WHICH WEIGHTS ON \mathbb{R} ADMIT L_{p} JACKSON THEOREMS?

D.S. LUBINSKY

Abstract. Let $1 \leq p \leq \infty$ and $W: \mathbb{R} \rightarrow(0, \infty)$ be continuous. Does W admit a Jackson Theorem in L_{p} ? That is, does there exist a sequence $\left\{\eta_{n}\right\}_{n=1}^{\infty}$ of positive numbers with limit 0 such that

$$
\inf _{\operatorname{deg}(P) \leq n}\|(f-P) W\|_{L_{p}(\mathbb{R})} \leq \eta_{n}\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}
$$

for all absolutely continuous f with $\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}$ finite? We show that such a theorem is true iff

$$
\lim _{x \rightarrow \infty}\left\|W^{-1}\right\|_{L_{q}[0, x]}\|W\|_{L_{p}[x, \infty)}=0
$$

where q is the conjugate parameter of p. In an earlier paper, we considered weights admitting a Jackson theorem for all $1 \leq p \leq \infty$.

Keywords: Weighted approximation, polynomial approximation, JacksonBernstein theorems.

Research supported by NSF grant DMS-0400446 and Israel-US BSF grant 2004353

1. Introduction

Let $W: \mathbb{R} \rightarrow(0, \infty)$. Bernstein's approximation problem addresses the following question: when are the polynomials dense in the weighted space generated by W ? That is, when is it true that for every continuous $f: \mathbb{R} \rightarrow$ \mathbb{R} with

$$
\lim _{|x| \rightarrow \infty}(f W)(x)=0
$$

there exist a sequence of polynomials $\left\{P_{n}\right\}_{n=1}^{\infty}$ with

$$
\lim _{n \rightarrow \infty}\left\|\left(f-P_{n}\right) W\right\|_{L_{\infty}(\mathbb{R})}=0 \text { ? }
$$

This problem was resolved independently by Pollard, Mergelyan and Achieser in the 1950's [6]. If $W \leq 1$, is even, and $\ln 1 / W\left(e^{x}\right)$ is even and convex, a necessary and sufficient condition for density of the polynomials is $[6, \mathrm{p}$. 170]

$$
\int_{0}^{\infty} \frac{\ln 1 / W(x)}{1+x^{2}} d x=\infty
$$

In particular, for $W_{\alpha}(x)=\exp \left(-|x|^{\alpha}\right)$, the polynomials are dense iff $\alpha \geq 1$.
Date: 16 January 2006.

In the 1950's the search began for a quantitative form of Bernstein's Theorem. One obvious question is whether there are weighted analogues of classical theorems of Jackson and Bernstein, namely

$$
\inf _{\operatorname{deg}(P) \leq n}\|f-P\|_{L_{\infty}[-1,1]} \leq \frac{C}{n}\left\|f^{\prime}\right\|_{L_{\infty}[-1,1]}
$$

with C independent of f and n, and the inf being over (algebraic) polynomials of degree at most n. For the weights W_{α}, where $\alpha>1$, it is known that if $1 \leq p \leq \infty$,

$$
\begin{equation*}
\inf _{\operatorname{deg}(P) \leq n}\left\|(f-P) W_{\alpha}\right\|_{L_{p}(\mathbb{R})} \leq C n^{-1+\frac{1}{\alpha}}\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})} \tag{1}
\end{equation*}
$$

with C independent of f and n [5, p. 185, (11.3.5)] [11, p. 81, (4.1.5a)]. This inequality is also often formulated in Jackson-Favard form,

More general Jackson type theorems involving weighted moduli of continuity for various classes of weights were proved in [4], [5], [11].

In a recent paper [10], the author showed that the weight W_{1} does not admit a Jackson estimate like (1), even though the polynomials are dense in the weighted space generated by W_{1}. The author also characterized weights that admit Jackson theorems in L_{p} for all $1 \leq p \leq \infty$. The main result there was:

Theorem 1.1

Let $W: \mathbb{R} \rightarrow(0, \infty)$ be continuous. The following are equivalent:
(a) There exists a sequence $\left\{\eta_{n}\right\}_{n=1}^{\infty}$ of positive numbers with limit 0 and with the following property. For each $1 \leq p \leq \infty$, and for all absolutely continuous f with $\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}$ finite, we have

$$
\begin{equation*}
\inf _{\operatorname{deg}(P) \leq n}\|(f-P) W\|_{L_{p}(\mathbb{R})} \leq \eta_{n}\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}, n \geq 1 \tag{2}
\end{equation*}
$$

(b) Both

$$
\begin{equation*}
\lim _{x \rightarrow \infty} W(x) \int_{0}^{x} W^{-1}=0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow \infty} W(x)^{-1} \int_{x}^{\infty} W=0 \tag{4}
\end{equation*}
$$

with analogous limits as $x \rightarrow-\infty$.
As a corollary it was shown that if $W=e^{-Q}$, where Q^{\prime} exists for large $|x|$, then there is a Jackson theorem in L_{p} for all $1 \leq p \leq \infty$, when $\pm Q^{\prime}(x) \rightarrow \infty$ as $x \rightarrow \pm \infty$ and there is no Jackson theorem if $Q^{\prime}(x)$ is bounded for large $|x|$.

In this paper, we focus on just a single L_{p} space and ask which weights admit Jackson theorems in that space. We prove:

Theorem 1.2

Let $W: \mathbb{R} \rightarrow(0, \infty)$ be continuous. Let $1 \leq p \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=1$. The following are equivalent:
(a) There exists a sequence $\left\{\eta_{n}\right\}_{n=1}^{\infty}$ of positive numbers with limit 0 such that for all absolutely continuous f with $\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}$ finite, we have

$$
\begin{equation*}
\inf _{\operatorname{deg}(P) \leq n}\|(f-P) W\|_{L_{p}(\mathbb{R})} \leq \eta_{n}\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}, n \geq 1 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\|W\|_{L_{p}[x, \infty]}\left\|W^{-1}\right\|_{L_{q}[0, x]}=0 \tag{b}
\end{equation*}
$$

with an analogous limit as $x \rightarrow-\infty$.

Remarks

(a) Thus there is a Jackson type theorem in a specific L_{p} space iff (6) holds. In fact, we shall show in Section 3 that (6) is necessary and sufficient for the existence of a decreasing function $\eta:(0, \infty) \rightarrow(0, \infty)$ with limit 0 at ∞, such that

$$
\left\|f^{\prime} W\right\|_{L_{p}[a, \infty)} \leq \eta(a)\|f W\|_{L_{p}[0, \infty)}
$$

for all absolutely continuous f with $f(0)=0$. This is a "shifting" weighted Hardy inequality.
(b) Theorem 1.2 actually implies Theorem 1.1. For the condition (6) for $p=1$ is equivalent to (4) and for $p=\infty$ is equivalent to (3). Interpolation then gives (2) for $1<p<\infty$. Of course, Theorem 1.1 does not imply Theorem 1.2.
(b) It was shown in [10] that there is a weight W admitting an L_{1} Jackson theorem, but not an L_{∞} one (and conversely). Here we show:

Theorem 1.3

Let $1 \leq p, r \leq \infty$ with $p \neq r$. There exists $W: \mathbb{R} \rightarrow(0, \infty)$ such that

$$
\frac{1}{1+x^{2}} \leq W(x) / \exp \left(-x^{2}\right) \leq 1+x^{2}, \quad x \in \mathbb{R}
$$

and W admits an L_{r} Jackson theorem, but not an L_{p} Jackson theorem. That is, there exist $\left\{\eta_{n}\right\}_{n=1}^{\infty}$ with limit 0 at ∞ satisfying (5) in the L_{r} norm, but there does not exist such a sequence satisfying (5) in the L_{p} norm.

Theorem 1.3 shows that not only rate of decay, but also regularity, of W is necessary for a Jackson theorem. After all, the Hermite weight $\exp \left(-x^{2}\right)$ admits a Jackson theorem in L_{p} for all $1 \leq p \leq \infty$, but W is close to W_{2}, yet admits a Jackson theorem in L_{r} but not L_{p}.

This paper is organised as follows: we prove restricted range inequalities in the next section, and an estimate for the "tails" $\|f W\|_{L_{p}(|x| \geq \lambda)}$ in Section 3. In Section 4, we prove Theorem 1.2. In Section 5, we prove Theorem 1.3.

