On Boundedness of Lagrange Interpolation in $L_{p}, p<1$

D.S. Lubinsky
Mathematics Department, Witwatersrand University, Wits 2050, South Africa.
e-mail: 036dsl@cosmos.wits.ac.za

10 December 1997

Abstract

We estimate the distribution function of a Lagrange interpolation polynomial and deduce mean boundedness in $L_{p}, p<1$.

1 The Result

There is a vast literature on mean convergence of Lagrange interpolation, see [48] for recent references. In this note, we use distribution functions to investigate mean convergence. We believe the simplicity of the approach merits attention.

Recall that if $g: \mathbb{R} \rightarrow R$, and m denotes Lebesgue measure, then the distribution function m_{g} of g is

$$
\begin{equation*}
m_{g}(\lambda):=m(\{x:|g(x)|>\lambda\}), \lambda \geq 0 \tag{1}
\end{equation*}
$$

One of the uses of m_{g} is in the identity [1,p.43]

$$
\begin{equation*}
\|g\|_{L_{p}(\mathbb{R})}^{p}=\int_{0}^{\infty} p t^{p-1} m_{g}(t) d t, 0<p<\infty \tag{2}
\end{equation*}
$$

Moreover, the weak L_{1} norm of g may be defined by

$$
\begin{equation*}
\|g\|_{\text {weak }\left(L_{1}\right)}=\sup _{\lambda>0} \lambda m_{g}(\lambda) \tag{3}
\end{equation*}
$$

If

$$
\|g\|_{L_{p}(\mathbb{R})}<\infty
$$

then for $p<\infty$, it is easily seen that

$$
\begin{equation*}
m_{g}(\lambda) \leq \lambda^{-p}\|g\|_{L_{p}(\mathbb{R})}^{p}, \lambda>0 \tag{4}
\end{equation*}
$$

and if $p=\infty$,

$$
m_{g}(\lambda)=0, \lambda>\|g\|_{L_{\infty}(\mathbb{R})}
$$

Our result is:

Theorem 1

Let $w, \nu: \mathbb{R} \rightarrow R$ be measurable and let ν have compact support. Let $n \geq 1$ and let π_{n} be a polynomial of degree n with n real simple zeros $\left\{t_{j n}\right\}_{j=1}^{n}$. Let

$$
\begin{equation*}
\Omega_{n}:=\sum_{j=1}^{n} \frac{1}{\left|\pi_{n}^{\prime} w\right|\left(t_{j n}\right)} \tag{5}
\end{equation*}
$$

(a) Let $0<r<\infty$ and assume there exists $A>0$ such that

$$
\begin{equation*}
m_{\pi_{n} \nu}(\lambda) \leq A \lambda^{-r}, \lambda>0 \tag{6}
\end{equation*}
$$

Then if $L_{n}[f]$ denotes the Lagrange interpolation polynomial to f at the zeros $\left\{t_{j n}\right\}$ of π_{n}, we have

$$
\begin{equation*}
m_{L_{n}[f] \nu}(\lambda) \leq 2 A^{\frac{1}{r+1}}\left(8\|f w\|_{L_{\infty}(\mathbb{R})} \Omega_{n} / \lambda\right)^{\frac{r}{r+1}}, \lambda>0 \tag{7}
\end{equation*}
$$

(b) Assume that

$$
\begin{equation*}
m_{\pi_{n} \nu}(\lambda)=0, \lambda>A \tag{8}
\end{equation*}
$$

Then

$$
\begin{equation*}
m_{L_{n}[f] \nu}(\lambda) \leq A\|f w\|_{L_{\infty}(\mathbb{R})} \Omega_{n} / \lambda, \lambda>0 \tag{9}
\end{equation*}
$$

Corollary 2

Let w, ν be as in Theorem 1 and assume that we are given $\pi_{n},\left\{t_{j n}\right\}_{j=1}^{n}$ for each $n \geq 1$ and

$$
\begin{equation*}
\Omega:=\sup _{n \geq 1} \sum_{j=1}^{n} \frac{1}{\left|\pi_{n}^{\prime} w\right|\left(t_{j n}\right)}<\infty \tag{10}
\end{equation*}
$$

(a) If $r<\infty$ and (6) holds for $n \geq 1$, then for $0<p<\frac{r}{1+r}$, we have for some C_{1} independent of f, n

$$
\begin{equation*}
\left\|L_{n}[f] \nu\right\|_{L_{p}(\mathbb{R})} \leq C_{1}\|f w\|_{L_{\infty}(\mathbb{R})} . \tag{11}
\end{equation*}
$$

(b) If (8) holds for $n \geq 1$, then we have (11) for $0<p<1$, as well as

$$
\begin{equation*}
\left\|L_{n}[f] \nu\right\|_{\text {weak }\left(L_{1}\right)} \leq C_{1}\|f w\|_{L_{\infty}(\mathbb{R})} \tag{12}
\end{equation*}
$$

