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Abstract. Let a � 0; " > 0. We use potential theory to obtain a sharp lower
bound for the linear Lebesgue measure of the set(

r 2 [0; 1] : ran
maxjtj=1 jP (t)j
minjtj=r jP (t)j

� "n
)
:

Here P is an arbitrary polynomial of degree � n. We then apply this to
diagonal and ray Padé sequences for functions analytic (or meromorphic) in
the unit ball. For example, we show that the diagonal f[n=n]g1n=1 sequence
provides good approximation on almost 1

8
of the circles centre 0, and the

f[2n=n]g1n=1 sequence on almost
1
4
of such circles.

1. Introduction

Let f be a function analytic at 0, and hence possessing a Maclaurin series there.
Recall that if m;n � 0, the (m;n) Padé approximant to f is a rational function

[m=n] (z) = (p=q) (z) ;

where p; q are polynomials of degree � m;n respectively, with q not identically zero,
and

(fq � p) (z) = O
�
zm+n+1

�
:

The order relation indicates that the coe¢ cients of 1; z; z2; :::zm+n in the Maclaurin
series of the left-hand side vanish. For an introduction to the subject, see [1].
The convergence theory of Padé approximation is rich and complex. It is known

that if f is analytic at 0, and meromorphic in the whole plane, then f[n=n]g1n=1
converges in measure, and in capacity - the Nuttall-Pommerenke Theorem [13],
[14]. More generally, given sequences of positive integers fmkg1k=1 ; fnkg

1
k=1 that

tend to 1 in such a way that for some �xed � � 1;
1

�
� mk

nk
� �; k � 1;

and given r; " > 0;

m2 fz : jzj � r and jf � [mk=nk]j (z) > "nkg ! 0; k !1:
Here m2 denotes planar measure, and it may be replaced by capacity. There are
deeper analogues for functions with branchpoints [20], [21].
One unfortunate feature of the theorem is that it really requires f to be meromor-

phic in C. There are functions analytic in the unit ball for which f[n=n]g1n=1 does
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2 D.S. LUBINSKY

not converge in capacity or measure in any ball, no matter how small, contained
in the unit ball [6], [7], [15]. Such counterexamples suggest that there is nothing
positive that can be said about full diagonal Padé sequences for functions analytic
in the unit ball. For subsequences, there is the still unresolved Baker-Gammel-Wills
Conjecture, and its cousins - see [1], [8], [9], [22].
The main point of this paper is that nevertheless, there is something positive (and

we believe signi�cant) that can be said in this setting. For example, f[n=n]g1n=1
provides good approximation on almost 1

8 of the circles centre 0, within the unit
ball. This may be viewed as a much sharper form of the results of [10], where
it was shown that [n=n] provides approximation on a set of positive proportion,
independently of n.
The essential ingredient of our development is an inequality for minima and

maxima of polynomials. To explain its origin, let us assume for simplicity that f
is analytic in fz : jzj � 1g. Then if [m=n] = p=q, there is the error formula

(fq � p) (z)
zm+n+1

=
1

2�i

Z
jtj=1

(fq) (t)

tm+n+1
dt

t� z ; jzj < 1:

(It is a simple consequence of Cauchy�s integral formula). Estimation in a standard
manner leads to

max
jzj=r

jf � [m=n]j (z) �
�
rm+n

maxjtj=1 jq (t)j
minjtj=r jq (t)j

�
C

1� r ;

for 0 < r < 1, where C is independent of m;n; r. Since in general one knows little
about the zeros of q, one wishes to estimate the term in fg for an arbitrary poly-
nomial q of degree � n. For how large a set of r can the term in fg be small, and
hence for how large a set of r can [m=n] provide good approximation on jzj = r?
Thus we have arrived at the following

PROBLEM
Let a � 0; " > 0, and let P be a polynomial of degree � n. Estimate below

(1.1) m1

��
r 2 [0; 1] : ran

maxjtj=1 jP (t)j
minjtj=r jP (t)j

< "n
��

:

Here m1 denotes linear Lebesgue measure.

It turns out that using potential theory for external �elds [17], we can obtain
a sharp lower bound for the linear Lebesgue measure of this set. Estimates for
this set that have been derived in the past have usually been obtained via Cartan�s
lemma, or classical potential theory, but the factor ran is typically excluded. The
novelty here is the inclusion of the weight ran in the problem ab initio, leading to
sharper estimates.
If one use Bernstein�s inequality for the growth of polynomials in the complex

plane, one sees that for P of degree � n and r 2 [0; 1] ;

ran
maxjtj=1 jP (t)j
minjtj=r jP (t)j

� r(a�1)n
maxjtj=r jP (t)j
minjtj=r jP (t)j

:

Thus one could formulate a version of the above problem, that involves a (perhaps
more appealing) maximum and minimum modulus over the same circle. Instead
of the ordinary potentials used below, this version of the problem leads to Green
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potentials (see [11] for the case a = 0 and [4] for related results). However, the
resulting application to Padé approximation is weaker.
In a certain sense, the problem above is complementary to Zolotarev problems

[17, Sn. VIII.3, p. 394¤.]. There one wishes to bound below

ranmax
jtj=1

jP (t)j =min
jtj=r

jP (t)j ;

achievable for some P , whereas here, we are trying to see for how large a set of r,
we can obtain a reasonable upper bound for all P . In spirit our results are closer
to Remez inequalities [2], and indeed, can be reformulated in Remez form.
We shall present our results on the problem above in Section 2, together with its

applications to Padé approximation. The proofs are presented in Sections 3 to 6.