Throughout C, C_{1}, C_{2}, \ldots denote constants independent of n and x and polynomials P of degree $\leq n$. The same symbol may denote different constants in different occurrences. If $\left(c_{n}\right)$ and $\left(d_{n}\right)$ are sequences of real numbers, we write

$$
c_{n} \sim d_{n}
$$

if there exist $C_{1}, C_{2}>0$ such that

$$
C_{1} \leq c_{n} / d_{n} \leq C_{2}, n \geq 1 .
$$

Similar notation is used for functions. The linear measure of a set $B \subset \mathbb{R}$ is denoted by meas (B). The set of all polynomials of degree $\leq n$ is denoted P_{n}.

2. Restricted Range inequalities

Restricted range (or infinite-finite range) inequalities are a crucial ingredient in weighted approximation on the real line [8], [11], [12], [14]. However, none of the standard ones cover our class of weights. The methods used to prove the form we need, are similar to, but not the same, as in [10]. In this section, we fix $1 \leq p \leq \infty$, and let

$$
\begin{equation*}
\widetilde{W}(x)=\left\|W^{-1}\right\|_{L_{q}[0, x]}^{-1}, x \in(0, \infty) \tag{7}
\end{equation*}
$$

where $\frac{1}{q}+\frac{1}{p}=1$.

Theorem 2.1

Assume that for $x \in[0, \infty)$,

$$
\begin{equation*}
\|W\|_{L_{p}[x, \infty)}\left\|W^{-1}\right\|_{L_{q}[0, x]} \leq \psi(x) \tag{8}
\end{equation*}
$$

where ψ is decreasing in $[0, \infty)$ and

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \psi(x)=0 \tag{9}
\end{equation*}
$$

with a similar relation in $(-\infty, 0]$. There exists $q_{n}>0, n \geq 1$, such that

$$
\begin{equation*}
q_{n}=o(n), n \rightarrow \infty, \tag{10}
\end{equation*}
$$

and for $n \geq 1$, and all polynomials P of degree $\leq n$,

$$
\begin{equation*}
\|P W\|_{L_{p}\left(|x| \geq q_{n}\right)} \leq C 4^{-n}\|P W\|_{L_{p}(\mathbb{R})} \tag{11}
\end{equation*}
$$

Here C is independent of n and P.
In the rest of this section, ψ is the function specified in Theorem 2.1. For $n \geq 1$, we choose $A_{n}>0$ such that

$$
\left\|x^{n} W(x)\right\|_{L_{p}\left[A_{n}, 2 A_{n}\right]}=\max _{u \geq 1}\left\|x^{n} W(x)\right\|_{L_{p}[u, 2 u]}=: \Lambda_{n} .
$$

(We show below that A_{n} exists).

Lemma 2.2

(i) For $n \geq 0$,

$$
\left\|x^{n} W(x)\right\|_{L_{p}[1, \infty)}
$$

is finite.
(ii) For $n \geq 1, A_{n}$ exists, is finite and positive, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} A_{n}=\infty \tag{12}
\end{equation*}
$$

(iii) For $n \geq 1$,

$$
\begin{equation*}
\left(2 A_{n+2}\right)^{-2} \Lambda_{n+2} \leq\left\|x^{n} W(x)\right\|_{L_{p}[1, \infty)} \leq\left(2 A_{n+2}^{-2 p}+2^{2 p+1}\right)^{1 / p} \Lambda_{n+2} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
A_{n}=o(n), n \rightarrow \infty \tag{iv}
\end{equation*}
$$

(v) If $\mathcal{B} \subset\left[0,2 A_{n+2}\right]$ has linear Lebesgue measure at least 1 , then

$$
\|W\|_{L_{p}(\mathcal{B})} \geq \psi(1)^{-1}\left(2 A_{2 n+2}\right)^{-(2 n+2)} \Lambda_{2 n+2}
$$

Proof

Observe that (8) implies

$$
\begin{equation*}
\|W\|_{L_{p}[x, \infty)} \leq \psi(x) \widetilde{W}(x), x>0 \tag{15}
\end{equation*}
$$

and by Hölder's inequality, for $x \geq 1$,

$$
1 \leq\|W\|_{L_{p}[x-1, x]}\left\|W^{-1}\right\|_{L_{q}[x-1, x]} \leq\|W\|_{L_{p}[x-1, x]}\left\|W^{-1}\right\|_{\left.L_{q}[0, x]\right]}
$$

so that

$$
\begin{equation*}
\widetilde{W}(x) \leq\|W\|_{L_{p}[x-1, x]}, x \geq 1 \tag{16}
\end{equation*}
$$

(i) If $p=\infty$, this was established in Lemma 2.3(a) in [10]. Suppose now $p<\infty$. Let $0 \leq a<b<\infty$. We see using (15) and (16) that

$$
\begin{aligned}
& \int_{a}^{b} x^{n p}\left(\int_{x}^{\infty} W^{p}(t) d t\right) d x \leq \int_{a}^{b} x^{n p} \psi^{p}(x) \widetilde{W}^{p}(x) d x \\
\Rightarrow & \int_{a}^{\infty} W^{p}(t)\left[\int_{a}^{\min \{t, b\}} x^{n p} d x\right] d t \leq \psi^{p}(a) \int_{a}^{b} x^{n p}\left[\int_{x-1}^{x} W^{p}(t) d t\right] d x \\
\Rightarrow & \int_{a}^{b} W^{p}(t) \frac{t^{n p+1}-a^{n p+1}}{n p+1} d t \leq \psi^{p}(a) \int_{a-1}^{b} W^{p}(t)\left[\int_{\max \{t, a\}}^{\min \{t+1, b\}} x^{n p} d x\right] d t \\
\leq & \psi^{p}(a) \int_{a-1}^{b}(t+1)^{n p} W^{p}(t) d t
\end{aligned}
$$

If $t \geq a 2^{\frac{1}{n p+1}}$, then $t^{n p+1} \geq 2 a^{n p+1}$, and if $a \geq 2$, in the integral on the right-hand side,

$$
(t+1)^{n p}=t^{n p}\left(1+\frac{1}{t}\right)^{n p} \leq t^{n p}\left(1+\frac{2}{a}\right)^{n p} \leq t^{n p} e^{\frac{2 n p}{a}}
$$

Thus

$$
\begin{equation*}
\int_{a 2^{\frac{1}{n p+1}}}^{b} t^{n p+1} W^{p}(t) d t \leq 2 \psi^{p}(a)(n p+1) e^{\frac{2 n p}{a}} \int_{a-1}^{b} t^{n p} W^{p}(t) d t . \tag{17}
\end{equation*}
$$

As $a \geq 2, t^{n p} \leq t^{n p+1}$ in the integral on the right, so

$$
\begin{aligned}
& \int_{a 2^{\frac{1}{n p+1}}}^{b} t^{n p+1} W^{p}(t) d t\left[1-2 \psi^{p}(a)(n p+1) e^{\frac{2 n p}{a}}\right] \\
\leq & 2 \psi^{p}(a)(n p+1) e^{\frac{2 n p}{a}} \int_{a-1}^{a 2^{\frac{1}{n p+1}}} x^{n p} W^{p}(x) d x .
\end{aligned}
$$

If a is so large that $a \geq 2 n p$ and

$$
\begin{equation*}
2 \psi^{p}(a)(n p+1) e \leq \frac{1}{2} \tag{18}
\end{equation*}
$$

this gives

$$
\int_{a 2^{\frac{1}{n p+1}}}^{b} t^{n p+1} W^{p}(t) d t \leq \int_{a-1}^{a 2^{\frac{1}{n p+1}}} x^{n p} W^{p}(x) d x
$$

Letting $b \rightarrow \infty$ gives the finiteness of the norm $\left\|x^{n} W(x)\right\|_{L_{p}[1, \infty)}$.
(ii) The existence of $A_{n} \in(0, \infty)$ follows as the norm in (i) is finite, and $u \rightarrow\left\|x^{n} W(x)\right\|_{L_{p}[u, 2 u]}$ is a continuous function of u, with limit 0 as $u \rightarrow$ $0+$ and $u \rightarrow \infty$. (In the case $p=\infty$, this follows from the finiteness of $\left.\left\|x^{n+1} W(x)\right\|_{L_{p}[1, \infty)}\right)$. Next, for fixed $u>0$,

$$
\Lambda_{n} \geq\left\|x^{n} W(x)\right\|_{L_{p}[u, 2 u]} \geq u^{n}\|W\|_{L_{p}[u, 2 u]}
$$

so

$$
\liminf _{n \rightarrow \infty} \Lambda_{n}^{1 / n} \geq u
$$

and hence

$$
\lim _{n \rightarrow \infty} \Lambda_{n}^{1 / n}=\infty
$$

If a subsequence of $\left\{A_{n}\right\}$ remained bounded, we see that the corresponding subsequence of $\left\{\Lambda_{n}\right\}$ cannot admit the growth just proven.
(iii) If $p=\infty$, the right-hand inequality in (13) is immediate. Suppose now that $p<\infty$. Choose j_{0} such that

$$
2^{j_{0}} \leq A_{n+2} \leq 2^{j_{0}+1} .
$$

We see that

$$
\begin{aligned}
\int_{1}^{A_{n+2}} x^{n p} W^{p}(x) d x & \leq \sum_{j=0}^{j_{0}} \int_{A_{n+2} / 2^{j+1}}^{A_{n+2} / 2^{j}} x^{n p}\left(\frac{x}{A_{n+2} / 2^{j+1}}\right)^{2 p} W^{p}(x) d x \\
& \leq A_{n+2}^{-2 p} \sum_{j=0}^{j_{0}} 2^{(j+1) 2 p} \Lambda_{n+2}^{p} \\
& \leq A_{n+2}^{-2 p} 2^{\left(j_{0}+1\right) 2 p+1} \Lambda_{n+2}^{p} \leq 2^{2 p+1} \Lambda_{n+2}^{p} .
\end{aligned}
$$