Remarks

(a) Note that (6) holds if

$$
\left\|\pi_{n} \nu\right\|_{L_{r}(\mathbb{R})}^{r} \leq A, n \geq 1
$$

and (8) holds if

$$
\left\|\pi_{n} \nu\right\|_{L_{\infty}(\mathbb{R})} \leq A
$$

Of course (6) is a weak L_{r} condition.
(b) Under mild additional conditions on w and ν that guarantee density of the polynomials in the relevant spaces, the projection property $L_{n}[P]=P$, $\operatorname{deg}(P) \leq n-1$, allows us to deduce mean convergence of $L_{n}[f]$ to f.
(c) Orthogonal polynomials $\left\{p_{n}(u, x)\right\}_{n=0}^{\infty}$ such as those for generalized Jacobi weights u [4] or the exponential weights u in [2] admit the bound

$$
\left|p_{n}(u, x)\right| u^{1 / 2}(x) \leq C\left|1-\frac{|x|}{a_{n}}\right|^{-1 / 4}, x \in[-1,1]
$$

for a C independent of n and a suitable choice of a_{n}. Thus these polynomials admit the bound (6) with $r=4$. Moreover, if $\left\{t_{j n}\right\}$ are the zeros of p_{n}, then a great deal is known about $p_{n}^{\prime}\left(t_{j n}\right)$, and in particular (10) holds with an appropriate choice of w. More generally, for extended Lagrange interpolation, involving interpolation at the zeros of $S_{n} p_{n}$, where S_{n} is a polynomial of fixed degree, it is easy to verify (10) under mild conditions on S_{n}.
(d) A result of Shi [7] implies that if (11) holds with C_{1} independent of f and n, and if π_{n} is normalized by the condition

$$
\left\|\pi_{n} \nu\right\|_{L_{p}(\mathbb{R})}=1
$$

while the $\left\{t_{j n}\right\}$ are all contained in a bounded interval, then (10) holds. Thus in this case (10) is necessary for (11). However, our normalisation (6) or (8) of π_{n} involves a condition with $r>p$, so there is a gap.
(e) Of course (10) requires $w\left(t_{j n}\right) \neq 0 \forall j, n$. We may weaken (10) to

$$
\sup _{n \geq 1} \sum_{j: w\left(t_{j n}\right) \neq 0} \frac{1}{\left|\pi_{n}^{\prime} w\right|\left(t_{j n}\right)}<\infty
$$

if we restrict f by the condition $w\left(t_{j n}\right)=0 \Rightarrow f\left(t_{j n}\right)=0$. In particular this allows us to consider w with compact support even when $\left\{t_{j n}\right\}_{j, n}$ is not contained in a bounded interval.

Our proofs rely on a lemma of Loomis [1,p. 129].

Lemma 3

Let $n \geq 1$ and $\left\{x_{j}\right\}_{j=1}^{n},\left\{c_{j}\right\}_{j=1}^{n} \subset \mathbb{R}$. Then for $\lambda>0$,

$$
\begin{equation*}
m\left(\left\{x:\left|\sum_{j=1}^{n} \frac{c_{j}}{x-x_{j}}\right|>\lambda\right\}\right) \leq \frac{8}{\lambda} \sum_{j=1}^{n}\left|c_{j}\right| \tag{13}
\end{equation*}
$$

Proof
When all $c_{j} \geq 0$, we have equality in (13) with 8 replaced by 2 [1,p.129]. The general case follows by writing

$$
c_{j}=c_{j}^{+}-c_{j}^{-}
$$

where $c_{j}^{+}=\max \left\{0, c_{j}\right\}, c_{j}^{-}=-\min \left\{0, c_{j}\right\}$ and noting that

$$
\left|\sum_{j=1}^{n} \frac{c_{j}}{x-x_{j}}\right|>\lambda \Rightarrow\left|\sum_{j=1}^{n} \frac{c_{j}^{+}}{x-x_{j}}\right|>\frac{\lambda}{2} \text { or }\left|\sum_{j=1}^{n} \frac{c_{j}^{-}}{x-x_{j}}\right|>\frac{\lambda}{2} \text { or both. }
$$

Proof of Theorem 1

(a) Assume that $r<\infty$ and let $a \in \mathbb{R}, \lambda>0$. We may assume that

$$
\begin{equation*}
\|f w\|_{L_{\infty}(\mathbb{R})}=1 \tag{14}
\end{equation*}
$$

(The general case follows from the identity $m_{b g}(\lambda)=m_{g}(\lambda / b)$ for $b, \lambda>0$). Now

$$
\left(L_{n}[f] \nu\right)(x)=\left(\pi_{n} \nu\right)(x) \sum_{j=1}^{n} \frac{(f w)\left(t_{j n}\right)}{\left(\pi_{n}^{\prime} w\right)\left(t_{j n}\right)\left(x-t_{j n}\right)}
$$

so

$$
\left|L_{n}[f] \nu\right|(x)>\lambda
$$

implies

$$
\begin{equation*}
\left|\pi_{n} \nu\right|(x)>\lambda^{a} \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|\sum_{j=1}^{n} \frac{(f w)\left(t_{j n}\right)}{\left(\pi_{n}^{\prime} w\right)\left(t_{j n}\right)\left(x-t_{j n}\right)}\right|>\lambda^{1-a} \tag{16}
\end{equation*}
$$

or both. The set of x satisfying (15) has, by (6), measure at most $A \lambda^{-a r}$. The set of x satisfying (16) has by Loomis' Lemma, measure at most

$$
\frac{8}{\lambda^{1-a}} \sum_{j=1}^{n}\left|\frac{f w}{\pi_{n}^{\prime} w}\right|\left(t_{j n}\right) \leq 8 \lambda^{a-1} \Omega_{n}
$$