2. Statement of Results

For a � 0, let us de�ne the external �eld

(2.1) Qa (r) := a log r; r > 0:

Moreover, given c 2 (0; 1], we de�ne the restricted �eld

(2.2) Qa;c (r) :=

�
1; r 2 [0; c)
Qa (r) ; r 2 [c; 1];

and the associated weight

(2.3) wa;c (r) := exp (�Qa;c (r)) =
�
0; r 2 [0; c)
r�a; r 2 [c; 1] :

It follows from the elements of potential theory [17, Thm. I.1.3, p. 27] that there is
a unique positive Borel measure �a;c of total mass 1; with support S

�
�a;c

�
� [c; 1]

such that

(2.4)
Z
log

1

jx� tjd�a;c (t) +Qa;c (x)
�
= Fa;c; q.e. x 2 S

�
�a;c

�
;

� Fa;c; q.e. x 2 [c; 1] :
Here Fa;c is a uniquely determined constant; and q.e. stands for quasi-everywhere,
that is except on a set of logarithmic capacity zero. As we shall shortly see, q.e.
may be dispensed with. The integral in (2.4) is called the potential associated with
the measure �a;c, and we use the notation

(2.5) U�a;c (x) :=

Z
log

1

jx� tjd�a;c (t) :

For an introduction to the sort of potential theory we use, see [5], [12] or [17].
The measure �a;c is described in the following proposition:

Proposition 2.1
Let a � 0; c 2 (0; 1]. Let

(2.6) d := d (a; c) :=

8<: 1; a � 1;

min

�
1; c
�

a
a�1

�2�
; a > 1:

(a) The support of �a;c is [c; d] ;
(b) �a;c is absolutely continuous with respect to linear Lebesgue measure;
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(c) For t 2 (c; d) ;

(2.7) �0a;c (t) =
1

�
p
(t� c) (d� t)

(
1� a+ a

p
cd

t

)
:

(d) In particular if a > 1 and d < 1, then for t 2 (c; d) ;

(2.8) �0a;c (t) =
a� 1
�t

r
d� t
t� c :

The density in (2.8) is familiar from Lorentz�s theory of incomplete polynomials
[5], [16], [17], [18]. This is scarcely surprising as the weight ran was also used there,
though in a di¤erent setting.
The function

(2.9) Ga (c) := U
�a;c (�1)� Fa;c; c 2 (0; 1) ;

is needed in the formulation of our results. We �rst list some of its main features:

Proposition 2.2
Fix a � 0:
(a) Ga is a strictly decreasing continuous function of c 2 (0; 1).
(b) If a > 1, Ga maps (0; 1) onto R.
(c) If a � 1, Ga maps (0; 1) onto

�
�1;� (1� a) log

�
3 +

p
8
��
:

(d) Ga admits the representation

(2.10)

Ga (c) = �a log

0@d+ c
d� c +

s�
d+ c

d� c

�2
� 1

1A
� log

0@d+ c+ 2
d� c +

s�
d+ c+ 2

d� c

�2
� 1

1A� a log d� c
4

�2a log

0@1�
24d+ c
d� c �

s�
d+ c

d� c

�2
� 1

3524d+ c+ 2
d� c �

s�
d+ c+ 2

d� c

�2
� 1

351A ;
where d = d (a; c) is given by (2.6).

Since Ga is strictly decreasing and continuous, it has an inverse function, which
we denote by G[�1]a . We de�ne

(2.11) Ha (") := G
[�1]
a (� log ") ;

for all " > 0 for which � log " lies in the range of Ga: this range is given in (2.12)
below. We note that Ha is a strictly increasing continuous function. We may now
state our main result:
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Theorem 2.3
Let a � 0, and let

(2.12)
" 2 (0;1) ; if a > 1;

" 2
��
3 +

p
8
�1�a

;1
�
; if a � 1:

(a) If n � 1 and P is a polynomial of degree � n, then

(2.13) m1

�
r 2 [0; 1] : ran

maxjtj=1 jP (t)j
minjtj=r jP (t)j

< "n
�
� Ha (") :

(b) This is sharp in the sense that we may �nd for large enough n a polynomial P
for which the left hand side in (2.13) is as close to Ha (") as we please.

The restrictions on " arise from the fact that the set in (2.13) may be empty if
" is too small. For example, if a = 1, and we take P (t) = tn, then

ran
maxjtj=1 jP (t)j
minjtj=r jP (t)j

= 1;

so that set is empty unless " > 1. We shall present a table of values of Ha (1) after
Theorem 2.4. For the moment, we just note two elegant special cases, (a = 2; 3 and
" = 1), for which we can evaluate Ha (") (see Lemma 3.2):

m1

�
r 2 [0; 1] : r2n

maxjtj=1 jP (t)j
minjtj=r jP (t)j

< 1

�
� 1

8
;(2.14)

m1

�
r 2 [0; 1] : r3n

maxjtj=1 jP (t)j
minjtj=r jP (t)j

< 1

�
� 1

4
:(2.15)

We again emphasise that 14 and
1
8 are sharp.

We now turn to results on Padé approximation. Note that if � is �xed and
m = �n, then m + n = (�+ 1)n, so the [�n=n] Padé approximant corresponds to
a = �+ 1 in (2.13).