Also

$$
\begin{align*}
\int_{A_{n+2}}^{\infty} x^{n p} W^{p}(x) d x & \leq \sum_{j=0}^{\infty} \int_{A_{n+2} 2^{j}}^{A_{n+2} 2^{j+1}} x^{n p}\left(\frac{x}{A_{n+2} 2^{j}}\right)^{2 p} W^{p}(x) d x \\
& \leq A_{n+2}^{-2 p}\left(\sum_{j=0}^{\infty} 2^{-2 j p}\right) \Lambda_{n+2}^{p} \leq 2 A_{n+2}^{-2 p} \Lambda_{n+2}^{p} \tag{19}
\end{align*}
$$

for large n. Then the upper bound in (13) follows. The lower bound follows from

$$
\begin{aligned}
\left\|x^{n} W(x)\right\|_{L_{p}[1, \infty)} & \geq\left\|x^{n} W(x)\right\|_{L_{p}\left[A_{n+2}, 2 A_{n+2}\right]} \\
& \geq\left(2 A_{n+2}\right)^{-2}\left\|x^{n+2} W(x)\right\|_{L_{p}\left[A_{n+2}, 2 A_{n+2}\right]} \\
& =\left(2 A_{n+2}\right)^{-2} \Lambda_{n+2}
\end{aligned}
$$

(iv) If $p=\infty$, this follows from (19) of Lemma 2.3(a) in [10]. (There $\ell(n)$ plays a role similar to A_{n}). Suppose now $p<\infty$. If we choose $a=a_{n}:=$ $A_{n+2} 2^{-\frac{1}{n p+1}}$, and $b=2 A_{n+2}$, (17) gives for large enough n,

$$
\int_{A_{n+2}}^{2 A_{n+2}} t^{n p+1} W^{p}(t) d t \leq 2 \psi^{p}\left(a_{n}\right)(n p+1) e^{\frac{2 n p}{a_{n}}} \int_{a_{n}-1}^{b} t^{n p} W^{p}(t) d t .
$$

Here by (iii),

$$
\begin{aligned}
\int_{a_{n}-1}^{b} t^{n p} W^{p}(t) d t & \leq\left(a_{n}-1\right)^{-2 p} \int_{a_{n}-1}^{b} t^{(n+2) p} W^{p}(t) d t \\
& \leq C A_{n+2}^{-2 p} \Lambda_{n+2}^{p}
\end{aligned}
$$

with C independent of n. Combining the above two inequalities gives

$$
\begin{aligned}
\Lambda_{n+2}^{p} & =\int_{A_{n+2}}^{2 A_{n+2}} t^{(n+2) p} W^{p}(t) d t \\
& \leq\left(2 A_{n+2}\right)^{2 p-1} \int_{A_{n+2}}^{2 A_{n+2}} t^{n p+1} W^{p}(t) d t \\
& \leq\left(2 A_{n+2}\right)^{2 p-1} 2 \psi^{p}\left(a_{n}\right)(n p+1) e^{\frac{2 n p}{a_{n}}} C A_{n+2}^{-2 p} \Lambda_{n+2}^{p} \\
& \leq C_{1} \frac{n \psi^{p}\left(a_{n}\right)}{a_{n}} e^{\frac{2 n p}{a_{n}}} \Lambda_{n+2}^{p} .
\end{aligned}
$$

Here C_{1} is independent of n. If we write $a_{n}=\delta_{n} n$, we can recast this as

$$
\frac{1}{\psi^{p}\left(a_{n}\right)} \leq C_{1} \frac{1}{\delta_{n}} e^{\frac{2 p}{\delta_{n}}} .
$$

Since ψ has limit 0 at ∞, and $a_{n}=A_{n+2} 2^{-\frac{1}{n_{p+1}}} \rightarrow \infty, n \rightarrow \infty$, it follows that necessarily $\delta_{n}=o(1)$ and so $a_{n}=o(n)$. That is

$$
A_{n+2}=o(n) .
$$

(v) Exactly as above, Hölder's inequality gives

$$
1 \leq\|W\|_{L_{p}(\mathcal{B})}\left\|W^{-1}\right\|_{L_{q}(\mathcal{B})} \leq\|W\|_{L_{p}(\mathcal{B})}\left\|W^{-1}\right\|_{L_{q}\left[0, A_{2 n+2}\right]} .
$$

Using (15), we can continue this as

$$
\begin{aligned}
\|W\|_{L_{p}(\mathcal{B})} & \geq \widetilde{W}\left(A_{2 n+2}\right) \\
& \geq \psi\left(A_{2 n+2}\right)^{-1}\|W\|_{L_{p}\left[A_{2 n+2}, \infty\right)} \\
& \geq \psi(1)^{-1}\left(2 A_{2 n+2}\right)^{-(2 n+2)}\left\|x^{2 n+2} W(x)\right\|_{L_{p}\left[A_{2 n+2}, 2 A_{2 n+2}\right]} \\
& =\psi(1)^{-1}\left(2 A_{2 n+2}\right)^{-(2 n+2)} \Lambda_{2 n+2}
\end{aligned}
$$

Lemma 2.3

There exists $C_{2}>0$ such that for $n \geq 1$ and all polynomials P of degree $\leq n$,

$$
\|P W\|_{L_{p}\left[1600 A_{2 n+2}, \infty\right)} \leq C_{2} 4^{-n}\|P W\|_{L_{p}[0, \infty)} .
$$

Proof

Our approach is similar to that in [9]. Let P be a polynomial of degree $k \leq n$, say

$$
P(z)=c \prod_{j=1}^{k}\left(z-x_{j}\right)
$$

We assume $\rho>8, c \neq 0$, and split the zeros into "small" and "large" zeros: we assume that

$$
\begin{aligned}
& \left|x_{j}\right| \leq \rho, \quad j \leq i ; \\
& \left|x_{j}\right|>\rho, \quad j>i .
\end{aligned}
$$

For $|u| \leq \frac{1}{2} \rho, x \geq \rho$ and $i<j \leq k$,

$$
\left|\frac{x-x_{j}}{u-x_{j}}\right| \leq \frac{1+x /\left|x_{j}\right|}{1-|u| /\left|x_{j}\right|} \leq 2\left(1+\frac{x}{\rho}\right) \leq 4 \frac{x}{\rho} .
$$

Then for such x, u

$$
\left|\frac{P(x)}{P(u)}\right| \leq\left(\prod_{j=1}^{i} \frac{2 x}{\left|u-x_{j}\right|}\right)\left(4 \frac{x}{\rho}\right)^{k-i} .
$$

We now apply a famous lemma of Cartan:

$$
\left|\prod_{j=1}^{i}\left(u-x_{j}\right)\right| \geq \varepsilon^{i}
$$

for u outside a set of linear measure at most $4 e \varepsilon[1, \mathrm{p} .175]$, [2, p. 350]. Choosing $\varepsilon=\frac{\rho}{100}$, we obtain

$$
\left|\frac{P(x)}{P(u)}\right| \leq\left(\frac{200 x}{\rho}\right)^{k} \leq\left(\frac{200 x}{\rho}\right)^{n}
$$

for $x \geq \rho, u \in\left[0, \frac{1}{2} \rho\right] \backslash \mathcal{S}$, where

$$
\operatorname{meas}(\mathcal{S}) \leq \frac{4 e}{100} \rho<\frac{1}{8} \rho
$$

