a; b)j � C1 (1 + jaj)�(2�+1) (1 + jbj)�(2�+1) eC2[jIm(a)j+jIm(b)j]:
Here Cj 6= Cj (a; b), j = 1; 2. In particular, f (a; �) is entire of expo-
nential type and bounded on the real axis.
(c) For each real a, f (a; �) has at most two non-real zeros, consisting
of at most one pair of conjugate zeros on the imaginary axis.
Proof
(a) By Cauchy-Schwarz and the previous lemmas, we have

1

n

����(1� x+
1

n2
)
�+1

2
2 (1� t+

1

n2
)
�+1

2
2 Kn (x; t)

����
�

�
1

n
(1� x+

1

n2
)�+

1
2Kn (x; x)

�1=2�
1

n
(1� t+

1

n2
)�+

1
2Kn (t; t)

�1=2
� C

for x; t 2 [1� "1; 1]. Recall too that

Kn (1; 1) � n2�+2 and �n � n�2:

Let A > 2. By (3.4) of Lemma 3.1, applied separately in each variable,
we then have for 2 � jaj ; jbj � A , and n � n0 (A),

jfn (a; b)j =
����Kn (1� a2�n; 1� b2�n)

Kn (1; 1)

����
� C1 jaj�(�+

1
2) jbj�(�+

1
2) eC2[jIm(a)j+jIm(b)j]:

Here C1 and C2 are independent of a; b. Since fn is analytic in each
variable, the maximum-modulus principle also yields a uniform bound
for jaj ; jbj � 2. This establishes the uniform boundedness of ffn (�; �)g.
(b) Since ffng is a sequence of polynomials, the bound in (a) shows that
ffn (a; b)g is a normal family for a; b in compact subsets of C. Then
if f is the limit of the subsequence ffngn2S , the bound (4.2) follows
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for 2 � jaj ; jbj � A, and by the maximum-modulus principle also for
jaj ; jbj � 2. Moreover, f is even in a and b, as each fn is.
(c) For each real �, Kn (�; t) has only real simple zeros as a function of
t. Consider for � = 1 � a2�n, such a real zero �n. This leads to zeros
of fn (a; t) located at

�
s
1� �n
�n

:

If �n � 1, these zeros are real. However, if �n > 1, we obtain simple
zeros of fn along the imaginary axis. Since �n ! 0 as n!1, Hurwitz�s
Theorem shows that only zeros �n with

�n � 1 = O (�n)

lead to zeros of f (a; t). We claim there is at most one such �n, leading
to at most one such conjugate pair of zeros of f (a; t) along the imagi-
nary axis. To establish the claim, it su¢ ces to show that Kn (�; t) has
at most one zero in (1; 1 + "), which lies outside supp[�]. This follows
from the orthogonality relationZ

Kn (�; t) (� � t)P (t) d� (t) = 0, deg (P ) � n� 2:

If Kn (�; t) has two zeros � and  in (1; 1 + "), let

P (t) =
Kn (�; t) (� � t)

(t� �) (t� )
:

We obtain the contradiction

0 =

Z
[Kn (�; t) (� � t)]2

(t� �) (t� )
d� (t) > 0;

as (t� �) (t� ) is positive in supp[�]. �

Lemma 4.2
(a) Let B > 0. Uniformly for a 2 R;

(4.3) f (a; a) � (1 + jaj)�(2�+1) :

(b) For all a 2 C;

(4.4)
Z 1

0

jf (a; y)j2 y2�+1dy � f (a; �a)

2J�� (0; 0)
:

Proof
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(a) By Lemma 3.2, for some B > 0, and uniformly for a2

n2
2 [0; B], we

have

C1 � fn (a; a)
�
a2 + 1

��+ 1
2 =

Kn (1� a2�n; 1� a2�n)

Kn (1; 1)

�
a2 + 1

��+ 1
2 � C2:

Letting n!1 through S, we obtain for the same C1 and C2, and for
all a 2 [0;1);

C1 � f (a; a)
�
a2 + 1

��+ 1
2 � C2:

(b) Let r > 0. We have for all s 2 C;

K (s; �s) =

Z
jK (s; t)j2 d� (t)

�
Z 1

1�r2�n
jK (s; t)j2 �0 (t) dt;

provided n is large enough. Now we make the substitutions

s = 1� a2�n and t = 1� y2�n:

For large enough n, we obtain

1 �
Z r

0

����Kn (1� a2�n; 1� y2�n)

Kn (1; 1)

����2 ���� Kn (1; 1)

Kn (1� a2�n; 1� �a2�n)

