
WEIGHTED MARKOV-BERNSTEIN INEQUALITIES FOR
ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

DORON S. LUBINSKY1

Abstract. We prove weighted Markov-Bernstein inequalities of the form∫ ∞
−∞

∣∣f ′ (x)∣∣p w (x) dx ≤ C (σ + 1)p ∫ ∞
−∞
|f (x)|p w (x) dx

Here w satisfies certain doubling type properties, f is an entire function of
exponential type ≤ σ, p > 0, and C is independent of f and σ. For example,
w (x) =

(
1 + x2

)α satisfies the condtions for any α ∈ R. Classical doubling
inequalities of Mastroianni and Totik inspired this result.

Entire functions of exponential type, Bernstein inequalities 42C05 In honor of
the retirement of Giuseppe Mastroianni

1. Introduction1

The classical Markov-Bernstein inequality for the unit circle asserts that for
polynomials P of degree ≤ n, and 0 < p ≤ ∞,
(1.1) ‖P ′‖Lp(Γ) ≤ n ‖P‖Lp(Γ) .

Here Γ is the unit circle, and if p <∞,

‖P‖Lp(Γ) =

(∫ π

−π

∣∣P (eiθ)∣∣p dθ)1/p

.

Of course, it was earlier proved for 1 ≤ p ≤ ∞, and later for 0 < p < 1, by Arestov
[1]. There is a close cousin for entire functions f of exponential type ≤ σ, and
0 < p ≤ ∞ :

(1.2) ‖f ′‖Lp(R) ≤ σ ‖f‖Lp(R) .

It too was earlier proved for 1 ≤ p ≤ ∞, and later for 0 < p < 1. See [15]. In fact,
these inequalities are equivalent, and can be derived from each other - as follows,
for example, from the methods of [10] where there is a similar equivalence between
Marcinkiewicz-Zygmund and Plancherel-Polya inequalities. These are yet more
illustrations of the classical link between approximation theory for polynomials
and that for entire functions of exponential type, amply explored in the memoir of
Ganzburg [8], and in the books of Timan [17], and Trigub and Belinsky [18], for
example.
There is a vast literature on Markov-Bernstein inequalities, both for polynomials

[5], [12], [14], and entire functions of exponential type. For the latter, there are Szegő
type inequalities, and sharp inequalities for various subclasses of entire functions
with special properties - see [4], [6], [16]. In another direction, weighted Bernstein
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inequalities involving inner functions, and model spaces have been investigated by
Baranov [2], [3].
For polynomials, one of the most beautiful results involves doubling weights, and

is due to Mastroianni and Totik [13]. Recall the setting: let W : [−π, π] → [0,∞)
be measurable. Extend W as a 2π periodic function to the real line. We say that
W is doubling if there is a constant L (called a doubling constant for W ) such that
for all intervals I, we have ∫

2I

W ≤ L
∫
I

W.

Here 2I is the interval with the same center as I, but with twice the length. A
typical doubling weight is

W (t) = h (t)

k∏
j=1

∣∣t− βj∣∣γj ,
where h is bounded above and below by positive constants, and all

{
βj
}
are distinct

and lie in [−π, π], while all γj > −1. An immediate consequence of Theorem 4.1 in
[13, p. 45] is that for 1 ≤ p <∞,∫ π

−π

∣∣P ′ (eiθ)∣∣pW (θ) dθ ≤ Cnp
∫ π

−π

∣∣P ′ (eiθ)∣∣pW (θ) dθ,

valid for n ≥ 1 and all polynomials P of degree ≤ n. This was extended to 0 < p < 1
by Erdelyi [7]. The constant C depends only on p and the doubling constant L,
not on the particular W .
In this paper, inspired by the results of Mastroanni, Totik, and Erdelyi, we prove

weighted Markov-Bernstein inequalities. Our most general result follows:

Theorem 1
Let σ, p > 0, r ∈ (0, 1], and let w : R→ [0,∞) be a measurable function satisfying
the following:
(I) The one-sided doubling condition about 0: there exists L > 1, such that for
|a| ≥ r,