Recall that meas denotes linear Lebesgue measure. Then for such u,

$$
\begin{equation*}
\|P W\|_{L_{p}[400 \rho, \infty)} \leq\left(\frac{200}{\rho}\right)^{n}|P(u)|\left\|x^{n} W(x)\right\|_{L_{p}[400 \rho, \infty)} \tag{20}
\end{equation*}
$$

Moreover, $\left[0, \frac{1}{4} \rho\right] \backslash \mathcal{S}$ has measure at least $\frac{1}{8} \rho \geq 1$, so we may find $\mathcal{B} \subset$ $\left[0, \frac{1}{4} \rho\right] \backslash \mathcal{S}$ with linear measure at least 1 and hence

$$
\|P W\|_{L_{p}[400 \rho, \infty)}\|W\|_{L_{p}(\mathcal{B})} \leq\left(\frac{200}{\rho}\right)^{n}\|P W\|_{L_{p}(\mathcal{B})}\left\|x^{n} W(x)\right\|_{L_{p}[400 \rho, \infty)}
$$

Now we choose $\rho=4 A_{2 n+2}$, at least for n so large that $4 A_{2 n+2}>8$. Then $\left[0, \frac{1}{4} \rho\right] \backslash \mathcal{S} \subset\left[0, A_{2 n+2}\right]$. By the previous lemma,

$$
\|W\|_{L_{p}(\mathcal{B})} \geq \psi(1)^{-1}\left(2 A_{2 n+2}\right)^{-(2 n+2)} \Lambda_{2 n+2}
$$

Combining the above inequalities, and (v) of the above lemma, gives if P is not identically 0 ,

$$
\begin{aligned}
& \|P W\|_{L_{p}[400 \rho, \infty)} /\|P W\|_{L_{p}[0, \infty)} \\
\leq & \left(\frac{200}{\rho}\right)^{n}\left\|x^{n} W(x)\right\|_{L_{p}[400 \rho, \infty)} /\left[\psi(1)^{-1}\left(2 A_{2 n+2}\right)^{-(2 n+2)} \Lambda_{2 n+2}\right] \\
\leq & \left(\frac{1}{2 \rho^{2}}\right)^{n}\left\|x^{2 n} W(x)\right\|_{L_{p}[400 \rho, \infty)} /\left[\psi(1)^{-1}\left(2 A_{2 n+2}\right)^{-(2 n+2)} \Lambda_{2 n+2}\right] \\
\leq & C 8^{-n} A_{2 n+2}^{2},
\end{aligned}
$$

by (iii) of the previous lemma. Here C is independent of n and P, and $A_{2 n+2}=o(n)$, so the result follows. For the remaining finitely many n, for which $4 A_{2 n+2}<8$, a simple compactness argument gives the result, if C_{2} is large enough.

Proof of Theorem 2.1

This follows from Lemma 2.3, its analogue in $(-\infty, 0]$, and the fact that $A_{n}=o(n)$.

We also record:

Lemma 2.4

Let $W: \mathbb{R} \rightarrow(0, \infty)$ be continuous, $1 \leq p \leq \infty$, and assume that for each $n \geq 0$,

$$
\begin{equation*}
\left\|x^{n} W(x)\right\|_{L_{p}(\mathbb{R})}<\infty \tag{21}
\end{equation*}
$$

Then there exists an increasing sequence of positive numbers $\left\{\xi_{n}\right\}_{n=1}^{\infty}$ such that for $n \geq 1$ and all polynomials P of degree $\leq n$,

$$
\begin{equation*}
\|P W\|_{L_{p}\left(|x| \geq \xi_{n}\right)} \leq C_{1} 2^{-n}\|P W\|_{L_{p}(-1,1)}, \tag{22}
\end{equation*}
$$

where C_{1} is independent of n, p, P.

Proof

See Theorem 2.2 in [10].

3. Tail Estimates

We prove a "shifting" weighted Hardy inequality, involving the function

$$
\phi(x)=\|W\|_{L_{p}[x, \infty)}\left\|W^{-1}\right\|_{L_{q}[0, x]}, x \geq 0
$$

Theorem 3.1

Let $W: \mathbb{R} \rightarrow(0, \infty)$ be continuous. Let $1 \leq p \leq \infty$ and $\frac{1}{q}+\frac{1}{p}=1$. The following are equivalent:
(I) There exists a decreasing function $\eta:(0, \infty) \rightarrow(0, \infty)$ with limit 0 at ∞ such that

$$
\begin{equation*}
\|f W\|_{L_{p}(|x| \geq a)} \leq \eta(a)\left\|f^{\prime} W\right\|_{L_{p}[0, \infty)}, \tag{23}
\end{equation*}
$$

for all $a>0$ and every absolutely continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(0)=0$.

$$
\begin{equation*}
\lim _{a \rightarrow \infty} \phi(a)=\lim _{a \rightarrow \infty}\|W\|_{L_{p}[a, \infty)}\left\|W^{-1}\right\|_{L_{q}[0, a]}=0 \tag{II}
\end{equation*}
$$

with a similar limit as $a \rightarrow-\infty$.

Lemma 3.2

Let $a>0$. Then

$$
\|f W\|_{L_{p}[a, \infty)} \leq p^{\frac{1}{p}} q^{\frac{1}{q}}\left(\sup _{x \geq a} \phi(x)\right)\left\|f^{\prime} W\right\|_{L_{p}[a, \infty)}
$$

for every absolutely continuous function $f:[a, \infty) \rightarrow \mathbb{R}$ with $f(a)=0$. Here if $p=\infty$ or $p=1$, we interpret $p^{\frac{1}{p}} q^{\frac{1}{q}}$ as 1 .

Proof

Let

$$
B=\sup _{x \in(a, \infty)}\|W\|_{L_{p}[x, \infty)}\left\|W^{-1}\right\|_{L_{q}[a, x]}
$$

The classical weighted Hardy inequality asserts that for every f as above,

$$
\|f W\|_{L_{p}[a, \infty)} \leq p^{\frac{1}{p}} q^{\frac{1}{q}} B\left\|f^{\prime} W\right\|_{L_{p}[a, \infty)} .
$$

(See [13, p. 13, Thm. 1.14] for the proof when $1<p<\infty$. Take $q=p$ there and $w=v=W^{p}$. For $p=1$ or $p=\infty$, see [13, Lemma 5.4, p. 49]. An alternative reference is [7].) Since

$$
B \leq \sup _{x \in(a, \infty)}\|W\|_{L_{p}[x, \infty)}\left\|W^{-1}\right\|_{L_{q}[0, x]}=\sup _{x \geq a} \phi(x),
$$

the result follows.

Lemma 3.3

Let $a>0$. Then

$$
\|f W\|_{L_{p}[a, \infty)} \leq\left(1+p^{\frac{1}{p}} q^{\frac{1}{q}}\right)\left(\sup _{x \geq a} \phi(x)\right)\left\|f^{\prime} W\right\|_{L_{p}[0, \infty)}
$$

for every absolutely continuous function $f:[0, \infty) \rightarrow \mathbb{R}$ with $f(0)=0$.

Proof

Write for $x \geq a$,

$$
f(x)=\int_{0}^{a} f^{\prime}+\int_{a}^{x} f^{\prime}=: C+f_{1}(x)
$$

Then

$$
\begin{equation*}
\|f W\|_{L_{p}[a, \infty)} \leq\|C W\|_{L_{p}[a, \infty)}+\left\|f_{1} W\right\|_{L_{p}[a, \infty)} \tag{25}
\end{equation*}
$$

Here by Hölder's inequality, applied to C,

$$
\begin{aligned}
\|C W\|_{L_{p}[a, \infty)} & \leq\left\|f^{\prime} W\right\|_{L_{p}[0, a)}\left\|W^{-1}\right\|_{L_{q}[0, a]}\|W\|_{L_{p}[a, \infty)} \\
& =\left\|f^{\prime} W\right\|_{L_{p}[0, a)} \phi(a) .
\end{aligned}
$$

Moreover by Lemma 3.2, as $f_{1}(a)=0$,

$$
\left\|f_{1} W\right\|_{L_{p}[a, \infty)} \leq p^{\frac{1}{p}} q^{\frac{1}{q}}\left(\sup _{x \geq a} \phi(x)\right)\left\|f^{\prime} W\right\|_{L_{p}[a, \infty)} .
$$

Combining the above three inequalities gives the result.