�����0 �1� y2�n
�
Kn (1; 1) 2y�n dy

=

Z r

0

jfn (a; y)j2

fn (a; �a)
�0
�
1� y2�n

�
Kn (1; 1) 2y�n dy

=

Z r

0

jfn (a; y)j2

fn (a; �a)
2y2�+1Kn (1; 1) �

�+1
n (1 + o (1)) dy

=

Z r

0

jf (a; y)j2

f (a; �a)
2y2�+1J�� (0; 0) (1 + o (1)) dy

as n!1 through S, recall (2.8) and (2.9). Letting r !1 gives (4.4).
We are also assuming f (a; �a) 6= 0. That this cannot happen follows
from (4.4) and a continuity argument. �

Lemma 4.3
(a) For a 2 R, let n (f (a; �) ; r) denote the the number of zeros of
f (a; �) in the ball center 0, radius r, counting multiplicity. Then for
any real a, we have as r !1;

(4.5) n (f (a; �) ; r)� n (f (0; �) ; r) = O (1) :

(b) If �a is the exponential type of f (a; �), then �a is independent of
a.
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Proof
(a) We use a basic property of

 n (�; t) =

�
n�1
n

��1
Kn (�; t) (� � t) = pn (�) pn�1 (t)�pn (t) pn�1 (�) :

For real �, with pn�1 (�) pn (�) 6= 0,  n (�; t) has, as a function of t,
simple zeros in each of the intervals

(xnn; xn�1;n) ; (xn�1;n; xn�2;n) ; :::; (x2n; x1n) :

There is a single remaining zero, and this lies outside [xnn; x1n]. When
pn�1 (�) pn (�) = 0,  n (�; t) is a multiple of pn or pn�1. As the zeros
of the latter polynomials interlace, we see that in this case, there is a
simple zero in each of the intervals

[xnn; xn�1;n); [xn�1;n; xn�2;n); :::; [x2n; x1n):

For all this, see [5, proof of Theorem 3.1, p. 19]. It follows that
whatever is �, the number j of zeros of Kn (�; t) in [xmn; xkn] satis�es

jj � (m� k)j � 1:
Consider now

fn (a; t) = Kn

�
1� a2�n; 1� t2�n

�
=Kn (1; 1)

and
fn (0; t) = Kn

�
1; 1� t2�n

�
=Kn (1; 1)

as functions of t. In any �xed interval [0; r], it follows that the di¤erence
between the number of zeros of these two functions is at most 2. As
fn (a; t) and f (0; t) are even in t, the di¤erence between the number
of zeros in [�r; r] is at most 4. Moreover, the nonreal zeros of these
functions, if any, occur in conjugate pairs, and lie on the imaginary
axis, with at most one such pair not diverging to1 as n!1. Letting
n!1 through S, we see that (4.5) holds.
(b) The bound in Lemma 4.2 (b) shows thatZ 1

�1

ln+ jf (a; y)j
1 + y2

dy <1;

so that f (a; �) belongs to the Cartwright class, recall (2.14). Moreover,
f (a; �) is real valued along the real axis. By (2.15),

�a
�
= lim

r!1

n (f (a; �) ; r)
2r

:

In view of (a), this is independent of a. �
In the sequel, we denote �a by �:
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Lemma 4.4
(a) We have for all b 2 R;Z 1

0

�
f (b=�; s=�)

f (b=�; b=�)
� J

�
� (b

2; s2)

J�� (b2; b2)

�2
2s2�+1 ds

� �2�+2

f (b=�; b=�) J�� (0; 0)
� 1

J�� (b2; b2)
:(4.6)

(b)

(4.7) �2�+2 � sup
b2R

f

�
b

�
;
b

�

�
=

�
J�� (b2; b2)
J�� (0; 0)

�
� 1:

In particular,

(4.8) � � 1:
Proof
(a) First observe that

f (b=�; z=�)

f
�
b
�
; b
�

�
is an entire function in z, of exponential type� 1. Moreover, by Lemma
4.2 (b),

(4.9)
Z 1

0

����f � b� ; s�
�����2 � s��2�+1 d s� � f

�
b
�
; b
�

�
2J�� (0; 0)

;

and f is even in each variable, so jsj�+
1
2

���f(b=�;s=�)f(b=�;b=�)

��� 2 L2 (R). The

left-hand side in (4.6) equals

1

f (b=�; b=�)2

Z 1

0

f (b=�; s=�)2 2s2�+1ds� 2

f (b=�; b=�) J�� (b2; b2)

Z 1

0

f

�
b

�
;
s

�

�
J��
�
b2; s2

�
2s2�+1ds

+
1

J�2� (b2; b2)