(1.3)

∣∣∣∣∫ 2a

a

w

∣∣∣∣ ≤ L
∣∣∣∣∣
∫ a

a/2

w

∣∣∣∣∣ .
(II) The growth condition about integers: there exist B, β ≥ 1 such that for k ≥ 0
and −1 ≤ j ≤ max

{
2k + 1, 1

r

}
,

(1.4)
∫ jr+r

jr

w ≤ B (1 + r |j − k|)β
∫ kr+r

kr

w.

Assume also the analogous condition for k < 0. For t ∈ R, let

(1.5) wr (t) =
1

2r

∫ t+r

t−r
w (s) ds.

Then for entire functions f of exponential type ≤ σ, we have

(1.6)
∫ ∞
−∞
|f ′ (t)|p wr (t) dt ≤ C (σ + 1)

p
∫ ∞
−∞
|f (t)|p wr (t) dt,

provided the right-hand side is finite. Here C depends on B, β, p and L, but is
independent of σ, r, f, and the particular w.
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Corollary 2
Let p > 0. Assume that all the conditions of Theorem 1 hold for some r0 ∈ (0, 1),
and all r ∈ (0, r0) , with L,B and β independent of r. Then for σ > 0, and entire
functions f of exponential type ≤ σ, we have

(1.7)
∫ ∞
−∞
|f ′ (t)|p w (t) dt ≤ C (σ + 1)

p
∫ ∞
−∞
|f (t)|p w (t) dt,

provided the right-hand side is finite. Here C depends on B, β and L, but is inde-
pendent of σ, f, and the particular w.

Corollary 3
Let σ, p > 0, and let w : R → (0,∞) be a measurable function satisfying the
following: for some M ≥ 1, we have for both 1

2 ≤
s
t ≤ 2 and |s− t| ≤ 2,

(1.8)
1

M
≤ w (s) /w (t) ≤M , for t ∈ R\ {0} .

Then for entire functions f of exponential type ≤ σ, we have

(1.9)
∫ ∞
−∞
|f ′ (t)|p w (t) dt ≤ C (σ + 1)

p
∫ ∞
−∞
|f (t)|p w (t) dt,

provided the right-hand side is finite. Here C depends on M , but is independent of
σ,w and f.

Corollary 4
Let σ, p > 0, and α ∈ R. Then for entire functions f of exponential type ≤ σ, we
have

(1.10)
∫ ∞
−∞
|f ′ (t)|p

(
1 + t2

)α
dt ≤ C (σ + 1)

p
∫ ∞
−∞
|f (t)|p

(
1 + t2

)α
dt,

provided the right-hand side is finite. Here C is independent of σ and f.

To the best of our knowledge, even the inequalities in Corollary 4 are new.
Almost all existing inequalities in the literature are unweighted, though they involve
sharp constants as in (1.2). We note that if 1 = λ1 < λ2 < ..., and f (x) =∑m
j=1 cjλ

−ix
j , we used orthogonal Dirichlet polynomials in [11] to prove(∫ ∞
−∞

|f ′ (x)|2

1 + x2
dx

)1/2

≤
{

log λm + (log λm)
1/2
}(∫ ∞

−∞

|f (x)|2

1 + x2
dx

)1/2

.

Here one cannot replace log λm+(log λm)
1/2 by any factor smaller than log λm+C1

for some C1 > 0. This inequality reflects the fact that f is entire of type ≤ log λm.
We prove the results in Section 2. Throughout, C,C1, C2,... denote positive

constants independent of f, σ, r. The same symbol does not necessarily denote the
same constant in different occurrences.