Now, if $\lambda \neq 1$, we choose a so that

$$
A \lambda^{-a r}=8 \lambda^{a-1} \Omega_{n} \Leftrightarrow a=\frac{1}{r+1}\left[1-\frac{\log \left[8 \Omega_{n} / A\right]}{\log \lambda}\right] .
$$

Then we obtain

$$
m_{L_{n}[f] v}(\lambda) \leq 2 A^{\frac{1}{r+1}}\left(8 \Omega_{n} / \lambda\right)^{\frac{r}{r+1}}
$$

that is (7) holds. The case $\lambda=1$ follows from continuity properties of Lebesgue measure.
(b) Here we have instead

$$
\left|L_{n}[f] \nu\right|(x)>\lambda \Rightarrow\left|\sum_{j=1}^{n} \frac{(f w)\left(t_{j n}\right)}{\left(\pi_{n}^{\prime} w\right)\left(t_{j n}\right)\left(x-t_{j n}\right)}\right|>\frac{\lambda}{A}
$$

and again (9) follows from Loomis' Lemma.

Proof of Corollary 2

(a) We may assume (14). Now by hypothesis, there exists $b>0$ such that ν vanishes outside $[-b, b]$. Thus in addition to (7), we have the estimate

$$
m_{L_{n}[f] \nu}(\lambda) \leq 2 b, \lambda>0
$$

Then from (2), if $0<p<\frac{r}{r+1}$, we have
$\left\|L_{n}[f] \nu\right\|_{L_{p}(\mathbb{R})}^{p} \leq p\left(\int_{0}^{1} t^{p-1}(2 b) d t+2 A^{\frac{1}{r+1}}(8 \Omega)^{\frac{r}{r+1}} \int_{1}^{\infty} t^{p-1-\frac{r}{r+1}} d t\right)=: C_{1}<\infty$.
(b) Here trivial modifications of this last estimate allow us to treat $0<p<1$, while (9) gives

$$
\left\|L_{n}[f] \nu\right\|_{\text {weak }\left(L_{1}\right)}=\sup _{\lambda>0} \lambda m_{L_{n}[f] \nu}(\lambda) \leq C \Omega
$$

We make two final remarks: The proof of Theorem 1 also gives a weak converse Marcinkiewicz-Zygmund inequality. For a given f, define

$$
\Omega_{n}(f):=\sum_{j=1}^{n} \frac{|f w|\left(t_{j n}\right)}{\left|\pi_{n}^{\prime} w\right|\left(t_{j n}\right)} .
$$

Then (7) holds with Ω_{n} replaced by $\Omega_{n}(f)$. Moreover, (7) can be reformulated in the following way: If P is a polynomial of degree $\leq n-1$ satisfying

$$
|P w|\left(t_{j n}\right) \leq 1,1 \leq j \leq n,
$$

then

$$
m_{P \nu}(\lambda) \leq 2 A^{\frac{1}{r+1}}\left(8 \Omega_{n} / \lambda\right)^{\frac{r}{r+1}}, \lambda>0 .
$$

It would be useful to have more sophisticated estimates for $m_{P \nu}$. For special weights w, ν and points $\left\{t_{j n}\right\}$, converse quadrature sum inequalities imply these [4].

References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.
[2] A.L. Levin and D.S. Lubinsky, Christoffel Functions and Orthogonal Polynomials for Exponential Weights on $[-1,1]$, Memoirs Amer. Math. Soc., 535(111), 1994.
[3] G. Mastroianni, Boundedness of the Lagrange Operator in Some Functional Spaces. A Survey, to appear.
[4] G. Mastroianni and M.G. Russo, Weighted Marcinkiewicz Inequalities and Boundedness of the Lagrange Operator, to appear.
[5] G. Mastroianni and P. Vertesi, Mean Convergence of Interpolatory Processes on Arbitrary System of Nodes, Acta Sci. Math. (Szeged), 57(1993), 429-441.
[6] P. Nevai, Mean Convergence of Lagrange Interpolation III, Trans. Amer. Math. Soc., 282(1984), 669-698.
[7] Y.G. Shi, Mean Convergence of Interpolatory Processes on an Arbitrary System of Nodes, Acta Math. Hungar., 70(1996), 27-38.
[8] J. Szabados, P. Vertesi, A Survey on Mean Convergence of Interpolatory Processes, J. Comp. Appl. Math., 43(1992), 3-18.