Theorem 2.4
Let f be analytic at 0, and let f be meromorphic in fz : jzj < 1g. Let � be a positive
integer, and

(2.16) 0 < � < H�+1 (1) :

Then there exists " = " (�) 2 (0; 1) and n0 > 0 such that for n � n0;

(2.17) m1

�
r 2 [0; 1] : max

jzj=r
jf � [�n=n]j (z) � "n

�
� H�+1 (1)� �:

Thus [�n=n] provides good approximation to f on almost H�+1 (1) of the circles
centre 0 in the unit ball. Of course the restriction that � be an integer is inessential,
and is needed only in ensuring that �n is an integer; one could consider for general
� > 0, ray sequences f[mk=nk]g1k=1 with

lim
k!1

mk=nk = �:
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A similar result is true for f[n=�n]g1n=1: suppose for simplicity that f (0) 6= 0.
Then 1=f is also analytic at 0 and meromorphic in the unit ball. Since

[n=�n]f = 1=[�n=n]1=f ;

where the subscript indicates the function from which the approximant is formed,

applying Theorem 2.4 to 1=f yields a matching result for
n
[n=�n]f

o1
n=1

.

Following is a table of values of H�+1 (1), prepared using Mathematica 3.0:

Sequence Parameter a H�+1(1)=Proportion of Good Circles

[n=n] 2 1
8

[2n=n] or [n=2n] 3 1
4

[3n=n] or [n=3n] 4 34.34%

[4n=n] or [n=4n] 5 41.46%

[5n=n] or [n=5n] 6 47.07%

[10n=n] or [n=10n] 11 61.22%

[20n=n] or [n=20n] 21 75.95%

One may also present a generalisation of Theorem 2.4 involving a power of z :

Theorem 2.5
Let f be analytic at 0, and let f be meromorphic in fz : jzj < 1g. Let � be a positive
integer, and

(2.18) 0 � � � �+ 1:

Let " lie in the range of G�+1��. Then given

(2.19) 0 < � < H�+1�� (") ;

there exists n0 > 0 such that for n � n0;

(2.20) m1

�
r 2 [0; 1] : max

jzj=r

jf � [�n=n]j
jzj�n (z) � "n

�
� H�+1�� (")� �:

We shall also present a result involving errors of rational approximation. For
f analytic in fz : jzj � 1g, except possibly for poles of total multiplicity `, let us
de�ne for n � `, the error in approximation of f by rational functions of type (n; n),
on the unit circle, by
(2.21)

�n (f) := inf

�
k f � p

q
kL1(jzj=1): deg (p) ;deg (q) � n; q not identically 0

�
:
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Then we have:

Theorem 2.6
Let f be analytic in fz : jzj � 1g, except for poles of total multiplicity `, none at 0.
Then given " > 1, and � > 0, there exists n0, such that for n � n0,

(2.22) m1

�
r 2 [0; 1] : max

jzj=r

jf � [n=n]j
�n�` (f)

(z) � "n
�
� H1 (")� �:

For example, if we choose " = 2, a Mathematica 3.0 calculation shows that

m1

�
r 2 [0; 1] : max

jzj=r

jf � [n=n]j
�n�` (f)

(z) � 2n
�
� 0:0588:::� �:

This paper is organised as follows: in Section 3, we prove Propositions 2.1 and
2.2. In Section 4, we prove Theorem 2.3(a), and in Section 5, we prove Theorem
2.3(b). Finally, in Section 6, we prove Theorems 2.4-6.

3. The Equlibrium Measure and Potential

We remark that the proof of Proposition in 2.1 has points of contact with several
proofs in the theory of incomplete polynomials [5], [16], [18], [19]. Nevertheless, we
provide all the details, as we do not believe our result follows in full generality from
existing results, and in any event, to patch together results from various sources
would be awkward. So we proceed directly from the standard text [17].

Proof of Proposition 2.1
(a) Now xQ0a;c (x) = a is increasing in [c; 1], so S

�
�a;c

�
is an interval [17, Thm.IV.1.10,

pp.198-9], say,
S
�
�a;c

�
= [��; ��] :

To show that �� = c, we use the Mhaskar-Sa¤ F -functional

(3.1) F ([�; �]) = log
� � �
4

� 1

�

Z �

�

Qa;c (x)p
(x� �) (� � x)

dx;

for [�; �] � [c; 1]. It is known [17, Thm IV.1.5, p.194] that

(3.2) F ([��; ��]) = max
[�;�]�[c;1]

F ([�; �]) ;

and only [��; ��] attains the maximum. Suppose that �� > c; we shall derive a
contradiction by translating [��; ��] leftwards to have left endpoint c. Let

� := �� � ��;

and consider [c; c+ �] � [c; 1]. Then

F ([c; c+ �]) = log
�

4
+
a

�

Z c+�

c

jlog xjp
(x� c) (c+ � � x)

dx

= log
�� � ��
4

+
a

�

Z ��

��

jlog (t+ c� ��)jp
(t� ��) (�� � t)

dt

> log
�� � ��
4

+
a

�

Z ��

��

jlog tjp
(t� ��) (�� � t)

dt = F ([��; ��]) ;
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since c� �� < 0. This contradiction to (3.2) shows that �� = c.

We now maximize over d,

F (d) := F ([c; d]) := log
d� c
4

� a

�

Z 1

0

log (c+ t (d� c))p
t (1� t)

dt:

(We have made a substitution in the integral in (3.1)). Then for d 2 (c; 1) ;

F 0 (d) =
1

d� c

(
1� a

�

Z 1

0

t
c
d�c + t

dtp
t (1� t)

)
:

Here
1

�

Z 1

0

t
c
d�c + t

dtp
t (1� t)

<
1

�

Z 1

0

dtp
t (1� t)

= 1;

so if a � 1;
F 0 (d) >

1� a
d� c � 0; d 2 (c; 1) :

Then F is increasing in (c; 1) and

max
d2[c;1]

F (d) = F (1) :

Hence
S
�
�a;c

�
= [c; 1] :

We now turn to the case a > 1. Here either F 0 (d) > 0; d 2 (c; 1) in which case
again S

�
�a;c

�
= [c; 1], or there exists d 2 (c; 1) such that F 0 (d) = 0. In the latter

case, such a d satis�es

(3.3)
a

�

Z 1

0

t
c
d�c + t

dtp
t (1� t)

= 1;

and also S
�
�a;c

�
= [c; d]. We need the integral

(3.4)
1

�

Z �

�

ds

s
p
(s� �) (� � s)

=
1p
��
; 0 < � < �:

One may derive this by contour integral methods, or see [3, no. 3.147.6, p.242].
Setting

� :=
c

d� c ;

we see that

a

�

Z 1

0

t
c
d�c + t

dtp
t (1� t)

=
a

�

Z 1

0

�
1� �

t+ �

�
dtp

t (1� t)

= a

 
1� �

�

Z �+1

�

ds

s
p
(s� �) (�+ 1� s)

!