Proof of Theorem 3.1

Sufficiency of (24) and its analogous limit at $-\infty$
This follows directly from Lemma 3.3. We can choose

$$
\eta_{+}(a)=\left(1+p^{1 / p} q^{1 / q}\right) \sup _{x \geq a} \phi(x), a>0
$$

with a similar function η_{-}to handle $(-\infty, 0)$, and then set $\eta=\max \left\{\eta_{-}, \eta_{+}\right\}$. Necessity of (24) and its analogous limit at $-\infty$
For $p=1$ and $p=\infty$, the necessity was established in the proof of Theorem 3.1 in [10]. Suppose now $1<p<\infty$. Let $a>0$ and

$$
f(x)=\int_{0}^{\min \{x, a\}} W^{-q}, x \geq 0
$$

Then

$$
\left\|f^{\prime} W\right\|_{L_{p}[0, \infty)}=\left(\int_{0}^{a} W^{(1-q) p}\right)^{\frac{1}{p}}=\left\|W^{-1}\right\|_{L_{q}[0, a]}^{\frac{1}{p-1}}
$$

so

$$
\begin{aligned}
& \left\|f^{\prime} W\right\|_{L_{p}[0, \infty)} \phi(a) \\
= & \left\|f^{\prime} W\right\|_{L_{p}[0, \infty)}\left\|W^{-1}\right\|_{L_{q}[0, a]}\|W\|_{L_{p}[a, \infty)} \\
= & \left\|W^{-1}\right\|_{L_{q}[0, a]}^{\left(\frac{1}{p-1}+1\right)}\|W\|_{L_{p}[a, \infty)} \\
= & \left(\int_{0}^{a} W^{-q}\right)\|W\|_{L_{p}[a, \infty)}=\|f W\|_{L_{p}[a, \infty)} .
\end{aligned}
$$

Our hypothesis gives

$$
\eta(a) \geq\|f W\|_{L_{p}[a, \infty)} /\left\|f^{\prime} W\right\|_{L_{p}[0, \infty)}=\phi(a) .
$$

So ϕ has limit 0 at ∞. Similarly, the analogous limit follows at $-\infty$.

4. Weighted Approximation

We begin with two lemmas, which are similar to corresponding lemmas in [10]. We shall use notation specific to this section: we use integers $n \geq 4$ and $1 \leq m \leq \frac{n}{4}$, as well as parameters

$$
1<\lambda \leq \frac{1}{2} q_{m},
$$

where $\left\{q_{n}\right\}_{n=1}^{\infty}$ are as in Theorem 2.1. We let $\rho(m)$ denote an increasing function that depends on m and W, while $\sigma(\lambda)$ denotes a function increasing in λ. These functions change in different occurrences. The essential feature is that σ is independent of m, n, p and functions f, while ρ is independent of λ, p and functions f. At the end, we choose m to grow slowly enough as a function of n, and then $\lambda \rightarrow \infty$ sufficiently slowly. We let \mathcal{P}_{m} denote the set of polynomials of degree $\leq m$ with real coefficients.

Lemma 4.1

Let $W: \mathbb{R} \rightarrow(0, \infty)$ be continuous and satisfy (6), with an analogous limit at $-\infty$.
(a) There exists an increasing function $\sigma:[0, \infty) \rightarrow[0, \infty)$ with the following properties: let $m, \lambda \geq 1$. For $1 \leq p \leq \infty$ and all absolutely continuous f with $f^{\prime} W \in L_{p}(\mathbb{R})$, there exists $R_{m} \in \mathcal{P}_{m}$ such that

$$
\left\|\left(f-R_{m}\right) W\right\|_{L_{p}[-2 \lambda, 2 \lambda]} \leq \frac{\sigma(\lambda)}{m}\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})} .
$$

(b) There is an increasing function $\rho: \mathbb{Z}_{+} \rightarrow(0, \infty)$ depending only on W such that

$$
\left\|R_{m} W\right\|_{L_{p}(\mathbb{R})} \leq \rho(m)\left(\|f W\|_{L_{p}(\mathbb{R})}+\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}\right)
$$

Proof

(a) By the classical Jackson's Theorem [3, (6.4), Theorem 6.2, p. 219], there exists $R_{m} \in \mathcal{P}_{m}$ such that

$$
\left\|f-R_{m}\right\|_{L_{p}[-2 \lambda, 2 \lambda]} \leq \frac{\pi \lambda}{m+1}\left\|f^{\prime}\right\|_{L_{p}[-2 \lambda, 2 \lambda]}
$$

Then
$\left\|\left(f-R_{m}\right) W\right\|_{L_{p}[-2 \lambda, 2 \lambda]} \leq \frac{\pi \lambda}{m}\|W\|_{L_{\infty}[-2 \lambda, 2 \lambda]}\left\|W^{-1}\right\|_{L_{\infty}[-2 \lambda, 2 \lambda]}\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}$.
So we may take

$$
\sigma(\lambda)=\pi \lambda\|W\|_{L_{\infty}[-2 \lambda, 2 \lambda]}\left\|W^{-1}\right\|_{L_{\infty}[-2 \lambda, 2 \lambda]} .
$$

(b) From our restricted range inequalities, and continuity of W,

$$
\left\|R_{m} W\right\|_{L_{p}(\mathbb{R})} \leq C\left\|R_{m}\right\|_{L_{p}\left[-q_{m}, q_{m}\right]}\|W\|_{L_{\infty}\left[-q_{m}, q_{m}\right]}
$$

Moreover, from the proof of (a),

$$
\begin{aligned}
& \left\|R_{m}\right\|_{L_{p}[-2 \lambda, 2 \lambda]} \\
\leq & \|f\|_{L_{p}[-2 \lambda, 2 \lambda]}+\frac{\pi \lambda}{m}\left\|f^{\prime}\right\|_{L_{p}[-2 \lambda, 2 \lambda]} \\
\leq & \left\|W^{-1}\right\|_{L_{\infty}[-2 \lambda, 2 \lambda]}\left[\|f W\|_{L_{p}[-2 \lambda, 2 \lambda]}+\pi \lambda\left\|f^{\prime} W\right\|_{L_{p}[-2 \lambda, 2 \lambda]}\right] .
\end{aligned}
$$

We shall show that

$$
\begin{equation*}
\left\|R_{m}\right\|_{L_{p}\left[-q_{m}, q_{m}\right]} \leq C m^{2 / p}\left(\frac{q_{m}}{\lambda}\right)^{m+\frac{1}{p}}\left\|R_{m}\right\|_{L_{p}[-2 \lambda, 2 \lambda]} \tag{26}
\end{equation*}
$$

where C is independent of $m, \lambda, q_{m},\left\{R_{m}\right\}$. (Recall that $2 \lambda \leq q_{m}$). Then, on combining the above inequalities, we obtain

$$
\left\|R_{m} W\right\|_{L_{p}(\mathbb{R})} \leq \rho(m)\left[\|f W\|_{L_{p}[-2 \lambda, 2 \lambda]}+\left\|f^{\prime} W\right\|_{L_{p}[-2 \lambda, 2 \lambda]}\right]
$$

where

$$
\rho(m)=C m^{2 / p} q_{m}^{m+1 / p}\|W\|_{L_{\infty}\left[-q_{m}, q_{m}\right]}\left\|W^{-1}\right\|_{L_{\infty}\left[-q_{m}, q_{m}\right]}\left(1+\pi q_{m}\right) .
$$

Now we proceed to establish (26). Recall the Chebyshev inequality [3, Proposition 2.3, p. 101], valid for polynomials P of degree $\leq m$:

$$
|P(x)| \leq\left|T_{m}(x)\right|\|P\|_{L_{\infty}[-1,1]},|x|>1 .
$$

Here T_{m} is the classical Chebyshev polynomial of the first kind. By dilating this, and using the bound

$$
\left|T_{m}(x)\right| \leq(2|x|)^{m},|x|>1,
$$

we obtain

$$
\left\|R_{m}\right\|_{L_{\infty}\left[-q_{m}, q_{m}\right]} \leq\left(\frac{q_{m}}{\lambda}\right)^{m}\left\|R_{m}\right\|_{L_{\infty}[-2 \lambda, 2 \lambda]} .
$$

Using Nikolskii inequalities [3, Theorem 2.6, p. 102], we continue this as

$$
\begin{aligned}
\left\|R_{m}\right\|_{L_{p}\left[-q_{m}, q_{m}\right]} & \leq\left(2 q_{m}\right)^{1 / p}\left\|R_{m}\right\|_{L_{\infty}\left[-q_{m}, q_{m}\right]} \\
& \leq\left(2 q_{m}\right)^{1 / p}\left(\frac{q_{m}}{\lambda}\right)^{m}\left(\frac{(p+1) m^{2}}{2 \lambda}\right)^{1 / p}\left\|R_{m}\right\|_{L_{p}[-2 \lambda, 2 \lambda]}
\end{aligned}
$$

and then we have (26).