2. Proof of The Results

Throughout, we let

S (t) =
sinπt

πt
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denote the sinc kernel. We’ll use the bounds |S (t)| ≤ min
{

1, 1
π|t|

}
. We begin by

applying (1.2) to

(2.1) g (t) = f (t)

[
S

(
t

`

)
+ iS

(
t

`
+

1

2

)]`
,

where ` is a fixed positive integer. This yields:

Lemma 2.1
Let ` ≥ 1, p > 0, and f be entire of exponential type ≤ σ. Then

(2.2)
∫ ∞
−∞
|f ′ (t)|p (1 + |t|)−`p dt ≤ C (σ + 1)

p
∫ ∞
−∞
|f (t)|p (1 + |t|)−`p dt,

where C is independent of f and σ.
Proof
Let

h (t) = S

(
t

`

)
+ iS

(
t

`
+

1

2

)
,

so that g (t) = f (t)h (t)
`. First note that for real t,

(2.3) |h (t)| ≤ min

{
2,

`

π |t| +
`

π (|t|+ `/2)

}
≤ C (1 + |t|)−1

,

where C depends only on `. By (1.2), and some simple calculations, also,

(2.4) |h′ (t)| ≤ C (1 + |t|)−1
,

where again C depends only on `. In the other direction, we see that

|h (t)|2 =

(
sinπ t`
π t`

)2

+

(
cosπ t`

π
(
t
` + 1

2

))2

≥
(
sinπ t`

)2
+
(
cosπ t`

)2(
π
(∣∣ t
`

∣∣+ 1
2

))2 ≥ C (1 + |t|)−2
.(2.5)

Then, recalling (2.1),∣∣∣f ′ (t)h (t)
`
∣∣∣ =

∣∣∣g′ (t)− f (t) `h (t)
`−1

h′ (t)
∣∣∣

≤ |g′ (t)|+ C |f (t)| (1 + |t|)−` ,(2.6)

by (2.3) and (2.4). Now g is entire of exponential type ≤ σ + 1, and (2.3) shows
that ∫ ∞

−∞
|g (t)|p dt ≤ C

∫ ∞
−∞
|f (t)|p (1 + |t|)−`p dt <∞,

so applying (1.2) to g gives∫ ∞
−∞
|g′ (t)|p dt ≤ (σ + 1)

p
∫ ∞
−∞
|g (t)|p dt ≤ C (σ + 1)

p
∫ ∞
−∞
|f (t)|p (1 + |t|)−`p dt.
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Together with (2.6), and (2.5), this yields∫ ∞
−∞
|f ′ (t)|p (1 + |t|)−`p dt

≤ C

∫ ∞
−∞

∣∣∣f ′ (t)h (t)
`
∣∣∣p dt

≤ C

∫ ∞
−∞

(
|g′ (t)|p + C |f (t)|p (1 + |t|)−`p

)
dt

≤ C {(σ + 1)
p

+ 1}
∫ ∞
−∞
|f (t)|p (1 + |t|)−`p dt.

So we have the result. �

From this we deduce:

Lemma 2.2
Let σ, p > 0, ` ≥ 1, and let w : R→ [0,∞) be a measurable function. Let

(2.7) H (t) =

∫ ∞
−∞

w (x)

(1 + |x− t|)`p
dx, t ∈ R,

and assume that this is finite for t ∈ R. Then for entire functions f of exponential
type ≤ σ for which the right-hand side is finite,

(2.8)
∫ ∞
−∞
|f ′ (t)|pH (t) dt ≤ C (σ + 1)

p
∫ ∞
−∞
|f (t)|pH (t) dt,

where C depends only on ` and p. In particular, it is independent of f, σ, w,H.
Proof
For a given x, and f , apply Lemma 2.1 to the function f (·+ x), so that we are
translating the variable. Making a substitution s = t+ x yields∫ ∞

−∞
|f ′ (s)|p ds

(1 + |s− x|)`p
≤ C (σ + 1)

p
∫ ∞
−∞
|f (s)|p ds

(1 + |s− x|)`p
.