= a

 
1�

r
�

�+ 1

!
;

by (3.4). Then (3.3) becomes

(3.5) a

�
1�

r
c

d

�
= 1, d = c

�
a

a� 1

�2
:
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In summary, if a > 1, we do have the desired formula (2.6).
(b) Since Q00a is continuous in [c; 1], this follows from [17, Thm. IV.2.2, p.211 ¤.].
(c) We use the formula
(3.6)

�0a;c (x) =
1

�2

r
d� x
x� c PV

Z d

c

(s� c)Q0a (s)
s� x

dsp
(s� c) (d� s)

+
Dp

(x� c) (d� x)
;

where PV denotes Cauchy principal value, and

D :=
1

�
� 1

�2

Z d

c

r
s� c
d� sQ

0
a (s) ds:

(This follows directly from Thm. IV.3.2 in [17, p.226] by mapping [c; d] onto [0; 1]).
Now using

s� c
s (s� x) =

x� c
x

1

s� x +
c

sx
;

and the identity [17, p. 225, eqn. (3.20)]

1

�
PV

Z d

c

1

s� x
dsp

(s� c) (d� s)
= 0; x 2 (c; d) ;

we see that

1

�
PV

Z d

c

(s� c)Q0a (s)
s� x

dsp
(s� c) (d� s)

= 0 +
ac

x

1

�

Z d

c

ds

s
p
(s� c) (d� s)

=
a

x

r
c

d
;

by (3.4). Next,

D =
1

�
� a

�2

Z d

c

s� c
s
p
(s� c) (d� s)

ds

=
1

�
� a

�

�
1�

r
c

d

�
;

again by (3.4). Of course in the special case a > 1 > d, (3.5) shows that D = 0.
Putting this all together in (3.6) gives

�0a;c (x) =
1

�

r
d� x
x� c

a

x

r
c

d
+

1p
(x� c) (d� x)

�
1

�
� a

�

�
1�

r
c

d

��
;

which simpli�es to (2.7).
(d) In the special case a > 1 > d, we noted that (3.5) gives D = 0, and then (3.5)
and the last equation easily give (2.8). �

We remark that it is an easy consequence of (2.7) that U�a;c is continuous in [c; d]
and hence in C. So the left-hand side of (2.4) is continuous in x, and consequently,
we can drop the q.e. in the right-hand side of (2.4).
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The Proof of Proposition 2.2
(a) Note �rst that

c1 < c2 ) wa;c1 � wa;c2 in [c1; 1] :
It then follows that

Ga (c1) = U
�a;c1 (�1)� Fa;c1 � U�a;c2 (�1)� Fa;c2 = Ga (c2) ;

see [17, Cor. I.4.2(a), p.50]. So Ga (c) is monotone decreasing. We shall delay the
proof that it is strictly decreasing until the end of the proof of (d). To prove that Ga
is continuous, we note �rst that d = d (a; c) is continuous in c, and then the explicit
form (2.7) for �a;c implies that U

�a;c (�1) is continuous in c. The continuity of Fa;c
in c follows similarly from (3.8) below.
(b), (c) Because of the continuity of Ga, it su¢ ces to compute its left limit at 1
and its right limit at 0. Let us �rst compute the former. Recall from (2.9) that

Ga (c) = �
Z d

c

log (1 + t) d�a;c (t)� Fa;c:

Here as [c; d] � [0; 1] ;

(3.7) � log 2 � �
Z d

c

log (1 + t) d�a;c (t) � 0:

Also, it is known [17, Thm.IV.1.5(b), p.194] that

�Fa;c = F ([c; d])

= sup
[�;�]�[c;1]

F ([�; �])

= sup
[�;�]�[c;1]

 
log

� � �
4

� 1

�

Z �

�

Qa (x)p
(x� �) (� � x)

dx

!
:(3.8)

Here as c! 1�, uniformly for x 2 [c; 1]

�Qa (x) = a jlog xj ! 0;

while for [�; �] � [c; 1],

log
� � �
4

� log 1� c
4

! �1:

Thus

lim
c!1�

Ga (c) = lim
c!1�

(�Fa;c +O (1)) = �1:

Next, we compute limc!0+Ga (c). We consider two subcases:
(1) a > 1
Here for small enough c, and d = d (a; c) ;

d = c

�
a

a� 1

�2
so uniformly for x 2 [c; d] ;

Qa (x) = a log c+O (1) ;
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and hence

�Fa;c = F ([c; d])

= log

�
d� c
4

�
� 1

�

Z d

c

Qa (x)p
(x� c) (d� x)

dx

= log c+O (1)� a log c+O (1)
= (a� 1) jlog cj ! 1; c! 0 + :

Then, together with (3.7), this shows that

lim
c!0+

Ga (c) =1:

(2) a � 1
Here d = d (a; c) = 1 for all c. A straightforward application of dominated conver-
gence and (2.7) then shows that