Lemma 4.2

There exists $C>0$ such that for large enough n, and for $1 \leq \lambda \leq \frac{1}{2} q_{n}$, there are nonnegative polynomials V_{n} of degree $\leq 3 n / 4$ such that

$$
\begin{gather*}
\left|1-V_{n}(x)\right| \leq C \frac{q_{n}}{n \lambda}, x \in[-\lambda, \lambda] ; \tag{27}\\
0 \leq V_{n}(x) \leq C,|x| \in[\lambda, 2 \lambda] \tag{28}\\
0 \leq V_{n}(x) \leq C\left(\frac{q_{n}}{n \lambda}\right)^{2},|x| \in\left[2 \lambda, q_{n}\right] . \tag{29}
\end{gather*}
$$

Here C is independent of n, λ and x.
Proof
See Lemma 4.2 in [10].

Proof of the sufficiency part of Theorem 1.2

This is quite similar to that of Theorem 1.1 in [10], but there is an important difference: there we introduced estimates for $R_{m} W$ in the uniform norm, while here we need to restrict ourselves to a given L_{p} norm. So we include all the details.

We may assume that $f(0)=0$. (If not, replace f by $f-f(0)$ and absorb the constant $f(0)$ into the approximating polynomial). We choose $n \geq 1$ and $1 \leq m \leq n / 4$, and let λ satisfy $1 \leq \lambda \leq \frac{1}{2} q_{m}$. Let R_{m} and V_{n} denote the polynomials of Lemma 4.1 and 4.2 respectively, and let

$$
P_{n}=R_{m} V_{n} .
$$

Then P_{n} is a polynomial of degree $\leq n$, and

$$
\begin{align*}
& \inf ^{\operatorname{deg}(P) \leq n}\|(f-P) W\|_{L_{p}(\mathbb{R})} \\
\leq & \left\|\left(f-P_{n}\right) W\right\|_{L_{p}(\mathbb{R})} \\
\leq & \left\|\left(f-P_{n}\right) W\right\|_{L_{p}\left[-q_{n}, q_{n}\right]}+\|f W\|_{L_{p}\left(\mathbb{R} \backslash\left[-q_{n}, q_{n}\right]\right)}+\left\|P_{n} W\right\|_{L_{p}\left(\mathbb{R} \backslash\left[-q_{n}, q_{n}\right]\right)} \\
\leq & \left\|\left(f-P_{n}\right) W\right\|_{L_{p}\left[-q_{n}, q_{n}\right]}+\|f W\|_{L_{p}(\mathbb{R} \backslash[-\lambda, \lambda])}+C 4^{-n}\left\|P_{n} W\right\|_{L_{p}\left[-q_{n}, q_{n}\right]}, \tag{30}
\end{align*}
$$

by Theorem 2.1 and as $q_{n}>\lambda$. Here,

$$
\begin{aligned}
&\left\|\left(f-P_{n}\right) W\right\|_{L_{p}\left[-q_{n}, q_{n}\right]} \\
& \leq\left\|\left(f-P_{n}\right) W\right\|_{L_{p}[-\lambda, \lambda]}+\|f W\|_{L_{p}(\mathbb{R} \backslash[-\lambda, \lambda])}+\left\|P_{n} W\right\|_{L_{p}\left(\left[-q_{n}, q_{p}\right] \backslash[-\lambda, \lambda]\right)} \\
&\left(31 \neq: T_{1}+T_{2}+T_{3} .\right.
\end{aligned}
$$

Firstly

$$
\begin{align*}
T_{1} & \leq\left\|\left(f-R_{m}\right) W\right\|_{L_{p}[-\lambda, \lambda]}+\left\|R_{m}\left(1-V_{n}\right) W\right\|_{L_{p}[-\lambda, \lambda]} \\
& \leq\left\|\left(f-R_{m}\right) W\right\|_{L_{p}[-\lambda, \lambda]}+\left\|R_{m} W\right\|_{L_{p}[-\lambda, \lambda]}\left\|1-V_{n}\right\|_{L_{\infty}[-\lambda, \lambda]} \\
& \leq \frac{\sigma(\lambda)}{m}\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}+\rho(m)\left(\|f W\|_{L_{p}(\mathbb{R})}+\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}\right)\left\|1-V_{n}\right\|_{L_{\infty}[-\lambda, \lambda]} \\
& \leq \frac{\sigma(\lambda)}{m}\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}+\rho(m) \frac{q_{n}}{n}\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}, \tag{32}
\end{align*}
$$

by Lemmas 4.1, 4.2 and Theorem 3.1. Note that since $f(0)=0$, the latter gives

$$
\|f W\|_{L_{p}(\mathbb{R})} \leq \eta(0)\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})} .
$$

The crucial thing in (32) is that σ and ρ are independent of f, n, p. Next, Theorem 3.1 gives,

$$
\begin{equation*}
T_{2} \leq \eta(\lambda)\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})} \tag{33}
\end{equation*}
$$

Of course this estimate also applies to the middle term in the right-hand side of (30). Next,

$$
\begin{aligned}
T_{3} & \leq\left\|P_{n} W\right\|_{L_{p}(\lambda \leq|x| \leq 2 \lambda)}+\left\|P_{n} W\right\|_{L_{p}\left(2 \lambda \leq|x| \leq q_{n}\right)} \\
& =: T_{31}+T_{32} .
\end{aligned}
$$

Here

$$
\begin{align*}
T_{31} & \leq\left\|R_{m} W\right\|_{L_{p}(\lambda \leq|x| \leq 2 \lambda)}\left\|V_{n}\right\|_{L_{\infty}(\lambda \leq|x| \leq 2 \lambda)} \\
& \leq C\left(\left\|\left(R_{m}-f\right) W\right\|_{L_{p}(\lambda \leq|x| \leq 2 \lambda)}+\|f W\|_{L_{p}(\lambda \leq|x| \leq 2 \lambda)}\right) \\
& \leq C\left(\frac{\sigma(\lambda)}{m}\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}+\eta(\lambda)\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}\right), \tag{34}
\end{align*}
$$

by Lemmas 4.1, 4.2 and Theorem 3.1. Also,

$$
\begin{aligned}
T_{32} & \leq\left\|R_{m} W\right\|_{L_{p}\left(2 \lambda \leq|x| \leq q_{n}\right)}\left\|V_{n}\right\|_{L_{\infty}\left(2 \lambda \leq|x| \leq q_{n}\right)} \\
& \leq \rho(m)\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})} C_{1}\left(\frac{q_{n}}{n}\right)^{2},
\end{aligned}
$$

by Lemmas 4.1, 4.2 and another application of Theorem 3.1. Combining this and the estimates in (31) to (34) gives

$$
\begin{align*}
& \left\|\left(f-P_{n}\right) W\right\|_{L_{p}\left[-q_{n}, q_{n}\right]} \\
\leq & \left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})} C\left\{\frac{\sigma(\lambda)}{m}+\rho(m) \frac{q_{n}}{n}+\eta(\lambda)\right\} . \tag{35}
\end{align*}
$$

Then using this estimate and Theorem 3.1, we deduce that

$$
\left\|P_{n} W\right\|_{L_{p}\left[-q_{n}, q_{n}\right]} \leq\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})} C\left\{\frac{\sigma(\lambda)}{m}+\rho(m) \frac{q_{n}}{n}+1\right\} .
$$

Combining this estimate, (30) and (35) gives
$\inf _{\operatorname{deg}(P) \leq n}\|(f-P) W\|_{L_{p}(\mathbb{R})} \leq\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})} C\left\{\frac{\sigma(\lambda)}{m}+\rho(m) \frac{q_{n}}{n}+\eta(\lambda)+4^{-n}\right\}$,
with C independent of $n, m, \lambda, \rho, \sigma$. The functions σ and ρ obey the conventions listed at the beginning of this section, and are independent of f, n, m, p, as is the constant C. For a given large enough $n \geq 1$, we choose $m=m(n)$ to be the largest integer $\leq n / 2$ such that

$$
\rho(m) \frac{q_{n}}{n} \leq\left(\frac{q_{n}}{n}\right)^{1 / 2} .
$$

Since (by Theorem 2.1) $q_{n} / n \rightarrow 0$ as $n \rightarrow \infty$, while ρ is increasing and finite valued, necessarily $m=m(n)$ approaches ∞ as $n \rightarrow \infty$. Next, for the given $m=m(n)$, we choose the largest $\lambda=\lambda(n) \leq m$ such that

$$
\sigma(\lambda) \leq \sqrt{m}
$$

As σ is finite valued, necessarily $\lambda(n) \rightarrow \infty$, so $\eta(\lambda(n)) \rightarrow 0, n \rightarrow \infty$. Then for some sequence $\left\{\eta_{n}\right\}_{n=1}^{\infty}$ with limit 0 , and which is independent of f,

$$
\inf _{\operatorname{deg}(P) \leq n}\|(f-P) W\|_{L_{p}(\mathbb{R})} \leq \eta_{n}\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}
$$