Z 1

0

J�2�
�
b2; s2

�
2s2�+1ds

� �2�+2

f (b=�; b=�) J�� (0; 0)
� 2

J�� (b2; b2)
+

1

J�� (b2; b2)
;

by (4.9), by the reproducing kernel identity (see Theorem 6.1 below),Z 1

0

f

�
b

�
;
s

�

�
J��
�
b2; s2

�
2s2�+1ds = f

�
b

�
;
b

�

�
;

and Lemma 6.2(b) below, which givesZ 1

0

J�2�
�
b2; s2

�
2s2�+1ds = J��

�
b2; b2

�
:
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(b) The left inequality in (4.7) follows as the left-hand side of (4.6) is
non-negative. Since f (0; 0) = 1, the remaining inequalities also follow.
�

5. Markov-Stieltjes Inequalities and the Proof of
Theorem 1.2

Recall from Section 2, the Gauss type quadrature formula, with
nodes ftjng including the point 1:X

j

�n (tjn)P (tjn) =

Z
P (t) d� (t) ;

for all polynomials P of degree � 2n � 2. Recall that we order the
nodes as

::: < t2;n < t1;n < t0;n = 1 < t�1n < :::

and if j � 0, we write for some �jn � 0;

(5.1) tjn = 1� �n�
2
jn:

Lemma 5.1
(a) For each �xed j � 0, as n!1 through S,

(5.2) �jn ! �j;

where �0 = 0 and

0 < �1 � �2 � ::: .

For j � 1, �jn is a simple zero of fn (0; z).
(b) The function f (0; z) has (possibly multiple) zeros at ��j; j � 0;
and no other zeros, except possibly for a single pair of conjugate zeros
along the imaginary axis.
Proof
(a), (b) We know that fn (0; z) = Kn (1; 1� z2�n) =K (1; 1) has simple
zeros at ��jn, and possibly zeros on the imaginary axis, with at most
one pair that does not diverge to 1 as n ! 1. Moreover as n ! 1
through our subsequence, this sequence converges to f (0; z) ; uniformly
for z in compact sets, and f (0; z) is not identically 0, since f (0; 0) = 1.
The result then follows by Hurwitz�theorem. �
Next, we use the Markov-Stieltjes inequalities to deduce:

Lemma 5.2



UNIVERSALITY LIMITS 21

(a) For each �xed k > ` � 0;

(5.3)
k�1X
j=`+1

1

f
�
�j; �j

� � J�� (0; 0) �2�+2k � �2�+2`

�+ 1
�

kX
j=`

1

f
�
�j; �j

� :
(b) For some C1; C2 > 0;

(5.4) �j+1 � �j � C1;

(5.5) �j+2 � �j � C2:

Proof
(a) We use the Markov-Stieltjes inequalities [5, p. 33] associated with
these zeros: for each 1 � ` < k � n;X

j:tj<t`n

�n (tjn) �
Z t`n

�1
d� �

X
j:tj�t`n

�n (tjn) :

We consider this also for k :X
j:tj<tkn

�n (tjn) �
Z tkn

�1
d� �

X
j:tj�tkn

�n (tjn) :

Assume ` < k. Subtracting the relevant parts of the two-sets of in-
equalities yieldsX

j:tkn<tjn<t`n

�n (tjn) �
Z t`n

tkn

d� (t) �
X

j:tkn�tjn�t`n

�n (tjn) :

Now assume that t`n; tkn 2 [1� "0; 1]. Then by absolute continuity
of � in [1� "0; 1], and the substitution t = 1 � s2�n, we obtain after
multiplying by Kn (1; 1) that

k�1X
j=`+1

Kn (1; 1)

Kn (tjn; tjn)
� 2

Z �kn

�`n

�0
�
1� s2�n

�
sKn (1; 1) �n ds �

kX
j=`

Kn (1; 1)

Kn (tjn; tjn)
:

Now let n!1 through S. In view of (2.8), and the previous lemma,
the integral in the last line converges to

2J�� (0; 0)
Z �k

�`

s2�+1ds = J�� (0; 0)
�2�+2k � �2�+2`

�+ 1
:
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Next, for each �xed j � 0, as n!1 through S;
Kn (1; 1)

Kn (tjn; tjn)
=

1

fn
�
�jn; �jn

�
! 1

f
�
�j; �j

� :
Thus for each �xed k; `; (5.3) follows.
(b) From (a) of this lemma, and Lemma 4.2(a),

�2�+2j+1 � �2�+2j � Cmax
�
�2�+1j ; �2�+1j+1

	
:

If �j+1 > 2�j, this yields

�2�+2j+1

�
22�+2 � 1

�
� Cmax

�
�2�+1j ; �2�+1j+1

	
;

which is not possible for large enough j, as �j+1 !1. Thus for large
enough j, �j � �j+1 � 2�j. The Mean Value Theorem applied in the
second last inequality then shows that�

�j+1 � �j
�
�2�+1j+1 � C�2�+1j+1 ;

so
�j+1 � �j � C:

The proof of (5.5) is similar.�

Lemma 5.3
Let

(5.6) � = lim sup
x!1

f (x; x)