(3.9) lim
c!0+

Ga (c) = �
1� a
�

Z 1

0

log (1 + t)p
t (1� t)

dt+ log
1

4
� a

�

Z 1

0

log tp
t (1� t)

dt:

We now use a standard integral from potential theory [17, Example I.3.5, pp.45-46]

1

�

Z 1

�1

log jx� tjp
1� t2

dt = log

������ jxj+
q
jxj2 � 1
2

������ ; x 2 R;
where if x 2 [�1; 1], the right-hand side reduces to log 12 . A linear substitution then
yields, for � < �; y 2 R,

1

�

Z �

�

log js� yjp
(s� �) (� � s)

ds

= log

������
���� 2

� � �

�
y � � + �

2

�����+
s���� 2

� � �

�
y � � + �

2

�����2 � 1
������� log 4

� � �:

(3.10)

Applying this with [�; �] = [0; 1] and y = �1 or 0 in (3.9) gives

lim
c!0+

Ga (c) = � (1� a) (log
�
3 +

p
8
�
� log 4)

+ log
1

4
� a (� log 4)

= � (1� a) log
�
3 +

p
8
�
:

(d) From our representation (2.7) for �0a;c, we see that

Ga (c) = �1� a
�

Z d

c

log (1 + t)p
(t� c) (d� t)

dt� a
p
cd

�

Z d

c

log (1 + t)

t
p
(t� c) (d� t)

dt

+ log

�
d� c
4

�
� a

�

Z d

c

log tp
(t� c) (d� t)

dt:
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By applying (3.10) with [�; �] = [c; d] and y = �1 or y = 0 to this, we see that

Ga (c) = � (1� a)

8<:log
0@�d+ c+ 2

d� c

�
+

s�
d+ c+ 2

d� c

�2
� 1

1A� log 4

d� c

9=;
�a
p
cd

�

Z d

c

log (1 + t)

t
p
(t� c) (d� t)

dt+ log

�
d� c
4

�

�a

8<:log
0@�d+ c

d� c

�
+

s�
d+ c

d� c

�2
� 1

1A� log 4

d� c

9=; :(3.11)

We now use Lemma 3.1 (below) in the integral on the right-hand side of (3.11);
we see that then (3.11) simpli�es to (2.10), after some straightforward manipulation.

Finally, we use the explicit formula (2.10) to show that Ga is a strictly decreasing
function of c. Firstly, (2.6) shows that d = d (a; c) is analytic in c except if a � 1
and c =

�
a�1
a

�2
(where the two terms in the minimum in (2.6) are equal). Hence

Ga (c) is analytic in c
(i) for c 2 (0; 1) if a � 1;
(ii) for c 2

�
0;
�
a�1
a

�2�
and c 2

��
a�1
a

�2
; 1
�
if a > 1.

Now if there exists c1 < c2, with

Ga (c1) = Ga (c2) ,

we have because of monotonicity,

(3.12) G0a (c) = 0; c 2 (c1; c2) :

Then analytic continuation and (3.12) shows that respectively
(i) Ga is constant in (0; 1) if a � 1;
(ii) Ga is constant in either

�
0;
�
a�1
a

�2�
or
��

a�1
a

�2
; 1
�
if a > 1.

We then obtain a contradiction to the results of (b), (c). �

We now establish an integral identity, using standard integrals:

Lemma 3.1
Let 0 < � < �. Then

(3.13)

I : =
1

�

Z �

�

log (1 + x)

x
p
(x� �) (� � x)

dx

=
1p
��

8>>>><>>>>:
log
�
1 + �+�

2

�
+ log

 
1+
q
1�( ���

�+�+2 )
2

2

!

+2 log

 
1�

"
�+�
��a �

r�
�+�
���

�2
� 1
#"

�+�+2
��a �

r�
�+�+2
���

�2
� 1
#!

9>>>>=>>>>; :
Proof
Step 1: Reduce to standard integrals
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We �rst map [�; �] linearly to [�1; 1] and then make the trigonometric substitution
x = cos � to get rid of the square root factor, and hence deduce that

I =
1

�

Z �

0

log
�
1 + �+�

2 + ���
2 cos �

�
�+�
2 + ���

2 cos �
d�

=
2

� + �
log

�
1 +

� + �

2

�
I1 +

2

� + �
I2;(3.14)

where

(3.15) I1 =
1

�

Z �

0

d�

1 + r cos �
;

(3.16) I2 =
1

�

Z �

0

log (1 + s cos �)

1 + r cos �
d�;

and

(3.17) r :=
� � �
� + �

; s :=
� � �

� + �+ 2
:

Step 2: Apply standard integrals
Now [3, no. 3.613.1, p.366],

(3.18) I1 =
1p
1� r2

=
� + �

2
p
��
:

Next, for jaj � 1; jbj < 1;[3, no. 4.397.16, p.594]

(3.19) I3 :=
1

�

Z �

0

log
�
1� 2a cos � + a2

�
1� 2b cos � + b2 d� =

2 log (1� ab)
1� b2 :

To evaluate I2, we write

s =
�2a
1 + a2

; r =
�2b
1 + b2

, a =
�1 +

p
1� s2
s

; b =
�1 +

p
1� r2
r

:

Then

I2 =
1

�

Z �

0

log
�
1� 2a

1+a2 cos �
�

1� 2b
1+b2 cos �

d�

=

�
log

1

1 + a2

�
1

�

Z �

0

d�

1 + r cos �

+
�
1 + b2

� 1
�

Z �

0

log
�
1 + a2 � 2a cos �

�
1 + b2 � 2b cos � d�

=

�
log

1

1 + a2

�
1p
1� r2

+
�
1 + b2

� 2 log (1� ab)
1� b2 ;

by (3.18) and (3.19). A calculation shows that

1 + b2

1� b2 =
1p
1� r2

;
1

1 + a2
=
1 +

p
1� s2
2

:
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Then

I2 =
1p
1� r2

(
log

 
1 +

p
1� s2
2

!
+ 2 log

 
1�

�
1�

p
1� s2

� �
1�

p
1� r2

�
sr

!)
:

Step 3: Combine the integrals
From (3.14), (3.18), and the last identity,

I =
1p
��
flog

�
1 +

� + �

2

�
+ log

 
1 +

p
1� s2
2

!