For the remaining finitely many n, we can set $\eta_{n}=\eta(0)$, and use

$$
\inf _{\operatorname{deg}(P) \leq n}\|(f-P) W\|_{L_{p}(\mathbb{R})} \leq\|f W\|_{L_{p}(\mathbb{R})} \leq \eta(0)\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})} .
$$

Proof of the necessity part of Theorem 1.2

We assume that (5) is true for every absolutely continuous f with $\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}$ finite, where $p=1$ or $p=\infty$. In particular, if we choose f to be 0 outside $[-1,1]$, and not a.e. a polynomial in $[-1,1]$, we obtain for some sequence $\left\{P_{n}\right\}_{n=1}^{\infty}$ of polynomials with degrees tending to ∞,

$$
\left\|P_{n} W\right\|_{L_{p}(|x| \geq 1)} \rightarrow 0, n \rightarrow \infty .
$$

As P_{n} behaves for large $|x|$ like its leading term, this forces

$$
\left\|x^{n} W(x)\right\|_{L_{p}(\mathbb{R})}<\infty
$$

for each $n \geq 0$. Then the hypothesis (21) of Lemma 2.4 is fulfilled, and consequently there exist $\left\{\xi_{n}\right\}_{n=1}^{\infty}$ such that (22) holds for all polynomials P_{n} of degree $\leq n$. Let us consider an absolutely continuous f with $f(0)=0$ and $\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}$ finite. Our hypothesis asserts that there are for large n polynomials $\left\{P_{n}\right\}_{n=1}^{\infty}$ of degree $\leq n$ with

$$
\left\|\left(f-P_{n}\right) W\right\|_{L_{p}(\mathbb{R})} \leq \eta_{n}\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}
$$

$$
\Rightarrow\|f W\|_{L_{p}\left(|x| \geq \xi_{n}\right)} \leq \eta_{n}\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}+\left\|P_{n} W\right\|_{L_{p}\left(|x| \geq \xi_{n}\right)}
$$

By Lemma 2.4, and then our hypothesis on $\left\{P_{n}\right\}_{n=1}^{\infty}$,

$$
\begin{aligned}
\left\|P_{n} W\right\|_{L_{p}\left(|x| \geq \xi_{n}\right)} & \leq C 2^{-n}\left\|P_{n} W\right\|_{L_{p}[-1,1]} \\
& \leq C 2^{-n}\left(\|f W\|_{L_{p}[-1,1]}+\eta_{n}\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}\right)
\end{aligned}
$$

Here

$$
\begin{aligned}
\|f W\|_{L_{p}[0,1]} & \leq\|W\|_{L_{\infty}[0,1]}\left\|\int_{0}^{x} f^{\prime}(t) d t\right\|_{L_{p}[0,1]} \\
& \leq\|W\|_{L_{\infty}[0,1]}\left\|f^{\prime}\right\|_{L_{p}[0,1]} \\
& \leq\|W\|_{L_{\infty}[0,1]}\left\|W^{-1}\right\|_{L_{\infty}[0,1]}\left\|f^{\prime} W\right\|_{L_{p}[0,1]}
\end{aligned}
$$

A similar inequality holds over $[-1,0]$ and hence

$$
\|f W\|_{L_{p}[-1,1]} \leq 2\|W\|_{L_{\infty}[-1,1]}\left\|W^{-1}\right\|_{L_{\infty}[-1,1]}\left\|f^{\prime} W\right\|_{L_{p}[-1,1]}
$$

The case $p=\infty$ is easier. Combining all the above inequalities gives

$$
\|f W\|_{L_{p}\left(|x| \geq \xi_{n}\right)} \leq \eta_{n}^{*}\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}
$$

where $\left\{\eta_{n}^{*}\right\}_{n=1}^{\infty}$ has limit 0 and is independent of f. The same inequality then holds for the L_{p} norm of $f W$ over $|x| \geq \lambda$, where $\lambda \in\left[\xi_{n}, \xi_{n+1}\right]$. It follows that there is a positive decreasing function η with limit 0 at ∞ such that (23) holds for absolutely continuous f with $f(0)=0$ and $\left\|f^{\prime} W\right\|_{L_{p}(\mathbb{R})}$ finite. Then Theorem 3.1 gives the limit (6).

5. Proof of Theorem 1.3

In this section, we let

$$
W_{2}(x)=\exp \left(-x^{2}\right), x \in \mathbb{R}
$$

denote the Hermite weight. Moreover, we determine q, s by the equations

$$
\frac{1}{r}+\frac{1}{s}=1 \text { and } \frac{1}{p}+\frac{1}{q}=1
$$

The construction is more complicated than that in [10], but the general idea is the same. We choose intervals

$$
\left[j-\alpha_{j}, j+\alpha_{j}\right], j \geq 3
$$

where $\alpha_{j} \leq \frac{1}{2 j}, j \geq 3$. We set

$$
\begin{equation*}
W(x)=W_{2}(x), \quad x \in \mathbb{R} \backslash \bigcup_{j=3}^{\infty}\left(j-\alpha_{j}, j+\alpha_{j}\right) \tag{36}
\end{equation*}
$$

(I) For the case where $p<r$, we set

$$
\begin{equation*}
W(j)=W_{2}(j) /[j \log j], j \geq 3 \tag{37}
\end{equation*}
$$

choose

$$
\begin{equation*}
\beta \in(s, q) \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{j}=\frac{1}{2 j(\log j)^{\beta}}, j \geq 3 \tag{39}
\end{equation*}
$$

(II) For the case where $p>r$, we set

$$
\begin{equation*}
W(j)=W_{2}(j)[j \log j], j \geq 3 \tag{40}
\end{equation*}
$$

choose

$$
\begin{equation*}
\beta \in(r, p) \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{j}=\frac{1}{2 j(\log j)^{\beta}}, j \geq 3 . \tag{42}
\end{equation*}
$$

In both cases we then define W so that W / W_{2} is linear in $\left[j-\alpha_{j}, j\right]$ and in $\left[j, j+\alpha_{j}\right]$. This ensures that W is continuous in \mathbb{R}. (Of couse we could ensure it is C^{∞} by smoothing at j and $j \pm \alpha_{j}$). It also implies under (38) that,

$$
\begin{equation*}
1 \geq W(x) / W_{2}(x) \geq \frac{1}{1+x^{2}}, x \in \mathbb{R} \tag{43}
\end{equation*}
$$

and under (40),

$$
\begin{equation*}
1 \leq W(x) / W_{2}(x) \leq 1+x^{2}, x \in \mathbb{R} \tag{44}
\end{equation*}
$$

(Since $\log x=o(x)$, these inequalities are clear for large $|x|$. However they are even true for "small" $|x|$, as shown by some simple calculations.) We shall make repeated use of the fact that uniformly in j and x,

$$
W_{2}(x) \sim W_{2}(j), x \in\left[j-\alpha_{j}, j+\alpha_{j}\right]
$$

as follows since $\alpha_{j} \leq \frac{1}{2 j}$. We now show that W fulfils the asymptotic behavior required for Theorem 1.3.