J�� (x2; x2) =J�� (0; 0)
:

Let � 2 (0; 1) ; and

(5.7) � =

�
2�+ 2 if 2�+ 1 � 0
�2� if 2�+ 1 < 0 :

(a) There exists L such that for k > ` � L, with

(5.8) �k � (1 + �) �`;
we have

(5.9) k � `� 1 � (1 + �)�+1 �
�
(�k � �`) :

(b)

(5.10) lim sup
r!1

n (f (0; �) ; r)
2r

� �

�
:
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Proof
(a) Now by Lemma 6.4 below, we can choose L such that for j � L;

2�J��
�
�2j ; �

2
j

�
� 1 + �

�2�+1j

:

Then for k > ` � L;

2�
k�1X
j=`+1

J��
�
�2j ; �

2
j

�
=J�� (0; 0)

f
�
�j; �j

�
� 1 + �

J�� (0; 0)
1

min
�
�2�+1`+1 ; �

2�+1
k�1

	 k�1X
j=`+1

1

f
�
�j; �j

�
� (1 + �)

�2�+2k � �2�+2`

(�+ 1)min
�
�2�+1`+1 ; �

2�+1
k�1

	 ;
by (a) of the previous lemma, and the monotonicity of the function
x2�+1. Recall too that �j > 0 for j � 1. By the Mean Value Theorem,
and the aforementioned monotonicity, we can continue this as

� 2 (1 + �) (�k � �`)
max

�
�2�+1` ; �2�+1k

	
min

�
�2�+1` ; �2�+1k

	
�

�
2 (1 + �)2�+2 (�k � �`) ; if 2�+ 1 � 0
2 (1 + �)�2� (�k � �`) ; if 2�+ 1 < 0

;

in view of (5.8). In summary, with � as at (5.7), we have shown that

2�
k�1X
j=`+1

J��
�
�2j ; �

2
j

�
=J�� (0; 0)

f
�
�j; �j

� � 2 (1 + �)� (�k � �`) :

We may also assume L is so large that

x � �L )
f (x; x)

J�� (x2; x2) =J�� (0; 0)
� � (1 + �) :

Then
2�

� (1 + �)
(k � `� 1) � 2 (1 + �)� (�k � �`)

and (5.9) follows.
(b) Lemma 5.2(b) shows that f (0; �) has at most double zeros. More-
over, because

�
�jn
	
are simple zeros of fn (0; �), (Lemma 5.1(a)), �k

can only be a double zero of f (0; �) if it is repeated in the sequence�
�j
	
. Then, in the interval [�`; �k], the total number of zeros of f (0; �),

namely k�`+1 or k�`+2 or k�`+3, if 0 does not belong to [k; `] ; and
k�` or k�`+1 or k�`+2 if it does, is at most (1 + �)�+1 �

�
(�k � �`)+4.
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Let us denote by n [a; b] the number of zeros of f (0; �) in [a; b]. We have
shown that for k > ` � L with (5.8) holding, we have

(5.11) n [�`; �k] � (1 + �)
�+1 �

�
(�k � �`) + 4:

Now let r be a large positive number. Because of the spacing estimate
in Lemma 5.2(b), we can choose a positive integer k1 such that

r < �k1 � r + C;

where C is independent of r. By induction on j, choose �kj ; j � 2, such
that

(5.12) �kj � (1 + �)
�1 �kj�1 ;

while
�kj+1 > (1 + �)

�1 �kj�1 :

This decreasing sequence
n
�kj

o
will terminate at, say, �kM and we may

assume 1 � kM � L. Then, using (5.11),

n [0; r] � n
�
0; �kM

�
+

MX
i=2

n[�ki ; �ki�1)

� n[0; �L] + (1 + �)
�+1 �

�

MX
i=2

�
�ki�1 � �ki

�
+ 4 (M � 1)

= n[0; �L] + (1 + �)
�+1 �

�

�
�k1 � �kM

�
+ 4 (M � 1)

� C1 + (1 + �)�+1
�

�
r + 4M;(5.13)

where C1 = n[0; �L]+(1 + �)�+1 �
�
C is independent of r. We claim that

(5.14) M � C log r:

Indeed, the spacing in Lemma 5.2(b) shows that

n [0; r] � Cr

and moreover, necessarily by (5.12),

(1 + �)M�1 �1 � (1 + �)
M�1 �kM � �k1 � r + C � 2r;

so that (5.14) follows. Of course, the constant there depends on �.
Dividing in (5.13) by r, and using (5.14), and letting r ! 1, we
obtain,

lim sup
r!1

n [0; r]

r
� (1 + �)�+1 �

�
:
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Since f (0; �) is even, and there are at most two non-real zeros, we
obtain

lim sup
r!1

n (f (0; �) ; r)
2r

� (1 + �)�+1 �
�
:

As the left-hand side is independent of �, we can let � ! 0+ to deduce
the result. �

Proof of Theorem 1.2
From the lemma above, and the formula (2.15),

�

�
= lim

r!1

n (f (0; �) ; r)
2r

� �

�
:

That is,
� � �:

Our hypothesis (1.16) implies that

(5.15) f (a; a) = lim
n!1;n2S

fn (a; a) =
J�� (a2; a2)
J�� (0; 0)

so

� = lim sup
x!1

f (x; x)

J�� (x2; x2) =J�� (0; 0)
� 1

and hence
� � 1:

We already know � � 1 from Lemma 4.4. Thus

� = 1:

Then from Lemma 4.4,Z 1

0

�
f (b; s)

f (b; b)
� J

�
� (b

2; s2)

J�� (b2; b2)

�2
2s2�+1 ds

� 1

f (b; b) J�� (0; 0)
� 1

J�� (b2; b2)
= 0;

by (5.15) again. So
f (b; s)

f (b; b)
=
J�� (b2; s2)
J�� (b2; b2)

) f (b; s) =
J�� (b2; s2)
J�� (0; 0)

:

As the limit is independent of the subsequence S, we obtain that uni-
formly for a; b in compact subsets of the real line,

lim
n!1

Kn (1� a2�n; 1� b2�n)

Kn (1; 1)
=
J�� (a2; b2)
J�� (0; 0)

:
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As the sequence in the left-hand side is entire and uniformly bounded
for a; b in compact subsets of C, and the right-hand side is entire, the
uniform convergence follows for a; b in compact subsets of C. �

6. The Bessel Reproducing Kernel

The main result of this section is the following theorem:

Theorem 6.1
Let � > �1. Let f be entire of exponential type � 1, and even, with
x�+

1
2f (x) 2 L2 (0;1). Then for all complex z;

(6.1) f (z) =

Z 1

0

f (s) J��
�
z2; s2

�
2s2�+1ds:

Remarks
(a) An alternative formulation is

(6.2) z�f (z) =

Z 1

0

f (s) J�
�
z2; s2

�
2s�+1ds:

(b) This reproducing kernel theorem ought to be well known, but we
could not �nd a clearly statement of it. So we shall cobble it together
from various results. This will be easier for � > �1

2
, since many results

on Hankel transforms were formulated only for this range of �.
(c) It is possible to deduce this from the nth reproducing kernel relation
for the classical Jacobi weight (1� x)�, by scaling and taking suitable
limits. Indeed, this was the author�s original approach. Estimating the
"tail" of the integrals is di¢ cult, and requires Pollard�s decomposition
of the Christo¤el-Darboux kernel. This approach is in some ways more
direct, and draws less on the literature, but is far lengthier than the
proof below.
Let us start with some background. The Hankel transform H� of

order � is de�ned by

H� [g] (x) =

Z 1

0

g (t) J� (xt) (xt)
1=2 dt:

It is known that this is a self-inverse unitary operator on L2 (0;1).
Thus, for g 2 L2 (0;1) ; Z 1

0

H� [g]
2 =

Z 1

0

g2

and
f = H� [g]() g = H� [f ] :
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For this, see [6, pp. 509-510], [10, p. 56], or [11, p. 83]. Let H be the
image of L2 [0; 1] under H�. That is,

H =

�
f (x) =

Z 1

0

g (t) J� (xt) (xt)
1=2 dt : g 2 L2 (0; 1)

�
:

Because of the self-inversive nature of H�, we may also write

H = ff 2 L2 (0;1) : H� [f ] = 0 in (1;1)g :
It is known [6, pp. 509-510], [11, p. 83] that H is a Hilbert space with
reproducing kernel

G (s; x) =
(sx)1=2

x2 � s2
fxJ�+1 (x) J� (s)� sJ�+1 (s) J� (x)g :

That is, for f 2 H, we have

(6.3) f (x) =

Z 1

0

f (s)G (s; x) dx:

Together with a suitable complex Paley-Wiener Theorem, this would
quickly yield Theorem 6.1. The real Paley-Wiener theorems for Hankel
transforms [2], [33] do not seem to help. Unfortunately, we have found
the desired complex Paley-Wiener theorem stated only for � > �1

2
:

Proof of Theorem 6.1 for � > �1
2

Let f be even, entire of exponential type� 1 with x�+ 1
2f (x) 2 L2 (0;1).