Now multiply by w (x) and integrate over all real x, and then interchange the
integrals. The convergence of the right-hand side in (2.8), and the non-negativity
of the integrand justifies the interchange of integrals. �
Our final lemma before proving Theorem 1 involves upper and lower bounds on

wr :

Lemma 2.3
Assume the hypotheses of Theorem 1. Then for some C1, C2 > 0 that depend on
L,B, β,

∫ 0

−1
w,
∫ 1

0
w, but not on r, t, nor on the particular w,

(2.9) C2 (1 + |t|)−β ≤ wr (t) ≤ C1 (1 + |t|)log2 L .

Proof
We first establish the lower bound. Let us assume first that t ≥ 0 and choose j0 ≥ 0
such that j0r ≤ t ≤ (j0 + 1) r. Note that then

j0r ≥ t− r and (j0 + 1) r ≤ t+ r;

(j0 − 1) r ≤ t− r and (j0 + 2) r ≥ t+ r.(2.10)
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Then, using (1.4),

∫ t+r

t−r
w ≥

∫ (j0+1)r

j0r

w

≥ B−1 (1 + j0r)
−β
∫ r

0

w

≥ B (1 + t)
−β
∫ r

0

w

≥ B (1 + t)
−β (

1 +B
(
1 + 2β

))−1
∫ r

−r
w,

again by (1.4). Thus for t ≥ 0, and some C depending only on B, β,

(2.11) wr (t) ≥ C (1 + t)
−β

wr (0) .

Next, using (1.4),

∫ 1

0

w ≤
[ 1r ]∑
j=0

∫ (j+1)r

jr

w

≤ B

(∫ r

0

w

) [ 1r ]∑
j=0

(1 + jr)
β

≤ B

(∫ r

0

w

)∫ [ 1r ]+1

0

(1 + sr)
β
ds

= B

(
1

r

∫ r

0

w

)∫ r[ 1r ]+r

0

(1 + y)
β
dy

≤ B

(
1

r

∫ r

0

w

)∫ 2

0

(1 + y)
β
dy.

A similar estimate holds for
∫ 0

−1
w, so for some C depending only on B, β,

(2.12)
∫ 1

−1

w ≤ Cwr (0) .

Together with (2.11), this establishes the lower bound for t ≥ 0, and of course t < 0
is similar. We turn to the upper bound. Again, we assume t ≥ 0, and that j0 is as
above. We see using (2.10), and then (1.4), that

∫ t+r

t−r
w ≤

∫ (j0+2)r

(j0−1)r

w

≤
(
1 + 2B2β

) ∫ (j0+1)r

j0r

w.
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We continue this using (1.4), as

≤
(
1 + 2β+1B

) 1[
1
r

]
+ 1

j0+[ 1r ]∑
k=j0

B (1 + |j0 − k| r)β
∫ (k+1)r

kr

w

≤
(
1 + 2β+1B

)
B2βr

∫ (j0+[ 1r ]+1)r

j0r

w.

Thus we have shown that

wr (t) ≤ C
∫ j0r+2

j0r

w,

where C is independent of r, t, but depends on B and β. We continue this using
(2.10) as

≤ C

[∫ 1

0

w +

∫ t+2

1

w

]

≤ C

∫ 1

0

w +
∑

0≤k≤log2(t+2)

∫ 2k+1

2k
w


≤ C

(∫ 1

0

w

)1 +
∑

0≤k≤log2(t+2)

Lk+1


≤ C

(∫ 1

0

w

)
Llog2(t+2)

= C

(∫ 1

0

w

)
(t+ 2)

log2 L .

This gives the upper bound for t ≥ 0, and the case t < 0 is similar. �

Proof of Theorem 1
Choose ` so large that

(2.13) log2 L+ β − `p ≤ −2.