Lemma 4.2

(a) Let $p<r$ and W satisfy (37), (38) and (39). Then

$$
\begin{equation*}
\limsup _{x \rightarrow \infty}\left\|W^{-1}\right\|_{L_{q}[0, x]}\|W\|_{L_{p}[x, \infty)}=\infty \tag{45}
\end{equation*}
$$

but

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left\|W^{-1}\right\|_{L_{s}[0, x]}\|W\|_{L_{r}[x, \infty)}=0 . \tag{46}
\end{equation*}
$$

(b) Let $p>r$ and W satisfy (40), (41) and (42). Then (45) and (46) are valid.
Proof
(a) Note that as $1 \leq p<r$, so $p, s<\infty$. Let $c>0$. Some simple calculations show that for $1 \leq a \leq b$,

$$
\begin{equation*}
\int_{a}^{b} W_{2}^{-c} \sim W_{2}^{-c}(b) \min \left\{\frac{1}{b}, b-a\right\} \tag{47}
\end{equation*}
$$

and if also $b \leq 2 a$,

$$
\begin{equation*}
\int_{a}^{b} W_{2}^{c} \sim W_{2}^{c}(a) \min \left\{\frac{1}{b}, b-a\right\} . \tag{48}
\end{equation*}
$$

Since $\alpha_{j}=O\left(\frac{1}{j}\right)$, we see that $W_{2}\left(j+\alpha_{j}\right) \sim W_{2}(j)$ and hence applying (48),

$$
\int_{j}^{\infty} W^{p} \geq \int_{j+\alpha_{j}}^{j+1-\alpha_{j+1}} W_{2}^{p} \geq \frac{C}{j} W_{2}(j)^{p} .
$$

Moreover, by (47), if $q<\infty$,

$$
\int_{0}^{j} W^{-q} \geq C(j \log j)^{q} \int_{j-\frac{\alpha_{j}}{2}}^{j} W_{2}^{-q} \geq C(j \log j)^{q} \alpha_{j} W_{2}(j)^{-q} .
$$

Then

$$
\begin{aligned}
\left\|W^{-1}\right\|_{L_{q}[0, j]}\|W\|_{L_{p}[j, \infty)} & \geq C[j \log j] \alpha_{j}^{1 / q} j^{-1 / p} \\
& =C(\log j)^{1-\beta / q} \rightarrow \infty
\end{aligned}
$$

$j \rightarrow \infty$, by (38). We then have (45) for the case $1<p, q<\infty$. If $q=\infty$, it is easy to see that (45) persists, by minor modifications of the above arguments.

The proof of (46) is a little more difficult because it involves a full limit. Let $x \geq 2$ and j_{0} denote the least integer $\geq x$. We see that as $\alpha_{j}=O\left(\frac{1}{j}\right)$,

$$
\begin{aligned}
\int_{0}^{x} W^{-s} & \leq \int_{(0, x) \backslash \bigcup_{j=3}^{j_{0}}\left(j-\alpha_{j}, j+\alpha_{j}\right)} W_{2}^{-s}+\sum_{j=3}^{j_{0}-1} \int_{j-\alpha_{j}}^{j+\alpha_{j}} W^{-s}+\int_{\left[j_{0}-\alpha_{j_{0}}, x\right]} W^{-s} \\
& \leq \int_{0}^{x} W_{2}^{-s}+C \sum_{j=3}^{j_{0}-1} \alpha_{j} W_{2}^{-s}(j)(j \log j)^{s}+C \alpha_{j_{0}} W^{-s}(x)\left(j_{0} \log j_{0}\right)^{s} \\
& \leq C W_{2}(x)^{-s} / x+C W_{2}^{-s}(x) x^{s-1}(\log x)^{s-\beta},
\end{aligned}
$$

as for large enough j, and some $\theta<1$ independent of j,

$$
\frac{\alpha_{j} W_{2}^{-s}(j)(j \log j)^{s}}{\alpha_{j-1} W_{2}^{-s}(j-1)((j-1) \log (j-1))^{s}}<\theta
$$

We also used (47). Then this and (43) give

$$
\begin{aligned}
\left\|W^{-1}\right\|_{L_{s}[0, x]}\|W\|_{L_{r}[x, \infty)} & \leq C W_{2}^{-1}(x) x^{1-1 / s}(\log x)^{1-\beta / s}\left\|W_{2}\right\|_{L_{r}[x, \infty)} \\
& \leq C W_{2}^{-1}(x) x^{1-1 / s}(\log x)^{1-\beta / s} W_{2}(x) x^{-1 / r} \\
& =C(\log x)^{1-\beta / s} \rightarrow 0,
\end{aligned}
$$

$x \rightarrow \infty$ as $\beta>s$, recall (38).
(b) This is very similar to (a). Note that as $p>r \geq 1$, so $r, q<\infty$. By
(40), if $p<\infty$,

$$
\int_{j}^{\infty} W^{p} \geq C \int_{j}^{j+\alpha_{j} / 2}(j \log j)^{p} W_{2}^{p} \geq C \alpha_{j} j^{p}(\log j)^{p} W_{2}(j)^{p}
$$

Moreover,

$$
\int_{0}^{j} W^{-q} \geq \int_{j-1+\alpha_{j-1}}^{j-\alpha_{j}} W_{2}^{-q} \geq C j^{-1} W_{2}(j)^{-q},
$$

by (47). Then

$$
\begin{aligned}
\left\|W^{-1}\right\|_{L_{q}[0, j]}\|W\|_{L_{p}[j, \infty)} & \geq C j^{-1 / q} \alpha_{j}^{1 / p} j \log j \\
& =C(\log j)^{1-\beta / p} \rightarrow \infty
\end{aligned}
$$

as $\beta<p$ (recall (41)). If $p=\infty$, this argument requires minor modifications.
So we have (46). Next, if j_{1} is the largest integer $\leq x$,

$$
\begin{aligned}
\int_{x}^{\infty} W^{r} & \leq \int_{(x, \infty) \backslash}{\underset{j=j_{1}}{\infty}\left(j-\alpha_{j}, j+\alpha_{j}\right)} W_{2}^{r}+\sum_{j=j_{1}}^{\infty} \int_{j-\alpha_{j}}^{j+\alpha_{j}} W_{2}^{r}(j \log j)^{r}+\int_{\left[x, j_{1}+\alpha_{j_{1}}\right]} W_{2}^{r}\left(j_{1} \log j_{1}\right)^{r} \\
& \leq \int_{x}^{\infty} W_{2}^{r}+C \sum_{j=j_{1}+1}^{\infty} \alpha_{j}(j \log j)^{r} W_{2}^{r}(j)+C W_{2}^{r}(x) \alpha_{j_{1}}\left(j_{1} \log j_{1}\right)^{r} \\
& \leq C W_{2}(x)^{r} / x+j_{1}^{r-1}\left(\log j_{1}\right)^{r-\beta} W_{2}^{r}(x) \\
& \leq C x^{r-1}(\log x)^{r-\beta} W_{2}^{r}(x),
\end{aligned}
$$

by (48) and as again for large j and some $\theta<1$,

$$
\frac{\alpha_{j}(j \log j)^{r} W_{2}^{r}(j)}{\alpha_{j-1}((j-1) \log (j-1))^{r} W_{2}^{r}(j-1)}<\theta .
$$

Then (46) and (47) gives

$$
\begin{aligned}
\left\|W^{-1}\right\|_{L_{s}[0, x]}\|W\|_{L_{r}[x, \infty)} & \leq C\left\|W_{2}^{-1}\right\|_{L_{s}[0, x]} W_{2}(x) x^{1-1 / r}(\log x)^{1-\beta / r} \\
& \leq C W_{2}^{-1}(x) x^{-1 / s} W_{2}(x) x^{1-1 / r}(\log x)^{1-\beta / r} \\
& =C(\log x)^{1-\beta / r} \rightarrow 0,
\end{aligned}
$$

$x \rightarrow \infty$, as $\beta>r$ (recall (41)).

Proof of Theorem 1.3

This follows directly from the limit conditions in Lemma 4.2 and from Theorem 1.2.

References

[1] G.A. Baker, Essentials of Padé Approximants, Academic Press, New York, 1975.
[2] P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, Springer, New York, 1993.
[3] R. DeVore and G.G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
[4] Z. Ditzian and D. Lubinsky, Jackson and Smoothness Theorems for Freud Weights in $L_{p}(0<p \leq \infty)$, Constructive Approximation, 13(1997), 99-152.
[5] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer, New York, 1987.
[6] P. Koosis, The Logarithmic Integral I, Cambridge University Press, Cambridge, 1988.
[7] A. Kufner and L-E. Persson, Weighted Inequalities of Hardy Type, World Scientific, Singapore, 2003.
[8] E. Levin and D.S. Lubinsky, Orthogonal Polynomials for Exponential Weights, Springer, New York, 2001.
[9] D.S. Lubinsky, A Weighted Polynomial Inequality, Proc. Amer. Math. Soc., 92(1984), 263-267.
[10] D.S. Lubinsky, Which Weights on \mathbb{R} admit Jackson Theorems?, to appear in Israel Journal of Mathematics.
[11] H.N. Mhaskar, Introduction to the Theory Of Weighted Polynomial Approximation, World Scientific, Singapore, 1996.
[12] P. Nevai, Geza Freud, Orthogonal Polynomials and Christoffel Functions: A Case Study, J. Approx. Theory, 48(1986), 3-167.
[13] B. Opic and A. Kufner, Hardy-Type Inequalities, Pitman Research Notes in Mathematics, Vol. 219, Longman, Harlow, 1990.
[14] E.B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer, New York, 1997.

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, LUBINSKy@math.GATECH.EDU