By a result of Unni [34, Theorem 1, p. 512],

f (z) = z��
Z 1

0

t��J� (zt)� (t) dt

for some function � with t�(�+
1
2)� (t) 2 L2 (0; 1). Setting  (t) = 0

outside (0; 1), and

 (t) = t�(�+
1
2)� (t) ; t 2 [0; 1] ;

we see that
f (z) = z�(�+

1
2)H� [ ] (z) ;

and hence

H�

h
x�+

1
2f (x)

i
(t) =  (t) = 0, t 2 (1;1) :

Then the function t�+
1
2f (t) belongs to the Hilbert space H, so satis�es

the reproducing kernel property (6.3). That is,

x�+
1
2f (x) =

Z 1

0

s�+
1
2f (s)G (s; x) ds:
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Now an alternative representation for J� is [32, p. 295, eqn. (2.2) and
¤.]

J� (u; v) =
J�+1 (

p
u)
p
uJ� (

p
v)� J�+1 (

p
v)
p
vJ� (

p
u)

2 (u� v)
:

Hence

(6.4) G (s; x) = 2 (sx)1=2 J�
�
s2; x2

�
= 2 (sx)1=2+� J��

�
s2; x2

�
;

so the identities (6.1) and (6.2) follow for real x. Analytic continuation
gives it for complex z. �

For general � > �1, we proceed as follows:

Lemma 6.2
Let � > �1. For a; b 2 (0;1) ;
(a)

(6.5)
Z 1

0

J�
�
a2; s2

�
J�
�
s2; b2

�
2sds = J�

�
a2; b2

�
:

(b) For a; b 2 R;

(6.6)
Z 1

0

J��
�
a2; s2

�
J��
�
s2; b2

�
2s2�+1ds = J��

�
a2; b2

�
:

(c) Let fj�;kg1k=1 denote the positive zeros of Ja. Then for `;m � 1;

(6.7)
Z 1

0

J��
�
j2�;m; s

2
�
J��
�
j2�;`; s

2
�
2s2�+1ds = �`;mJ��

�
j2�;m; j

2
�;`

�
:

(d) Let fckg1k=1 2 `2. Then

(6.8)
Z 1

0

0@ 1X
k=1

ck
J��
�
j2�;k; s

2
�q

J��
�
j2�;k; j

2
�;k

�
1A2

2s2�+1ds =

1X
k=1

c2k:

Proof
(a), (b), We begin with the identity [32, p. 295, eqn. (2.2) and ¤.]

(6.9) J� (u; v) =
1

4

Z 1

0

J�

�p
ut
�
J�

�p
vt
�
dt:

Let us �x v, and de�ne

g (s) =
1

2
(sv)1=2 J� (vs)�[0;1] (s) ;

h (u) = u1=2v1=2J�
�
u2; v2

�
:
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We can recast (6.9) as

h (u) = H� [g] (u) ;

and hence

H� [h] (s) = g (s) = 0, s 2 (1;1) :
Then h 2 H, and we have the reproducing kernel relation (6.3) for h.
On applying (6.4) and cancelling some powers of u; v, we obtain

J�
�
x2; v2

�
=

Z 1

0

J�
�
x2; s2

�
J�
�
s2; v2

�
2s ds:

The relations (6.5) and (6.6) then follow.
(c) This follows from (b) and the fact that J��

�
j2�;m; j

2
�;`

�
= 0 when

` 6= m, as follows easily from the de�nition (1.4) and (1.9) of J��.
(d) For m � 1, let

Sm (s) =
mX
k=1

ck
J��
�
j2�;k; s

2
�q

J��
�
j2�;k; j

2
�;k

�
Because of (c), we have for each n > m;Z 1

0

(Sn (s)� Sm (s))
2 2s2�+1ds =

nX
k=m+1

c2k:

It follows that fSng is a Cauchy sequence in L2[0;1) with weight
2s2�+1, and so has a limit S1 in this weighted L2. Moreover, letting
n!1, we haveZ 1

0

S1 (s)
2 2s2�+1ds = lim

n!1

Z 1

0

Sn (s)
2 2s2�+1ds =

1X
k=1

c2k:

�

Lemma 6.3
Let g be even and entire of exponential type � 1, with jxj�+1=2 g (x) 2
L2 (R) : Then

(6.10) g (z) =
1X
k=1

g (j�;k)
J��
�
j2�;k; z

2
�

J��
�
j2�;k; j

2
�;k

� :
The series converge uniformly on compact sets.
Proof
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We let j�;�k = �j�;k denote the kth negative zero of J��, for k � 1: By
[9, Lemma 13, p. 57] (the notation there is de�ned on p. 48) ,

g (z) =
1X

k=�1;k 6=0

J�a (z)

J�0� (j�;k) (z � j�;k)
g (j�;k) :

Note that there J�� is denoted by G�. The uniform convergence is not
stated in Lemma 13 there, but contained in the proof. Since j�;�k =
�j�;k, while J�� is even, and J�0� is odd, we see that

g (j�;k)
J�a (z)

J�0� (j�;k) (z � j�;k)
+ g (j�;�k)

J�a (z)

J�0� (j�;�k) (z � j�;�k)