Note that this choice does not depend on w. Let H be as in Lemma 2.2. We
estimate H above and below. Let us assume first that t ≥ 0 and choose j0 ≥ 0 such
that j0r ≤ t < (j0 + 1) r, so that (2.10) holds. Split

H (t) =

(∫ 0

−∞
+

∫ max{(2j0+1)r,1}

0

+

∫ ∞
max{(2j0+1)r,1}

)
w (s)

(1 + |s− t|)`p
ds

= I1 + I2 + I3.(2.14)

We start with the central integral I2 as it will contribute to both our upper and
lower bounds. We use our growth condition (1.4) as well as that fact that for
s ∈ [jr, (j + 1) r], we have |s− t| ≥ |j − j0| r − r ≥ 1

2 |j − j0| r if |j − j0| ≥ 2. If
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|j − j0| ≤ 2, observe that |j − j0| r ≤ 2. Thus

I2 ≤
max{2j0+1,[ 1r ]}∑

j=0

∫ (j+1)r

jr

w (s)

(1 + |s− t|)`p
ds

≤
max{2j0+1,[ 1r ]}∑

j=0

1(
1
4 (1 + |j − j0| r)

)`p ∫ (j+1)r

jr

w (s) ds

≤ 4`pB

(∫ (j0+1)r

j0r

w (s) ds

)max{2j0+1,[ 1r ]}∑
j=0

1

(1 + |j − j0| r)`p−β

≤ 4`pB

(∫ t+r

t−r
w (s) ds

) ∞∑
k=−∞

1

(1 + |k| r)`p−β

≤ 4`p+3Brwr (t)

∫ ∞
−∞

1

(1 + |s| r)`p−β
ds

≤ C1wr (t) .(2.15)

Here C1 depends on B, β, `, p but is independent of r and w. We have also used
(2.13) and L ≥ 1 to ensure the convergence of the integral in the second last line.
Note that we could not simply use the upper bound in Lemma 2.3 for wr, as we
need the last right-hand side of (2.15) to involve wr (t). In the other direction, we
see from (1.4) that

I2 ≥
max{2j0+1,[ 1r ]}∑

j=j0

1

(1 + |j − j0| r + r)
`p

∫ (j+1)r

jr

w (s) ds

≥ B−1

(∫ (j0+1)r

j0r

w (s) ds

)max{2j0+1,[ 1r ]}∑
j=j0

1

(2 + |j − j0| r)`p+β

≥ B−1

(∫ (j0+1)r

j0r

w (s) ds

)max{j0+1,[ 1r ]−j0}∑
k=0

1

(2 + kr)
`p+β

.(2.16)

Here, using our growth condition (1.4), and then (2.10),

(
1 + 2B2β

) ∫ (j0+1)r

j0r

w (s) ds ≥
∫ (j0+2)r

(j0−1)r

w (s) ds ≥
∫ t+r

t−r
w (s) ds = 2rwr (t) ,

and

max{j0+1,[ 1r ]−j0}∑
k=0

1

(2 + kr)
`p+β

≥ 1

2

∫ max{j0+1,[ 1r ]−j0}

0

1

(2 + tr)
`p+β

dt

=
1

2r

∫ max{(j0+1)r,r[ 1r ]−j0r}

0

1

(2 + s)
`p+β

ds

≥ 1

2r

∫ 1/2

0

1

(2 + s)
`p+β

ds,
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since if (j0 + 1) r ≤ 1
2 , then r

[
1
r

]
− j0r ≥ 1− r− j0r ≥ 1

2 . Substituting the last two
inequalities in (2.16), and using (2.15), we have shown that for t ≥ 0,

(2.17) C1wr (t) ≥ I2 ≥ C2wr (t) ,

where C1 and C2 depend on `, p, β,B, but not on r or the particular w. Next, our
doubling condition (1.3) gives

I1 ≤
∞∑
j=0

∫ −2j

−2j+1

w (s)

(1 + |s|+ t)
`p
ds+

1

(1 + t)
`p

∫ 0

−1

w

≤
∞∑
j=0

1

(1 + 2j + t)
`p

∫ −2j

−2j+1
w (s) ds+

1

(1 + t)
`p

∫ 0

−1

w

≤
∞∑
j=0

Lj+1

(1 + 2j + t)
`p

∫ 0

−1

w +
1

(1 + t)
`p

∫ 0

−1

w

≤

 1

(1 + t)
`p

∑
0≤j≤log2(1+t)