+2 ln

 
1�

�
1�

p
1� s2

� �
1�

p
1� r2

�
sr

!
g:

Substituting for s and r gives (3.13). �

We �nish this section with evaluation of Ga (c) for a = 2; 3 and c = 1
8 ;

1
4 respectively.

Lemma 3.2

(3.20) G2

�
1

8

�
= 0, H2 (1) =

1

8
;

(3.21) G3

�
1

4

�
= 0, H3 (1) =

1

4
:

Proof
Let us do (3.20). We have a = 2 and c = 1

8 . By (2.6), d = 4c =
1
2 . So

d+ c

d� c =
5

3
;
d+ c+ 2

d� c = 7;

and hence

d+ c

d� c �

s�
d+ c

d� c

�2
� 1 =

1

3
;

d+ c+ 2

d� c �

s�
d+ c+ 2

d� c

�2
� 1 = 7� 4

p
3:

Substitution in (2.10) and some manipulations show that

G2

�
1

8

�
= �4 log 3� log(7 + 4

p
3) + 10 log 2� 4 log

 
�4 + 4

p
3

3

!

= 2 log 2� log
�
7 + 4

p
3
�
� log

�p
3� 1

�4
:

A calculation shows that �p
3� 1

�4
= 22

�
7� 4

p
3
�
:

Substitution then gives (3.20). The proof of (3.21) is similar. �
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4. The Proof of Theorem 2.3(a)

We shall do this in �ve steps:
Step 1: Reduction to P with zeros in [0;1]
Note �rst that if a 2 C, and r 2 [0; 1] ;

maxjzj=1

���Qn
j=1 (z � aj)

���
minjzj=r

���Qn
j=1 (z � aj)

��� �
������
nY
j=1

1 + jaj j
r � jaj j

������ :
Since we are looking for a lower bound for the linear Lebesgue measure of the set
in (1.1), it follows that it su¢ ces to �nd a lower bound for m1 (S), where

S :=

8<:r 2 [0; 1] : ran
������
nY
j=1

�
1 + �j
r � �j

������� < "n
9=; ;

and where all �j � 0. Next, note that we have also assumed that we have a
polynomial of exact degree n. This may be achieved by adding some �j = 1, which
again reduces the size of S. Finally, we note that we may assume that all �j � 1:
again, replacing any �j > 1 by 1 increases

��� 1+�jr��j

��� and so reduces the size of S. So,
in the sequel, we assume that all �j 2 (0; 1].
Let

(4.1) E :=

8<:r 2 [0; 1] : ran
������
nY
j=1

�
1 + �j
r � �j

������� � "n
9=; ;

so that

(4.2) m1 (S) = 1�m1 (E) :
We must look for an upper bound for m1 (E).
Step 2: Show that m1 (E) may be maximized by E of the form [c; 1]
Let

` := supm1 (E) ;
where the sup is taken over all �1; �2; :::�n 2 [0; 1] and the corresponding sets E .
We can extract a subsequence of n�tuples (�1; �2; :::�n) converging to an n�tuple
for which the sup is actually attained. (This is easy to see from (4.1) and regularity
properties of m1). Let us assume that (�1; �2; :::�n) is such an n�tuple, and E is
the corresponding set.

We �rst claim that E � [0; 1] consists of �nitely many intervals, some of which
may degenerate to a single point. Moreover, each �j lies in one of the intervals that
has non-empty interior. To see this, note that

f (r) := r�2an
nY
j=1

�
r � �j
1 + �j

�2
� "�2n

is an analytic function of r 2 (0;1), (with the usual branch of r�2an), so is either
identically zero, or has �nitely many zeros in every compact subinterval of (0; 1].
Since each interval of E has zeros of f (or the point 1) as endpoints, while if a > 0;
E clearly omits a neighbourhood of 0, the claim about the �nitely many intervals
follows. (If a = 0, E is a lemniscate of at most n intervals). That each �j lies in
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such an interval that is also non-empty follows directly from the de�nition of E :We
may omit the discrete points from E and assume that E is a union of, say, k disjoint
intervals

E =
k[
j=1

Ij

where
Ij = [aj ; bj ] and each bj < aj+1:

The linear measure of E is

` =
kX
j=1

(bj � aj) :

De�ne a strictly increasing piecewise linear map h from E onto [1� `; 1] that shifts
each Ij to the right until we have a single interval with 1 as right endpoint. The
formula for h is

h (x) := x+ 1� `� aj +
j�1X
i=1

(bi � ai) =: x+Aj ; x 2 [aj ; bj ];

1 � j � k. (The empty sum is interpreted as 0). De�ne

E1 :=

8<:s 2 [0; 1] : san
������
nY
j=1

1 + h (�j)

s� h (�j)

������ � "n:
9=;

(Since each �j lies in E , each h (�j) de�ned). We claim that

(4.3) [1� `; 1] = E1;
so that

m1 (E1) = ` = m1 (E)
and then the proof of this step is complete. First note that as h shifts intervals of
E successively to the right,

h (x) � x � 0; x 2 E :
Moreover, h preserves distances between points within each Ij , and reduces the
distance between points in di¤erent intervals of E , so

jh (s)� h (t)j � js� tj ; s; t 2 E .
Next, given s 2 [1� `; 1], we can write s = h (r) for some r 2 E , and then

san
nY
j=1

����1 + h (�j)s� h (�j)