= g (j�;k)
J�a (z) 2j�;k

J�0� (j�;k)
�
z2 � j2�;k

� :
Hence,

(6.11) g (z) =
1X
k=1

g (j�;k)
J�a (z) 2j�;k

J�0� (j�;k)
�
z2 � j2�;k

� :
From (1.4) and (1.9),

J��
�
j2�;k; z

2
�
=
�J� (z) j�;kJ 0� (j�;k)
2
�
j2�;k � z2

�
j��;kz

�
=
J�� (z) j�;kJ

�0
� (j�;k)

2
�
z2 � j2�;k

� :

Also, using (1.5) and the identities [23, p. 59, (9.16)]

xJ 0� (x) = ��J� (x)� xJ��1 (x) ;

J��
�
j2�;k; j

2
�;k

�
= j�2��;k J�

�
j2�;k; j

2
�;k

�
=

j�2��;k

4
f�J�+1 (j�k) J��1 (j�;k)g

=
j�2��;k

4
J 0a (j�;k)

2 =
1

4
J�0� (j�;k)

2 :(6.12)

So
J��
�
j2�;k; z

2
�

J��
�
j2�;k; j

2
�;k

� = J�a (z) 2j�;k

J�0� (j�;k)
�
z2 � j2�;k

� :
Now (6.11) gives the result. �

Proof of Theorem 6.1 for any � > �1
For m � 1, let

gm (s) =
mX
k=1

g (j�;k)
J��
�
j2�;k; s

2
�

J��
�
j2�;k; j

2
�;k

� :
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In view of Lemma 6.2,Z 1

0

J��
�
a2; s2

�
gm (s) 2s

2�+1ds

=
mX
k=1

g (j�;k)

J��
�
j2�;k; j

2
�;k

�J�� �j2�;k; a2� = gm (a) :(6.13)

Moreover, as m!1, we have gm (a)! g (a) by the previous lemma.
We want to let m ! 1 in the integral in the last left-hand side also.
First, we note that

(6.14)
1

2

1X
k=1

jg (j�;k)j2

J��
�
j2�;k; j

2
�;k

� = Z 1

0

x2�+1g (x)2 dx <1:

Indeed, since jxj2�+1 g (x)2 2 L1 (R), and g2 is of type� 2, a quadrature
formula of Grozev and Rahman [4, Theorem 5.1*, p. 118], [8, Theorem
4, p. 717] asserts thatZ 1

0

x2�+1g (x)2 dx = 2
1X
k=1

g (j�;k)

jJ�0� (j�;k)j

2

:

Then (6.12) gives (6.14). It follows easily from (6.14) that fgng1n=1 is
a Cauchy sequence in L2 (R), with weight x2�+1. Since gn (x) ! g (x)
uniformly for x in compact sets, we deduce that

lim
n!1

Z 1

0

(gn (x)� g (x))2 x2�+1dx = 0:

Then, using (6.13),����Z 1

0

J��
�
a2; s2

�
g (s) 2s2�+1ds� g (a)

����
=

����Z 1

0

J��
�
a2; s2

�
(g (s)� gn (s)) 2s

2�+1ds + gn (a)� g (a)

����
�

�Z 1

0

J��
�
a2; s2

�2
2s2�+1ds

�1=2�Z 1

0

(g (s)� gn (s))
2 2s2�+1ds

�1=2
+ jgn (a)� g (a)j

! 0; n!1:

Here we also used Lemma 6.2 to deduceZ 1

0

J��
�
a; s2

�2
2s2�+1ds <1:

�
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Lemma 6.4
As x!1;

(6.15) J��
�
x2; x2

�
=

1

2�x2�+1
(1 + o (1)) :

Proof
J� admits the following asymptotic [1, p. 364, (9.2.1)]: as x!1;

J� (x) =

r
2

�x

h
cos
�
x� ��

2
� �

4

�
+O

�
x�1
�i
:

For large x, let us write

t = t (x) =
p
x� ��

2
� �

4
:

Then

J�
�p

x
�
=

s
2

�
p
x

�
cos t+O

�
x�1=2

��
;

J�+1
�p

x
�
=

s
2

�
p
x

�
sin t+O

�
x�1=2

��
;

J��1
�p

x
�
=

s
2

�
p
x

�
� sin t+O

�
x�1=2

��
;

so as x!1;

J� (x; x) =
1

4

n
J�
�p

x
�2 � J�+1

�p
x
�
J��1

�p
x
�o
=

1

2�
p
x
(1 + o (1)) :

Finally (6.15) follows from the de�nition of J��. �

References

[1] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover,
New York, 1965.

[2] N.B. Andersen, Real Paley-Wiener Theorems for the Hankel Transform, J.
Fourier Anal, Applns., 12(2006), 17-25.

[3] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert
Approach, Courant Institute Lecture Notes, Vol. 3, New York University Pres,
New York, 1999.