Lj+1 + L
∑

j>log2(1+t)

(
L

2`p

)j
+

1

(1 + t)
`p

∫ 0

−1

w

≤ C

(
1

(1 + t)
`p
Llog2(1+t) +

(
L

2`p

)log2(1+t)
)∫ 0

−1

w

≤ C

(∫ 0

−1

w

)
(1 + t)

log2 L−`p ,(2.18)

by (2.13). Here C depends only on p, `, L. Next, let N = log2 max {[(2j0 + 1) r] , 1},
and let j ≥ N , and s ∈

[
2j , 2j+1

]
. We claim that

(2.19) 1 + |s− t| ≥ 1

3
2j .

If first j0 = 0, then N = 1 and t < r, so 1+ |s− t| ≥ 1+2j−1 = 2j . If j0 ≥ 1, then
(j0 + 1) r ≤ 2

3 (2j0 + 1) r ≤ 2
32N , so |s− t| ≥ 2j − (j0 + 1) r ≥ 2j − 2

32N ≥ 1
32j .
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Thus we have (2.19). Then our doubling hypothesis (1.3) gives

I3 ≤
∞∑
j=N

∫ 2j+1

2j

w (s)

(1 + |s− t|)`p
ds

≤
∞∑
j=N

1

(3−12j)
`p

∫ 2j+1

2j
w (s) ds

≤
∞∑
j=N

1

(3−12j)
`p
Lj+1

∫ 1

0

w

≤ 3`pL

(∫ 1

0

w

) ∞∑
j=N

(
L

2`p

)j

≤ (2) 3`pL

(∫ 1

0

w

)(
L

2`p

)N
≤ C

(∫ 1

0

w

)
(max {[(2j0 + 1) r] , 1})log2 L−`p

≤ C

(∫ 1

0

w

)
(1 + t)

log2 L−`p .

In the third last line, we used L/2`p ≤ 1/4, as follows from (2.13). In the last line,
we used (2.10). Together with (2.14), (2.17), and (2.18), we have shown that for
t ≥ 0,

C2wr (t) ≤ H (t) ≤ C1

(
wr (t) +

(∫ 1

−1

w

)
(1 + t)

log2 L−`p
)
.

Next, from (2.11) and (2.12), we can continue this as

C2wr (t) ≤ H (t) ≤ C1wr (t) (1 + (1 + t)
log2 L−`p+β)

≤ C3wr (t) ,

by (2.13). The case t < 0 is similar. Now the result follows from Lemma 2.2. �
We note that at least for p ≥ 1, one can use the Markov-Bernstein inequalities

in Theorem 1 to prove that there exists δ0 ∈ (0, 1) such that for σ > 0, and non-
identically vanishing entire functions f of exponential type ≤ σ, we have

1

2
≤
∫ ∞
−∞
|f (t)|p wδ0/(σ+1) (t) dt/

∫ ∞
−∞
|f (t)|p w (t) dt ≤ 3

2
.

This gives one way to prove Corollary 2. However, we use a different method below:

Proof of Corollary 2
First note that Lemma 2.3 and our hypotheses imply that for some C > 1,

(2.20) C−1 (1 + |t|)−β ≤ wr (t) ≤ C (1 + |t|)log2 L , r ∈ (0, r0) and t ∈ R.
Here C is independent of r and t. Let σ > 0 and f be entire of type ≤ σ, with the
integral in the right-hand side of (1.7) finite. Let kp ≥ β + log2 L+ 2, ε > 0 and

g (t) = f (t)S (εt)
k
.