���� = h (r)
an

nY
j=1

���� 1 + h (�j)

h (r)� h (�j)

����
� ran

nY
j=1

����1 + �jr � �j

���� � "n;
and then [1� `; 1] � E1. Since ` is maximal, we must have (4.3). So in the sequel,
we assume that for some c � 0;

(4.4) E =

8<:r 2 [0; 1] : ran
������
nY
j=1

�
1 + �j
r � �j

������� � "n
9=; = [c; 1] :

Step 2: The basic inequality for E
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Suppose �rst that a > 0, so that in (4.4), c > 0. Let � be a unit measure with mass
1
n at each �j . Then we see with the notation

U� (z) :=

Z
log

1

jz � tjd� (t)

that

(4.5) [c; 1] = E = fr 2 [0; 1] : Qa (r) + U� (r)� U� (�1) � log "g :
Now let [c; d] = S

�
�a;c

�
, with the notation of the previous section. Then we have

Qa (r) + U
�a;c (r) = Fa;c in [c; d] � [c; 1]

and (4.5) gives

U�a;c(r) � U� (r) + [Fa;c � U� (�1)� log "] in [c; d] :
By the principle of domination [17, Thm. II.3.2, p.104], this last inequality holds
for all r 2 C. In particular, choosing r = �1, we obtain

U�a;c (�1) � Fa;c � log "
and hence, with the notation (2.9),

Ga (c) � � log ":
If � log " is in the range of Ga, we then obtain from (2.11),

Ga (c) � Ga (Ha ("))
and hence, as Ga is decreasing,

c � Ha (") :
Then

m1 (E) = 1� c � 1�Ha (")
) m1 (S) = 1�m1 (E) � Ha (") ;

by (4.2). So we have completed the proof of Theorem 2.3(a) for a > 0. Finally, for
a = 0, Qa � 0, and the above argument goes through even if c = 0. Note that if
a = 0, the equilibrium measure �a;c is de�ned even for c = 0, and is the classical
equilibrium measure for [0; 1].�

5. The Proof of Theorem 2.3(b)

The Proof of Theorem 2.3(b)
We shall use a crude discretisation procedure, of the type used in the theory of
orthogonal polynomials in the 1980�s. The �ner method of Totik [17], [23] would
yield sharper estimates, but those are not needed here. Fix " > 0 in the domain of
Ha, let � > 0, and choose "1 > " such that

(5.1) Ha ("1) < Ha (") +
�

4
:

Let

(5.2) c := Ha ("1), Ga (c) = � log "1
and let, as in Section 2,

S
�
�a;c

�
= [c; d] :
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We emphasise that c; d; � are �xed so do not change with n below. Let n � 1 and
choose

c = t0 < t1 < t2 < ::: < tn = d

such that if Jj := [tj ; tj+1), then

(5.3)
Z
Jj

d�a;c =
1

n
; 0 � j � n� 1:

We set
jJj j := tj+1 � tj

and assume that � < (d� c) =16. (This is permissible, as d; c approach the cor-
responding values for Ha (") as "1 ! "+). It is easily seen from the explicit for-
mula (2.7) for �0a;c that it is bounded above and below by positive constants in�
c+ �

8 ; d�
�
8

�
, and hence

(5.4)
C1
n
� jJj j �

C2
n
if Jj �

�
c+

�

8
; d� �

8

�
:

Here C1 and C2 are independent of j; n (but depend on �; a; c). Moreover, the
formula (2.7) implies that for some C3; C4 > 0

(5.5) n�C4 � jJj j � n�C3 ; 0 � j � n� 1:

Finally, we can deduce from (2.7) that since �0a;c does not change much in small
intervals,

(5.6) C5 � jJj j = jJj+1j � C6; 0 � j � n� 2:

Again, Ci; i = 3; 4; 5; 6 are independent of j; n. Now consider

1

n
log

������ran
nY
j=1

�
1 + tj
r � tj

�������� fQa (r) + U�a;c (r)� U�a;c (�1)g
=

n�1X
j=0

(Z
Jj

log

�
1 + tj
1 + t

�
�0a;c (t) dt+

Z
Jj

log

���� r � tr � tj

�����0a;c (t) dt
)

= :
n�1X
j=0

(�j;1 +�j;2) :

Here for t 2 Jj , uniformly in t and 0 � j � n� 1;

log

�
1 + tj
1 + t

�
= log

�
1 +

tj � t
1 + t

�
= O (jJj j) ;

so as �a;c is a unit measure, (5.5) gives

n�1X
j=0

�j;1 = O
�
n�C3

�
:

Note that this sum is independent of r. Next, let

(5.7) r 2
�
c+

�

4
; d� �

4

�
[
�
d+

�

4
; 1

�
:
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If r belongs to the �rst of these intervals, choose j0 = j0 (r; n) such that r 2 Jj0 . (If
it belongs to the second interval, omit the estimation for Jj0). Now if jj � j0j � 3,
we have for t 2 Jj ;���� r � tr � tj

� 1
���� = ���� t� tjr � tj

���� � jJj j
jr � tj j

� jJj j
jJj j+ jJj�1j

� C0 < 1;

where C0 is independent of r; j; n. (If r =2 [c; d], this holds for all j and n � n0 (�)).
We have used (5.6) here. Then����log ���� r � tr � tj