[4] D.P. Dryanov, M.A. Qazi, Q. I. Rahman, Entire Functions of Exponential Type
in Approximation Theory, (in) Constructive Theory of Functions, Varna 2002,
(ed. B. Bojaov), DARBA, So�a, 2003, pp. 86-135.

[5] G. Freud, Orthogonal Polynomials, Pergamon Press/ Akademiai Kiado, Bu-
dapest, 1971.

[6] A.G. Garcia, Orthogonal Sampling Formulas: A Uni�ed Approach, SIAM Re-
view, 42(2000), 499-512.

[7] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Aca-
demic Press, San Diego, 1980.



UNIVERSALITY LIMITS 33

[8] G.R. Grozev, Q.I. Rahman, A Quadrature Formula involving zeros of Bessel
Functions as nodes, Math. Comp., 64(1995), 715-725.

[9] G.R. Grozev, Q.I. Rahman, Lagrange Interpolation in the Zeros of Bessel func-
tions by Entire Functions of Exponential Type and Mean Convergence, Meth-
ods and Applications of Analysis, 3(1996), 46-79.

[10] J.R. Higgins, Completeness and Basis Properties of Sets of Special Functions,
Cambridge University Press, Cambridge, 1977.

[11] J.R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations,
Oxford University Press, Oxford, 1996.

[12] K.G. Ivanov and V. Totik, Fast Decreasing Polynomials, Constr. Approx.,
6(1990), 1-20.

[13] P. Koosis, The Logarithmic Integral I, Cambridge University Press, Cambridge,
1988.

[14] A.B. Kuijlaars and M. Vanlessen, Universality for Eigenvalue Correlations
from the Modi�ed Jacobi Unitary Ensemble, International Maths. Research
Notices, 30(2002), 1575-1600.

[15] B. Ya. Levin, in collaboration with Yu. Lyubarskii, M. Sodin, V. Tkachenko,
Lectures on Entire Functions, Translations of Mathematical Monographs, Vol.
150, American Mathematical Society, Providence, 1996.

[16] Eli Levin and D.S. Lubinsky, Universality Limits Involving Orthogonal Poly-
nomials on the Unit Circle, Computational Methods and Function Theory,
7(2007), 543-561.

[17] Eli Levin and D.S. Lubinsky, Universality Limits in the Bulk for Varying Mea-
sures, manuscript.

[18] D.S. Lubinsky, A New Approach to Universality Limits involving Orthogonal
Polynomials, to appear in Annals of Mathematics.

[19] D.S. Lubinsky, A New Approach to Universality Limits at the Edge of the
Spectrum, to appear in Contemporary Mathematics.

[20] D.S. Lubinsky, Universality Limits in the Bulk for Arbitrary Measures on Com-
pact Sets, to appear in J. d�Analyse de Math.

[21] P. Nevai, Orthogonal Polynomials, Memoirs of the AMS no. 213 (1979).
[22] P. Nevai, Geza Freud, Orthogonal Polynomials and Christo¤el Functions: A

Case Study, J. Approx. Theory, 48(1986), 3-167.
[23] F.W.J. Olver, Asymptotics and Special Functions, Academic Press, San Diego,

1974.
[24] T. Ransford, Potential Theory in the Complex Plane, Cambridge University

Press, Cambridge, 1995.
[25] E.B. Sa¤ and V. Totik, Logarithmic Potentials with External Fields, Springer,

New York, 1997.
[26] B. Simon, Orthogonal Polynomials on the Unit Circle, Parts 1 and 2, American

Mathematical Society, Providence, 2005.
[27] B. Simon, Two Extensions of Lubinsky�s Universality Theorem, to appear in

J. d�Analyse de Math.
[28] H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge University

Press, Cambridge, 1992.
[29] G. Szeg½o, Orthogonal Polynomials, American Mathematical Society Collo-

quium Publications, American Mathematical Society, Providence, 1975.



34 D. S. LUBINSKY

[30] V. Totik, Asymptotics for Christo¤el Functions for General Measures on the
Real Line, J. d�Analyse Math., 81(2000), 283-303.

[31] V. Totik, Universality and �ne zero spacing on general sets, manuscript.
[32] C.A. Tracy and H. Widom, Level Spacing Distributions and the Bessel Kernel,

Commun. Math. Phys., 161(1994), 289-309.
[33] V.K. Tuan, On the Range of the Hankel and Extended Hankel Transforms, J.

Math. Anal. Applns., 209(1997), 460-478.
[34] K.R. Unni, Hankel Transforms and Entire Functions, Bull. Amer. Math. Soc.,

71(1965), 511-513.

School of Mathematics, Georgia Institute of Technology, Atlanta,
GA 30332-0160, USA., lubinsky@math.gatech.edu