By Lebesgue’s differentiation theorem, we have for a.e. t ∈ R,
lim
r→0+

wr (t) |g (t)|p = w (t) |g (t)|p .
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Next, (2.20) shows that for r ∈ (0, r0) and all real t

wr (t) |g (t)|p ≤ C (1 + |t|)log2 L |f (t)|p min

{
1,

1

πε |t|

}kp
≤ C1 (1 + |t|)log2 L−kp |f (t)|p

≤ C1 (1 + |t|)log2 L−kp+β w (t) |f (t)|p

≤ C1Cw (t) |f (t)|p ,

by Lemma 2.3 and our choice of k. Here C1 and C are independent of r, f but
depend on ε and w. Since C1Cw (t) |f (t)|p is independent of r and integrable by
(1.7), Lebesgue’s Dominated Convergence Theorem gives

lim
r→0+

∫ ∞
−∞

wr (t) |g (t)|p dt =

∫ ∞
−∞

w (t) |g (t)|p dt.

Next, for each given R > 0, as g is bounded in each finite interval, and wr is
bounded independently of r,

lim
r→0+

∫ R

−R
wr (t) |g′ (t)|p dt =

∫ R

−R
w (t) |g′ (t)|p dt.

Then as g has exponential type ≤ σ+ kεπ, Theorem 1 and the last two limits yield∫ R

−R
w (t)

∣∣∣∣ ddt (f (t)S (εt))

∣∣∣∣p dt
≤ C (σ + kεπ + 1)

p
∫ ∞
−∞

w (t) |f (t)S (εt)|p dt

≤ C (σ + kεπ + 1)
p
∫ ∞
−∞

w (t) |f (t)|p dt,

recall that |S| ≤ 1. We can now let ε→ 0+, and use the fact that S (εt) converges
uniformly for t in compact subsets of C to S (0) = 1. A similar statement then
holds for the derivatives. We deduce that∫ R

−R
w (t) |f ′ (t)|p dt ≤ C (σ + 1)

p
∫ ∞
−∞

w (t) |f (t)|p dt.

Finally, let R→∞. �

Proof of Corollary 3
We choose r = 1 in Theorem 1. Our condition (1.8) shows that for some C > 1
and all t ∈ R,

(2.21) M−1 ≤ w1 (t) /w (t) ≤M.

That condition also gives for a ≥ 0,∫ 2a

a

w ≤M2aw (a) ≤ 4M2

∫ a

a/2

w

and similarly, ∫ a

−2a

w ≤ 4M2

∫ 0

−a/2
w.
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So we can choose L = 4M2 in (1.3). Next, let k ≥ 0 and−1 ≤ j ≤ max
{

2k + 1, 1
r

}
=

2k + 1. We have to show that (1.4) holds for the given j, k and with r = 1. Firstly
if j = −1 or 0, (1.8) gives

(2.22)
∫ j+1

j

w ≤M2

∫ 2

1

w.

So now let us consider 1 ≤ j ≤ 2k + 1. Let us first suppose that j ≤ k, and choose
0 ≤ n ≤ log2 k such that

k

2n+1
≤ j ≤ k

2n
.

Then by repeated use of (1.8),∫ j+1

j

w ≤ Mw (j) ≤M2w

(
k

2n

)
≤ Mn+2w (k) ≤Mn+3

∫ k+2

k

w.(2.23)

Here

Mn = 2n log2M ≤
(
k

j

)log2M

=

(
1 +

k − j
j

)log2M

≤ (1 + |k − j|)log2M .

Combined with (2.22) and (2.23), we have shown that for −1 ≤ j ≤ k,∫ j+1

j

w ≤M5(1 + |k − j|)log2M

∫ k+1

k

w.

Next, if k < j ≤ 2k + 1,∫ j+1

j

w ≤ M2w (k)

≤ M3

∫ k+1

k

w ≤M3(1 + |k − j|)log2M

∫ k+1

k

w.

In summary, we have established (1.4) with B = M5 and β = log2M . Then, re-
calling (2.21), Theorem 1.1 gives the result. �

Proof of Corollary 4
It is easy to see that w (x) =

(
1 + x2

)α
satisfies (1.8), with, for example,M = 17|α|.

�
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