�������� � C jJj j
jr � tj ; t 2 Jj ;

with C independent of n; j; r andX
j:jj�j0j�3

j�j;2j

�
X

j:jj�j0j�3

Z
Jj

����log ���� r � tr � tj

���������0a;c (t) dt
� Cmax

j
jJj j

X
j:jj�j0j�3

Z
Jj

1

jr � tj�
0
a;c (t) dt

� Cn�C3 log n = o (1) :

Here we have used (5.5) and also the fact that we are restricting r by (5.7) and the
fact that �0a;c is bounded in

�
c+ �

8 ; d�
�
8

�
. Finally, for jj � j0j � 2, which occurs if

r belongs to the �rst interval in (5.7), we have

�j;2 =

Z
Jj

log

���� r � tr � tj

�����0a;c (t) dt
� C

Z
Jj

log jr � tj dt � �C log n
n
;

by (5.4). Putting all these estimates together gives for n � n0 (�) and uniformly
for r in the range (5.7),

1

n
log

������ran
nY
j=1

�
1 + tj
r � tj

�������
� Qa (r) + U

�a;c (r)� U�a;c (�1) + o (1)
� Fa;c � U�a;c (�1) + o (1) :

Here we have used (2.4), which (as we noted) holds throughout [c; 1]. Now using
our de�nition of Ga, and then (5.2), we continue this as

= �Ga (c) + o (1)
= log "1 + o (1) :

The o (1) term is uniform for r in the range (5.7). Since "1 > ", it follows that for
n � n0; and for r in the range (5.7),������ran

nY
j=1

�
1 + tj
r � tj

������� � "n:
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Thus

m1

8<:r 2 [0; 1] :
������ran

nY
j=1

�
1 + tj
r � tj

������� � "n
9=; � 1� c� 3

4
�

and hence

m1

8<:r 2 [0; 1] :
������ran

nY
j=1

�
1 + tj
r � tj

������� < "n
9=; � c+ 3

4
� < Ha (") + �;

by (5.1) and (5.2). We have shown that for

P (t) :=
nY
j=1

(t� tj) ;

the set in (1.1) has m1 measure < Ha (") + �. Since � > 0 may be made arbitrarily
small (independently of "), the proof of (b) is complete. �

6. The Proof of Theorems 2.4 - 2.6

The Proof of Theorem 2.5
Let 0 < � < 1 and �; � > 0. Let S be a monic polynomial, of degree ` say, such
that fS is analytic in jzj � � . We assume that f itself is analytic on jzj = � . (If
not, alter � a little). We assume n � ` and write [�n=n] = pn=qn and use the well
known error formula for Padé approximation,

(f � [�n=n]) (z) = 1

2�i

Z
jtj=�

(fSqn) (t)

(Sqn) (z)

�z
t

�(�+1)n+1 dt

t� z ; jzj < �:

This is a simple consequence of Cauchy�integral formula, see e.g. [1]. We deduce
that for r < �;

max
jzj=r

jf � [�n=n]j (z)
jzj�n � C���(n+`)r�(�+1��)`

� � r

�� r
�

�(�+1��)(n+`) maxjtj=� jSqnj (t)
minjzj=r jSqnj (z)

�
where C depends only on f; `; � ; �. De�ning

Pn+` (z) := (Sqn) (�z) ; r
0 := r=� ;

we have

max
jzj=r

jf � [�n=n]j (z)
jzj�n � C���(n+`)r�(�+1��)`

� � r

�
(r0)

(�+1��)(n+`) maxjtj=1 jPn+`j (t)
minjzj=r0 jPn+`j (z)

�
� C���(n+`)r�(�+1��)`

� � r �n+`

for r0 2 Sn, with
m1 (Sn) � H�+1�� (�) ;

by Theorem 2.3. If we �x " and choose � ; � such that

(6.1) ���� < ";

we obtain for n � n0 (which depends on C; � ; �; �; �; "; `),

(6.2) max
jzj=r

jf � [�n=n]j (z)
jzj�n � "n

such that
r0 2 Sn; r =2 [0; �] [ [� � �; � ] :



WEIGHTED MAXIMUM OVER MINIMUM MODULUS OF POLYNOMIALS, APPLIED TO RAY SEQUENCES OF PADÉ APPROXIMANTS21

The measure of r 2 [0; 1] for which (6.2) holds for n � n0 is then at least
�m1 (Sn)� 2� � �H�+1�� (�)� 2�:

By choosing � small enough, � close enough to 1, and � close enough to ", while
satisfying (6.1), we may ensure that the measure of such r exceeds H�+1�� (")� �,
for a given � > 0. �

Proof of Theorem 2.4
This follows from the case � = 0, " close to 1, of Theorem 2.5. �

Proof of Theorem 2.6
It is well known that for n � `, there exists a rational function p�n=q�n, with p�n; q�n
of degree � n, such that

k f � p
�
n

q�n
kL1(jzj=1)= �n (f) :

Write [n=n] = pn=qn and let S be the polynomial of degree ` such that fS is analytic
in fz : jzj � 1g. Then the contour integral error formula gives for n � ` and jzj < 1;

(fqn � pn) (z)
�
Sq�n�`

�
(z)

z2n+1
=

1

2�i

Z
jtj=1

(fqnSq
�
n�`) (t)

t2n+1 (t� z) dt

=
1

2�i

Z
jtj=1

(fq�n�` � p�n�`) (t)Sqn) (t)
t2n+1 (t� z) dt:

From this we derive the estimate

max
jzj=r

jf � [n=n]j (z) � C

1� r �n�` (f)
(
r2n

maxjtj=1
��q�n�`Sqn�� (t)

minjzj=r
��q�n�`Sqn�� (z)

)
;

where C is independent of n; r. Now we apply Theorem 2.3 with a = 1 (for q�n�`Sqn
has degree � 2n) to deduce the result, as above.�
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